首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims The community succession theory is much debated in ecology. We studied succession on Zokor rodent mounds on the Tibetan Plateau to address several fundamental questions, among them: (i) During secondary succession, does the community composition converge towards one community state or multiple states depending on the initial colonization? (ii) Do mound communities located in different background communities exhibit different assembly trajectories?Methods In a sub-alpine meadow, we investigated a total of 80 mound communities at several successional stages in three different background communities resulting from different management histories and compared their changes in species composition. The distribution of plant communities over time was analyzed with quantitative classification and ordination methods. The co-occurrence patterns of species were evaluated at each successional stage, and the degree of convergence/divergence among communities was obtained by calculating two beta-diversity indices.Important findings During secondary succession, species richness of mound communities changed over time, and this change was dependent on the background community. Five life-form groups exhibited different dynamic patterns in species richness and plant cover. Community composition and the degree of species co-occurrence between communities increased over time since disturbance. There was much variation in species composition at earlier stages of succession, but communities on older mounds became more similar to each other and to their surrounding vegetation over the course of secondary succession. Post-disturbance succession of Zokor mound communities transitioned from 'multiple alternative states' to 'background-based deterministic community assembly' over time. Tradeoffs between competition and colonization, as well as the characteristics of different life-forms and mass effects within a limited species pool are the mechanisms responsible for convergence of mound communities.  相似文献   

2.
1. Termites are important ecosystem engineers that improve primary productivity in trees and animal diversity outside their mounds. However, their ecological relationship with the species nesting inside their mounds is poorly understood. 2. The presence of termite cohabitant colonies inside 145 Cornitermes cumulans mounds of known size and location was recorded. Using network‐theoretical methods in conjunction with a suite of statistical analyses, the relative influence of biotic and abiotic drivers of termite within‐mound diversity on the composition and species richness of the termite community was investigated, specifically builder presence and physical aspects of the mound. 3. We found that richness inside the mound increases with mound size, and the species similarity between mounds decreases with distance. The physical attributes (abiotic drivers) of termite mounds (size and relative distance to other mounds) are the strongest predictors of termite species richness and composition. The biotic driver (presence of a builder colony) has an important, though smaller, negative effect on within‐mound termite species richness. 4. The findings suggest that the termites' physical manipulation of their environment is an important driver of within‐mound community diversity. More generally, the approach taken here, using a combination of statistical and network‐theoretical methods, can be used to determine the relative importance of abiotic and biotic drivers of diversity in a wide range of communities of interacting species.  相似文献   

