首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Suppressor-mutator (Spm) transposable element family of maize consists of the fully functional standard Spm (Spm-s) and many mutant elements. Insertion of an Spm element in or near a gene can markedly alter its expression, in some cases bringing the gene under the control of the mechanisms that regulate expression of the element. To gain insight into such mechanisms, as well as to enlarge our understanding of the Spm element's genetic organization, we have analyzed derivatives of a unique Spm insertion at the maize a locus in which the gene is co-expressed and co-regulated with the element. We describe the genetic properties and the structure of the a locus and Spm element in 9 strains (collectively designated the a-m2 alleles) selected by McClintock from the original a-m2 allele for heritable changes affecting either the Spm element or expression of the a gene. Most of the mutations are intra-element deletions within the 8.3-kb Spm element; many alter both Spm function and expression of the gene. Spm controls a gene expression in alleles with internally deleted, transposition-defective Spm elements and element ends contain the target sequences that mediate Spm's ability to activate expression of the gene. We argue that the properties of the a-m2 alleles reflect the operation of an element-encoded positive regulatory mechanism, as well as a negative regulatory mechanism that affects expression of the element, but appears not to be mediated by an element-encoded gene product.  相似文献   

3.
4.
5.
Using a direct miRNA cloning strategy we previously identified fourteen marsupial- or species-specific microRNAs in the marsupial species Monodelphis domestica. In the present study we examined each of the pre-miRNAs and their flanking sequences and demonstrate that half of these miRNAs evolved from marsupial-specific transposable elements. These findings reinforce the view that transposable elements are a previously unappreciated source of new, lineage-specific microRNAs.  相似文献   

6.
We describe the isolation of a cloned DNA segment carrying unique sequences from the white locus of Drosophila melanogaster. Sequences within the cloned segment are shown to hybridize in situ to the white locus region on the polytene chromosomes of both wild-type strains and strains carrying chromosomal rearrangements whose breakpoints bracket the white locus. We further show that two small deficiency mutations, deleting white locus genetic elements but not those of complementation groups contiguous to white, delete the genomic sequences corresponding to a portion of the cloned segment. The strategy we have employed to isolate this cloned segment exploits the existence of an allele at the white locus containing a copy of a previously cloned transposable, reiterated DNA sequence element. We describe a simple, rapid method for retrieving cloned segments carrying a copy of the transposable element together with contiguous sequences corresponding to this allele. The strategy described is potentially general and we discuss its application to the cloning of the DNA sequences of other genes in Drosophila, including those identified only by genetic analysis and for which no RNA product is known.  相似文献   

7.
M. Purugganan  S. Wessler 《Genetica》1992,86(1-3):295-303
Recent studies have demonstrated that transposable elements in maize and Drosophila are spliced from pre-mRNA. These transposable element introns represent the first examples of recent addition of introns into nuclear genes. The eight reported examples of transposable element splicing include members of the maize Ac/Ds and Spm/dSpm and the Drosophila P and 412 element families. The details of the splicing of these transposable elements and their relevance to models of intron origin are discussed.  相似文献   