3.
A factorial field experiment was used to assess the influence of soil-disturber mammals in the structure of a 9-year-old Mediterranean annual plant community subjected to different sheep grazing and irrigation regimes. We estimated the disturbance rate (mound building activity) by Mediterranean voles, their effects on vegetation and the mechanisms of these effects during a period of vole outbreak. The effects on vegetation were analysed at the levels of species, functional groups and plant community. Disturbance rate was high and voles can disturb the entire soil surface once every four or five years. The availability of certain trophic resources (perennial plants) appeared to drive vole expansion in the experimental plots and it was independent of the irrigation and grazing treatments. Mound building activities largely affected vegetation but conserved plot differences. Total vegetation cover, absolute cover of all functional groups, mean vegetation height and species richness were less on mounds than on undisturbed ground. These effects did not change the relative abundance of annuals, perennials, grasses and forbs. Only the relative abundance of small-seeded species decreased on mounds. As the proportion of these seeds was similar in both types of patches, we suggest that small-seeded species had more difficulties for germinating or emerging when they are buried during mound formation. Irrigation and sheep grazing promoted large changes in the vegetation parameters but these effects were, in general, similar on mounds and undisturbed ground. Our results show that the availability of germinable seeds may be the major limitation for mound revegetation, probably due to the scarcity of seeds existing at the depths from which soils are excavated. Our results also suggested a resource limitation on mounds. The results provide additional evidence that soil disturbances by small herbivore mammals exert relevant ecological effects on abandoned Mediterranean croplands. We discuss the ecological implications of vole mound-building activities for plant succession, plant species conservation and forage resource availability for livestock. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Fine-scale spatial heterogeneity influences biodiversity and ecosystem productivity at many scales. In savanna systems, Macrotermes termites, through forming spatially explicit mounds with unique woody plant assemblages, emerge as important sources of such heterogeneity. Despite a growing consensus regarding the importance of functional diversity (FD) to ecosystem processes, no study has quantified how termite mounds affect woody plant FD. We address whether termite mounds alter the distribution of functional traits, and increase FD of woody plant communities within Africa’s largest savanna woodland, the 2.7 million km2 miombo system. Using plant traits that change according to soil resources (for example, water and nutrients), and disturbance (for example, fire and elephant herbivory), we identified response functional groups and compared relative representation of these groups between mound and matrix habitats. We also asked whether mound and matrix habitats differed in their contribution to FD within the system. Although species representing most functional groups were found in both mound and matrix habitats, relative abundance of functional groups differed between mound and matrix. Mound plant assemblages had greater response diversity to soil resources than matrix plots, but there was no difference in response diversity to disturbance. High trait values on mounds included tree height, leaf nitrogen, phosphorus, and palatability. Species with root ectomycorrhizae dominated the matrix. In conclusion, these small patches of nutrient-enriched substrate emerge as drivers of FD in above-ground woody plant communities.  相似文献   

5.
Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes for biomass production and species composition in plant communities. We set up a greenhouse experiment using intact soil cores with their associated vegetation.We found that plant biomass production in the short term was affected by an interaction between simulated grazing (clipping) and ant mound presence. Clipping homogenized production on and off mounds, while in unclipped situations production was higher off than on mounds. During the experiment, these differences in unclipped situations disappeared, because production on unclipped mounds increased. Plant species richness was on average higher in clipped treatments and patterns did not change significantly over the experimental period. Plant community composition was mainly affected by clipping, which increased the cover of grazing-tolerant plant species. The actual presence of yellow meadow ants did not affect plant community composition and production.We conclude that the interaction between ant mounds and clipping determined plant community composition and biomass production, while the actual presence of ants themselves was not important. Moreover, clipping can overrule effects of ant mounds on biomass production. Only shortly after the cessation of clipping biomass production was affected by ant mound presence, suggesting that only under low intensity clipping ant mounds may become important determining plant production. Therefore, under low intensity grazing ant mounds may drive the formation of small-scale plant patches.  相似文献   

6.
Bowé (hardened ferricrete soils formed by erosion, drought or deforestation) are often associated with termite mounds, but little is known about these mounds and their role in the restoration of soils and plant biodiversity on bowé. This study examined termite mounds on bowé and their effects on soil depth and plant richness. Sixty-four sampling plots were laid out randomly on bowé sites with mounds and on adjacent bowé sites without mounds. The height and circumference of each mound were measured. Species inventories were made and soil depth measured in each plot. Linear mixed effects and generalised mixed effects models with Poisson error distribution were used to assess the variation in soil depth and plant species richness in mound and nonmound microsites. Two types of mounds (small vs. large) associated with different termite species were observed on bowé, with the small mounds being most common. Plots with either large or small mounds had deeper soils and higher plant richness than the adjacent plots without mounds. Conservation of termite mounds is important for restoring soils and plant richness on bowé, and termite mounds should be taken into consideration in biodiversity and soil management strategies for bowé.  相似文献   

7.
The effects of soil disturbance caused by the uprooting of a single or a few canopy trees on species richness and composition of vascular plant species and bryophytes were examined in a temperate beech forest (Fagus sylvatica) in northern Germany. We recorded the vegetation in 57 pairs of disturbed and adjacent undisturbed plots and established a chronosequence of mound ages to study the effect of time since microsite formation on plant species richness and composition. We found significant differences in plant species richness and composition between disturbed and adjacent undisturbed plots. Species richness of both vascular plants and bryophytes was higher in the disturbed than in the undisturbed plots, but these differences were more pronounced for bryophytes. We suggest that three main factors are responsible for this differential response. The availability of microsites on the forest floor that are suitable for the recruitment of bryophytes is lower than for vascular plants. Establishment of bryophytes in disturbed microsites is favoured by a greater abundance of propagules in the close vicinity and in the soil of the disturbed microsites, as well as by a greater variety of regeneration strategies in bryophytes than in vascular plants. Time since mound formation was a major factor determining plant species richness and composition. A significant decrease in the mean number of species was found from young mounds to intermediate and old mounds. However, differences were observed between vascular plants and bryophytes in the course of changes through time in species richness and composition. A large number of exclusive and infrequent vascular plant species was observed on young mounds, among them several disturbance specialists. We suggest that the establishment of many vascular plant species was infrequent and short-lived due to unfavourable light conditions and a low abundance of propagules. By contrast, the development of a litter layer was the main reason for the decreased mean number of bryophytes on old mounds. Our study supports the view that groups of species differing in important life history traits exhibit different responses to soil disturbance.  相似文献   

8.
Summary Examination of eroded and intact earth mounds in the Clanwilliam district, South Africa, indicates that they are well-established active termitaria of the harvester termite Microhodotermes viator. Unoccupied lower portions of the mounds contain ubiquitous trace-fossil evidence of earlier inhabitation by the same species. Previous studies indicating that fossorial molerats played a major role in the formation of the mounds are not supported by the observations presented here. Calcretization of the basal parts of the earth mounds has been caused by groundwater interaction with the more alkaline mound soil. 14C dating of this calcrete indicates that the earth mounds have been in existence for at least 4000 years, an order of magnitude greater than any previously recorded longevity for termitarium inhabitation.  相似文献   

9.
Summary Termite mound densities in typical guinea savanna, Detarium, and grassland (boval) habitats in northern guinea savanna were determined by random quadratting of 2–3 sites in each habitat (100, 10x10 m quadrats per habitat). Dominant species in guinea savanna were T. geminatus (46 mounds ha-1) and T. oeconomus (21 mounds ha-1), in Detarium T. geminatus (59 mounds ha-1) and C. curtatus (45 mounds ha-1) and in boval C. curtatus (72 mounds ha-1) and T. geminatus (22 mounds ha-1). Only C. curtatus densities and total densities differed significantly between sites within habitats, but all species differed significantly in abundance between habitats. The composition of each community was related to general environment but no particular environmental variable was shown to be a major determinant of termite distribution. Evidence for the limitation of termite populations was obtained from indirect evidence of competition between colonies in Detarium, and by experimental manipulation of fire regimes in the typical guinea savanna habitat. Harvester termites increased four-five fold over two years in fire-protected plots as a result of increased food supplies. Total termite densities in the fire-protected community equilibrated to the new population density (100 mounds ha-1) after only two-three years.  相似文献   

10.
We investigated how the high small-scale species richness of an alpine meadow on the Qinghai-Tibet Plateau, China, is maintained. This area is characterized by strong wind and severe cold during long winters. In winter, most livestock is grazed on dead leaves in small pastures near farmers’ residences, whereas in the short summer, livestock is grazed in mountainous areas far from farmers’ residences. The number of plant species and the aboveground biomass were surveyed for three adjacent pastures differing in grazing management: a late-winter grazing pasture grazed moderately from 1 February to 30 April, an early-winter grazing pasture grazed lightly from 20 September to late October, and a whole-year grazing pasture grazed intensively throughout the entire year. In each pasture, we harvested the aboveground biomass from 80 or 100 quadrats of 0.01 m2 along a transect and classified the contents by species. We observed 15.5–19.7 species per 0.01 m2, which is high richness per 0.01 m2 on a worldwide scale. The species richness in the two winter grazing pastures was higher than that in the whole-year grazing pasture. The spatial variation in species richness and species composition in the two winter grazing pastures in which species richness was high was greater than that in the whole-year grazing pasture in which species richness was lower. Most of the leaves that are preserved on the winter grazing pastures during summer are blown away by strong winds during winter, and the remaining leaves are completely exhausted in winter by livestock grazing. A pasture with a high richess is accompanied by a high spatial variation in species richness and species composition. There is a high possibility that the characteristic of spatial variation is also caused by traditional grazing practices in this area.  相似文献   