8.
Tnr1 (235 bp long) is a transposable element in rice. Polymerase chain reactions (PCRs) done with a primer(s) that hybridizes to terminal inverted repeat sequences (TIRs) of Tnr1 detected new Tnr1 members with one or two insertions in rice genomes. Six identified insertion sequences (Tnr4, Tnr5, Tnr11, Tnr12, Tnr13 and RIRE9) did not have extensive homology to known transposable elements, rather they had structural features characteristic of transposable elements. Tnr4 (1767 bp long) had imperfect 64-bp TIRs and appeared to generate duplication of a 9-bp sequence at the target site. However, the TIR sequences were not homologous to those of known transposable elements, indicative that Tnr4 is a new transposable element. Tnr5 (209 bp long) had imperfect 46-bp TIRs and appeared to generate duplication of sequence TTA like that of some elements of the Tourist family. Tnr11 (811 bp long) had 73-bp TIRs with significant homology to those of Tnr1 and Stowaway and appeared to generate duplication of sequence TA, indicative that Tnr11 is a transposable element of the Tnr1/Stowaway family. Tnr12 (2426 bp long) carried perfect 9-bp TIRs, which began with 5'-CACTA- -3' from both ends and appeared to generate duplication of a 3-bp target sequence, indicative that Tnr12 is a transposable element of the En/Spm family. Tnr13 (347 bp long) had 31-bp TIRs and appeared to generate duplication of an 8-bp target sequence. Two sequences, one the transposon-like element Crackle, had partial homology in the Tnr13 ends. All five insertions appear to be defective elements derived from autonomous ones encoding the transposase gene. All had characteristic tandem repeat sequences which may be recognized by transposase. The sixth insertion sequence, named RIRE9 (3852 bp long), which begins with 5'-TG- -3' and ends with 5'- -CA-3', appeared to generate duplication of a 5-bp target sequence. These and other structural features indicate that this insertion is a solo LTR (long terminal repeat) of a retrotransposon. The transposable elements described above could be identified as insertions into Tnr1, which do not deleteriously affect the growth of rice cells.  相似文献   

9.
The Spotted-dilute controlling element system in maize involves an autonomous Spotting factor (Spf), and a receptor at the r1 locus haplotype R1-r(spotted dilute2). Its relationship with other maize transposable element systems is poorly characterized. Through development of a genetic tester that carries receptors for both the Spotted-dilute and the En/Spm controlling element systems, we determined that both receptors respond equally to Spf and En/Spm and that Spf is therefore a member of the En/Spm family of controlling elements.  相似文献   

10.
Yu W  Lamb JC  Han F  Birchler JA 《Genetics》2007,175(1):31-39
Global genomic analysis of transposable element distributions of both natural (En/Spm, Ac-Ds, and MuDR/Mu) and modified (RescueMu) types was performed by fluorescence in situ hybridization (FISH) on somatic chromosomes coupled with karyotyping of each chromosome. In lines without an active transposable element, the locations of silent En/Spm, Ac-Ds, and MuDR/Mu elements were visualized, revealing variation in copy number and position among lines but no apparent locational bias. The ability to detect single elements was validated by using previously mapped active Ac elements. Somatic transpositions were documented in plants containing an engineered Mutator element, RescueMu, via use of the karyotyping system. By analyzing the RescueMu lines, we found that transposition of RescueMu in root-tip cells follows the cut-and-paste type of transposition. This work demonstrates the utility of FISH and karyotyping in the study of transposon activity and its consequences.  相似文献   

11.
We analyzed the integration specificity of the hobo transposable element of Drosophila melanogaster. Our results indicate that hobo is similar to other transposable elements in that it can integrate into a large number of sites, but that some sites are preferred over others, with a few sites acting as integration hot spots. A comparison of DNA sequences from 112 hobo integration sites identified a consensus sequence of NTNNNNAC, but this consensus was insufficient to account for the observed integration specificity. To begin to define the parameters affecting hobo integration preferences, we analyzed sequences flanking a donor hobo element, as well as sequences flanking a hobo integration hot spot for their relative influence on hobo integration specificity. We demonstrate experimentally that sequences flanking a hobo donor element do not influence subsequent integration site preference, whereas, sequences contained within 31 base pairs flanking an integration hot spot have a significant effect on the frequency of integration into that site. However, sequence analysis of the DNA flanking several hot spots failed to identify any common sequence motif shared by these sites. This lack of primary sequence information suggests that higher order DNA structural characteristics of the DNA and/or chromatin may influence integration site selection by the hobo element. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Transgenic plants and cell lines of sugar beet carrying Spm/dSpm system of maize transposable elements have been obtained by Agrobacterium-mediated transformation. A heterologous system of mobile elements Spm/dSpm remains active in the genome of sugar beet that permit of transposon-based gene tagging and obtaining of marker-free transgenic sugar beet.  相似文献   