11.
Summary Liassic sponge mounds of the central High Atlas (Rich area, northern Morocco) have a stratigraphic range from the Lower/Upper Sinemurian boundary interval up to the lower parts of the Lower Pliensbachian (Carixian). The base of Liassic sponge mounds consists of a transgressive discontinuity, i.e., a condensed section of microbioclastic wackestones with firm- and hardgrounds, ferruginous stromatolites, sponge spicules and ammonites. The top of Liassic sponge mounds is an irregular palaeorelief covered by cherty marl-limestone rhythmites, namely hemipelagic spicular wackestones with radiolaria. In the Rich area, section Foum Tillicht, the sponge mound succession has a total thickness of about 250 meters. Within this succession we distinguished between three mound intervals. The lower mound interval shows only small, meter-scale sponge mounds consisting of boundstones with lyssakine sponges, commensalicTerebella and the problematicumRadiomura. This interval forms a shallowing-upward sequence culminating in a bedded facies withTubiphytes, calcareous algae (Palaeodasycladus), sponge lithoclasts, coated grains, and thin rims of marine cement. The middle mound interval is aggradational with decametric mounds and distinct thrombolitic textures and reefal cavities. The mound assemblage here consists of hexactinellid sponges, lithistid demosponges, non-rigid demosponges,Radiomura, Serpula (Dorsoserpula), Terebella, encrusting bryozoa, and minor contributions by calcareous sponges, and excavating sponges (typeAka). Thrombolites are dendrolitic and may reach sizes of several tens of centimeters, similar to the maximum size of siliceous sponges. The upper mound interval appears retrogradational and geometries change upsection from mound shapes to flat lenses and level-bottom, biostromal sponge banks. The biotic assemblage is similar to that of the middle mound interval and there is no difference between mound and bank communities. The demise of sponge mounds is successive from regional spread in the Sinemurian to more localised spots in the Lower Pliensbachian. This reduction correlates with an increasing influence of pelagic conditions. At Foum Tillicht, sponge mounds lack any photic contribution and there is virtually no differentiation into subcommunities between mound surface and cavity dwelling organisms. There is some evidence that the heterotrophic food web of mound communities was sourced by oxygen minimum zone edge effects, namely microbial recycling of essential elements such as N and P. Basin geometry suggests a waterdepth of several 100's of meters, well below the photic zone and possibly only controlled by the depth range of the oxygen minimum zone. Palaeoceanographic conditions of well-stratified deeper water masses diminished gradually during widespread transgression across the Sinemurian to Pliensbachian boundary culminating in the Lower Pliensbachianibex ammonite zone.  相似文献   

12.
We studied vegetation responses to disturbances originated by ants and voles in subalpine grasslands in the Eastern Pyrenees. We compared the effects of these small-scale disturbances with those of a large-scale disturbance caused by ploughing. We wanted to know if these soil disturbances promoted species richness through the existence of a specific guild of plants colonizing these areas, and if this guild was the same for all soil disturbances, independently of their extent. In general, grassland vegetation seemed to recover relatively quickly from soil-displacement disturbances, and the effects could be scaled up in time and space in terms of species richness and composition. Vole mound composition was similar to that in the surrounding grassland, suggesting that mounds were rapidly colonized by the neighbouring vegetation. Vegetation composition differed between the grassland and the ant mounds. Grasses and erect dicots coped well with repeated disturbance, while rosette-forming species and sedges were very sensitive to it. Landscape processes could be important to understanding recolonization. Species from xeric grasslands were found in mesic grasslands when disturbed by ploughing and on the tops of active ant mounds. Furrows in mesic grasslands recovered well, but decades after disturbance showed long persistence of some xeric species and increased species richness compared to terraces, while xeric grasslands showed decreased richness. This suggests that, because of those disturbances, within-habitat diversity was increased, although landscape diversity was not. However, specific disturbances showed idiosyncratic effects, which could enhance the species richness globally. In ant-affected areas, the grassland itself showed the highest plant species richness, partially associated to the presence of some species with elaiosomes not, or only rarely, found in adjacent grasslands without ant mounds. Therefore, soil disturbances occurring at different spatial scales contributed to complexity in vegetation patterns in addition to abiotic factors and grazing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nomenclature of the species follows Tutin et al. (1964–1980) and Bolòs et al. (1993).  相似文献   

13.
Termite mounds contribute to the spatial heterogeneity of ecological processes in many savannas, but the underlying patterns and determinants of mound distributions remain poorly understood. Using the Carnegie Airborne Observatory (CAO), we mapped the distribution of termite mounds across a rainfall gradient within a river catchment (~ 27 000 ha) of the Kruger National Park, South Africa. We assessed how different factors were associated with the distribution and height of termite mounds at three spatial scales: the entire catchment, among three broad vegetation types, and on individual hillslope crests. Abiotic factors such as the underlying geology and mean annual precipitation shaped mound densities at broad scales, while local hillslope morphology strongly influenced mound distribution at finer scales, emphasising the importance of spatial scale when assessing mound densities. Fire return period had no apparent association with mound densities or height. Mound density averaged 0.46 mounds ha?1, and exhibited a clustered pattern throughout the landscape, occurring at relatively high densities (up to 2 mounds ha?1) on crests, which are nutrient‐poor elements of the landscape. Mounds exhibited significant over‐dispersion (even spacing) at scales below 60 m so that evenly spaced aggregations of termite mounds are embedded within a landscape of varying mound densities. The tallest mounds were found in dry savanna (500 mm yr?1) and were positively correlated with mound density, suggesting that dry granitic savannas are ideal habitat for mound‐building termites. Mound activity status also varied significantly across the rainfall gradient, with a higher proportion of active (live) mounds in the drier sites. The differential spacing of mounds across landscapes provides essential nutrient hotspots in crest locations, potentially sustaining species that would otherwise not persist. The contribution to biodiversity and ecosystem functioning that mounds provide is not uniform throughout landscapes, but varies considerably with spatial scale and context.  相似文献   

14.
Question: What is the role of mound‐building ants (Lasius flavus) in successional changes of a grassland ecosystem towards a spruce forest? Location: Slovenské Rudohorie Mountains, Slovakia; ca. 950 m a.s.l. near the Obrubovanec point (1020 m a.s.l.; 48°41′N, 19°39′E). Methods: Both chronosequence data along a successional gradient and temporal data from long‐term permanent plots were collected on ants, spruce establishment, and vegetation structure, together with additional data on spruce growth. Results: There are more spruce seedlings on ant mounds (4.72 m?2) than in the surrounding vegetation (0.81 m?2). Spruce seedlings grow faster on these mounds compared to surrounding areas. The first colonization wave of seedlings was rapid and probably occurred when grazing prevailed over mowing. Ant colony presence, mound volume, and plant species composition change along the successional gradient. Mounds become bigger when partly shaded but shrink in closed forest, when ant colonies disappear. Shade‐tolerant acidophylic species replace grassland plants both on the mounds and in surrounding areas. Conclusions: The massive occurrence of Lasius flavus anthills contributes to a runaway feedback process that accelerates succession towards forest. The effect of ants as ecosystem engineers is scale‐dependent: although they stabilize the system at the scale of an individual mound, they may destabilize the whole grassland system over a longer time scale if combined with changes in mowing regime.  相似文献   