13.
14.
The behavior of the autonomous maize transposable element En/Spm of maize was studied in Arabidopsis. Transgenic Arabidopsis plants carrying En-1 elements were propagated for 12 generations using a single seed descent procedure. The distribution and activity of the En-1 element was monitored using Southern DNA hybridisations in generations 1, 6 and 12. In the first generation the highest number of En-1 insertions per line was 7, which increased to 20 in generation 12. The average number of En-1 insertions increased only slightly in the population, due to a gradual accumulation of segregants that lost the transposable element. During the development of the En-1 mutagenised population the element remained active even in the high-copy lines. In situ hybridisation demonstrated that multiple En-1 insertions were distributed over all Arabidopsis chromosomes. From the initial En-1 mutagenised populations many unstable gene mutations were recovered, indicating that En-1 can be used as a efficient tool for gene tagging in Arabidopsis.  相似文献   

15.
Cassava (Manihot esculenta Crantz), though a major world crop with enormous potential, is very under studied. Little is known about its genome structure and organisation. Transposable elements have a key role in the evolution of genome structure, and can be used as important tools in applied genetics. This paper sets out to survey the diversity of members of three major classes of transposable element within the cassava genome and in relation to similar elements in other plants. Members of two classes of LTR-retrotransposons, Ty1/copia-like and Ty3/gypsy-like, and of Enhancer/Suppressor Mutator (En/Spm)-like transposons were isolated and characterised. Analyses revealed 59 families of Ty1/copia, 26 families of Ty3/gypsy retrotransposons, and 40 families of En/Spm in the cassava genome. In the comparative analyses, the predicted amino acid sequences for these transposon classes were compared with those of related elements from other plant species. These revealed that there were multiple lineages of Ty1/copia-like retrotransposons in the genome of cassava and suggested that vertical and horizontal transmission as the source of cassava Mecops may not be mutually exclusive. For the Ty3/gypsy elements network, two groups of cassava Megyps were evident including the Arabidopsis Athila lineage. However, cassava En/Spm-like elements (Meens) constituted a single group within a network of plant En/Spm-like elements. Hybridisation analysis supported the presence of transposons in the genome of cassava in medium (Ty3/gypsy and En/Spm) to high (Ty1/copia) copy numbers. Thus the cassava genome was shown to contain diverse members of three major classes of transposable element; however, the different classes exhibited contrasting evolutionary histories.  相似文献   

16.
Summary The c2 locus of Zea mays, identified as one of the genes affecting anthocyanin biosynthesis, was cloned using the transposable element En (Spm) as a gene tag. The Spm element present at the c2 locus in the autonomously mutating c2-m1 line was isolated using En1 element specific probes. Sequences flanking the element were identified as c2 locus specific and were used to clone the nonautonomous c2-m2 and wild-type alleles. The cloning and analysis of a cDNA complementary to the c2 locus provided evidence that this gene encodes the enzyme chalcone synthase.  相似文献   

17.
18.
The a1 locus of Zea mays has been cloned using transposable elements as gene tags. The strategy was to make genomic libraries from maize stocks with a1 mutations induced either by En(Spm) or by Robertson's Mutator-system. These libraries were then screened with either Spm-I8 and En1, for the En-containing mutant, or with Mu1 for the Mu-induced mutation. There are many En and Mu1 hybridizing sequences present in the maize genome, however, by a process of cross-screening of the positives from the two libraries and by molecular analysis of the En-positive clones it was possible to identify clones in both libraries carrying all or part of the a1 gene.  相似文献   

19.
20.
J. Cormack  P. A. Peterson 《Genetics》1994,136(3):1151-1156
The En/Spm transposable element system in maize includes the functional element, En/Spm and the receptor element I/dSpm. An En receptor has been found that shows En-induced breakage. This En-responsive receptor (designated 1836518) is located on the short arm of chromosome 9, proximal to Wx. In the presence of En, markers distal to the receptor show a loss of gene expression. Kernels heterozygous for aleurone and endosperm marker genes have a variegated appearance. The hypothesis is advanced that this variegation represents a physical loss of the chromosome segments carrying the genes distal to the receptor position. It is the first case of an En-controlled breakage event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号