15.
Abstract. This paper reports on vegetation dynamics on terrestrial, temperate grassland sites at the upper range of the productivity scale, i.e. on abandoned sewage fields (fields once used for waste water disposal) at Berlin‐Blankenfelde, Germany. I studied regeneration and the influence of different management practices (removal of top soil and mowing in late summer). Changes in species composition and cover were followed on permanent plots of 2m × 2m size through five years of vegetation development. At the outset of the experiment the abandoned fields were dominated by dense Urtica dioica /Elymus repens stands. Species richness was 7 species/ 4m2, and it remained low on unmanaged plots during the time of observation (7.6 species/plot in year 5). Removal of 20 cm of top soil caused a severe decline of Urtica and a large increase in species richness (21 species in year 1 after disturbance). Mowing was slightly higher compared with unmown plots on both initially excavated and unexcavated plots. Total cover was always near 100 % (except immediately after top soil removal). Colonization of bare soil was very rapid and in late summer of the first year after disturbance cover already increased towards 100%. On all plots the vegetation was mostly dominated by perennial herbs and grasses. Winter season gaps are occupied by Galium aparine, a large‐seeded annual scrambling climber. Monocarpic perennials behaved as winter annuals in most cases. Woody species were inhibited by dense above‐ground biomass and litter cover. The paper questions whether succession on abandoned sewage fields may proceed towards a woodland stage and advises how vegetation of such hyper‐eutrophicated sites can be managed towards higher diversity.  相似文献   

16.
Abstract. We compared vegetation establishment in 25 treefall pits and mounds along a hillside elevational gradient in a fourth-year catastrophic windthrow in eastern North America. Plant communities differed greatly between pits and mounds, with pit microsites having significantly greater species richness, total biomass, and total tree stem density. Species richness in pits and on mounds decreased with increasing elevation from the bottom of the hillside, although the effect of elevation on mound species richness was less than that of elevation on pit species richness. Biomass of Erechtites hieraciifolia decreased significantly, while that of Betula alleghaniensis increased significantly with elevation. However, total biomass of both pit and mound microsites was unrelated to elevation. Total stem density decreased with elevation in pits, but was unaffected by elevation on mounds. This study shows that both small-scale (microsite) effects and intermediate-scale effects influence the re-establishment of plant communities within this catastrophic windthrow. Consideration of both microsite and position along intermediate-scale gradients may allow more precise prediction of plant community composition and dynamics in recovery of disturbed areas.  相似文献   

17.
C. E. Ohiagu 《Oecologia》1979,40(2):167-178
Summary Nest and soil populations of Trinervitermes spp. were estimated on grazed secondary savanna woodland near Mokwa cattle ranch and on primary savanna woodland, 6 km from the ranch. Nest populations were estimated by obtaining a relationship between size of nest and the number of termites in the nest and using the relationship to estimate populations in measured nests within the study area.Mound populations of T. geminatus, by far the most abundant species, were 222 m-2 at a mound density of 232 ha-1 at the ranch, and 225 m-2 at a mound density of 175 ha-1 on primary savanna woodland. The mound population at the ranch represented a fresh weight biomass of 1.089 g m-2. Changes in abundance of the mound population of T. geminatus were correlated with breeding and foraging cycles. Maximum numbers (388 m-2, 2.03 g m-2) in August/September were reduced by the flight of alates and loss of foragers to predators; thereafter, the population continued to decrease (126 m-2, 0.57 g m-2) until the cessation of foraging in April/May and numbers of larvae and nymphs began to increase. Soil and mound sampling in primary and secondary savanna showed that although T. geminatus is a mound inhabiting species, two thirds of the mound plus soil population was outside the mounds giving a total population of 737 m-2 (3.08 g m-2). Alate production was estimated at 15.5 m-2 (0.19 g m-2) and neuter production at 367 m-2 (1.66 g m-2); production/biomass ratio was 1.0 T. togoensis (total population of 21 m-2) and T. occidentalis (200 m-2) had 90–96% of the total numbers outside the mounds, indicating that these two species were primarily subterranean.  相似文献   

18.
Banner-tailed kangaroo rats (Dipodomys spectabilis) are prominent ecosystem engineers that build large mounds that influence the spatial structuring of fungi, plants, and some ground-dwelling animals. Ants are diverse and functionally important components of arid ecosystems; some species are also ecosystem engineers. We investigated the effects of patch disturbances created by D. spectabilis mounds on ant assemblages in a Chihuahuan Desert grassland in southern New Mexico by using pitfall traps in a paired design (mound vs. matrix). Although the disturbances did not alter species richness or harbor unique ant communities relative to the matrix, they did alter species composition; the abundances of 6 of 26 species were affected. The disturbances might also act to disrupt spatial patterning of ants caused by other environmental gradients. In contrast to previous investigations of larger-scale disturbances, we detected no effects of the disturbances on ants at the functional-group level. Whether ant communities respond to disturbance at a functional-group or within-functional-group level may depend on the size and intensity of the disturbance. Useful functional-group schemes also may be scale-dependent, however, or species may respond idiosyncratically. Interactions between disturbance-generating mammals and ants may produce a nested spatial structure of patches. Received: 11 October 1999 / Accepted: 11 March 2000  相似文献   

19.
高原鼠兔挖掘活动对植物种的丰富度和地上生物量的影响   总被引:2,自引:0,他引:2  
刘伟  李里  严红宇  孙海群  张莉 《兽类学报》2012,32(3):216-220
用空间序列代替时间序列的方法,分析了高原鼠兔挖掘形成的鼠丘上和鼠丘间植物群落物种丰富度、物种组成和地上生物量的变化,探讨鼠兔挖掘活动对植物群落的影响。结果表明:多年鼠丘上植物种类丰富度较高,分别比两年鼠丘和对照增加25. 0% 和17. 5% ;多样性指数变化趋势为对照> 多年鼠丘> 两年鼠丘,种的均匀度变化趋势为对照>多年鼠丘> 两年鼠丘;两年鼠丘和多年鼠丘、对照之间群落系数较低,分别为0.346 2和0.285 7,显示了它们在植物种类组成上存在较大差异;地上生物量变化趋势为多年鼠丘> 两年鼠丘> 对照,且多年鼠丘上植物地上生物量显著高于两年鼠丘和对照(F多年- 对照= 13.544 0,F多年- 两年= 11.768 2,P < 0. 05),分别增加了66.3% 和77. 8% 。高原鼠兔的挖掘活动有利于增加物种丰富度和自身的适应性,但就高原鼠兔栖息地植物群落而言,考虑到一定数量当年鼠丘的存在,地上生物量呈下降趋势。  相似文献   

20.
  • 1 Two study-sites near Kampala were mapped and all of the termite mounds within them were measured. Changes were recorded in the three succeeding years. A method was developed for estimating mound volumes from height and diameter.
  • 2 Macrotermes bellicosus mounds reached a volume of about 2.4 m3 in 3 years after which they grew more slowly to a maximum from 4 to 6 m3. Growth in volume during the first 3 years was approximately linear and its rate did not vary seasonally, probably because growth is related to temperature which was nearly constant throughout the year.
  • 3 M.bellicosus mounds had an average length of life of about 10 years, although colonies survived on average only 4 years. The corresponding figures for Pseudacanthotermes spp. were 5 and 2 1/2 years. Some mounds were recolonized after the death of the original colony.
  • 5 Fresh earth was brought up at a minimum rate of about 10 m3 ha-1 yr-1 but more was lost by erosion and destruction and the populations of mounds were decreasing.
  • 4 The number of ventilation shafts in M.bellicosus mounds increased with the volume of the mound. Many mounds, both dead and alive, supported vegetation.
  • 6 Local opinion is that Pseudacanthotermes are harmless but M.bellicosus is regarded as a pest and attempts are made to destroy its mounds.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号