首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new water mite species Sperchon (Hispidosperchon) serapae n. sp. is described. The material was collected from a slow-flowing stream during field study on the water mite fauna of the Lakes region in southwestern Turkey. An updated list of hitherto known species of Sperchon Kramer from Turkey, including nomenclatural changes and numerous new locality records to the species, is also given.  相似文献   

2.
In this paper, three new species of eriophyoid mites in the family Eriophyidae associated with Phoebe hunanensis Hand.–Mazz. (Lauraceae), namely Gammaphytoptus striatilobus sp. n., Phyllocoptes setalsolenidion sp. n., and Dechela phoebe sp. n. are described and illustrated. All are vagrants causing no apparent damage to the same host plants.  相似文献   

3.
4.
Infestation by parasitic Psoroptes mites (Acari: Psoroptidae) is an important cause of economic loss and welfare problems in livestock in many areas of the world. At least five species within this genus have been recognized, based on the host infested, the infestation site and differences in length of the opisthosomal setae of adult male mites. Here the integrity of these species is considered by subjecting populations of mites from a range of host species and geographical locations to simultaneous morphological and molecular genetic analyses. Morphological analysis showed that there were significant differences in shape and size between mite populations from different hosts, and that length of the outer opisthosomal setae in males and the homologous seta in females were the most important distinguishing character in adults. However, considerable variation in outer opisthosomal seta length was evident within and between populations of mites, and differences were not clearly related to host-species or geographical origin and did not support the accepted species differences. Molecular characterization using sequence data from the mitochondrial second internal transcribed spacer (ITS-2) region and microsatellite markers found little or no consistent host-related variation between the mite population samples. The results suggest that there is no case for considering the Psoroptes mites from the different hosts examined as separate species and that the morphological variation observed therefore may represent phenotypic adaptation to the local microenvironment on particular species of host.  相似文献   

5.
Parasitism by mites is widespread and involves all the classes of vertebrates, from fishes to mammals. Owing to their small size and their great plasticity, mites are able to adapt to a wide range of habitats. Most of the species are ectoparasites but endoparasitism, especially in the respiratory tract, is common in birds and mammals. The morphological modifications appearing during the process adaptation to parasitic life, especially in Myobiidae, are analysed. Two kinds of characters are particularly important: the constructive specialized characters, consisting of the production of new structures, especially attachment organs allowing the mite to attach to the skin and the hair of the host, and regressive characters. Regression of the external structures is the most important phenomenon appearing in the process of evolution of parasitic mites. The importance of the regression in the parasite is correlated with the degree of evolution of the host. Host and parasite have a parallel evolution, but they go in opposite directions. The author surmises that the regressive evolution is related to the immunological reactions of the host that tend to reject the parasite. To escape from this rejection the parasite tends to select the less antigenic and therefore the most regressed phenotype. Specificity is generally strict in permanent parasites. Coevolution of host and parastie is studied-in the family Myobiidae which parasitizes marsupials, insectivores, bats and rodents. The concordance between the radiations of the mites and that of their hosts is very high.  相似文献   

6.
In this paper I synthesize original and published studies of sperm transfer behaviour of 23 genera of water mites from 15 families. The morphology of spermatophores from 16 genera (12 families) is described. Behaviour and/or spermatophores are described for the first time for the following species: Hydrachna magniscutata Marshall, Hydrachna hesperia Lundblad, Hydrachna sp. nr. leegei Koenike, Limnochares americana Lundblad, Limnesia undulata (Müller), Neumania distincta Marshall, Unionicola (three species in the U. crassipes-complex), Thyas slolli Koenike, Lebertia annae Habeeb, Lebertia sp., Piona sp. nr. debilis (Wolcott), Tiphys vernalis (Habeeb), Arrenurus dentipetiolatus Marshall, Arrenurus marshalli Piersig and Arrenurus birgei Marshall. On the basis of proximity of male and female during sperm transfer, I divide water mites into four groups: complete dissociation, involving no physical or chemical contact between the sexes (nine genera); incomplete dissociation, requiring distance-or contact-chemoreception but not involving pairing behaviour (five genera); pairing with indirect transfer, involving pairing behaviour with females controlling sperm uptake (three genera); pairing with direct transfer (=copulation), involving pairing behaviour and male placement of sperm in the receiving structure of the female (12 genera). Four genera have representative species in more than one category of sperm transfer. Factors possibly leading to the diversity of water mite mating behaviour include an evolutionarily flexible mode of sperm transfer in the ancestral water mite, and the development of planktonic and endoparasitic habits in many mites. Morphological features of spermatophores that improve physical stability, probability of females taking up sperm and resistance against osmotic stress are discussed. Finally, I present implications of mating behaviour and spermatophore morphology for phylogenetic relationships within water mites and between this group and terrestrial Acari.  相似文献   

7.
Understanding the processes that have given rise to polyploid hybrid taxa is central to our understanding of plant evolution. In this study, we use an array of genetic markers in a population analysis to elucidate the hybrid origins of the Arran whitebeams Sorbus arranensis and S. pseudofennica, two woody plant taxa endemic to the Isle of Arran, Scotland. It has been proposed that S. arranensis was derived by hybridization between S. aucuparia and S. rupicola, and that subsequent hybridization between S. arranensis and S. aucuparia gave rise to S. pseudofennica. Analyses of species-specific isozyme, nuclear intron and chloroplast DNA markers confirm the proposed origin of S. arranensis, and indicate that S. aucuparia was the female parent in the hybridization. Analysis of microsatellite markers suggests that there have been at least three origins of S. arranensis on Arran. Microsatellite markers also support the proposed hypothesis for the origin of S. pseudofennica, and indicate at least five hybrid origins of this taxon. In total, three multilocus genotypes of S. arranensis and eight of S. pseudofennica were detected on Arran and multilocus genotypic diversity levels Hg were 0.09 and 0.63, respectively. Genetic differentiation (thetaST) values based on multilocus genotypes are substantial (0.344 and 0.470 for S. arranensis and S. pseudofennica, respectively) implying limited seed flow among populations. These results indicate that the endemic Sorbus taxa on Arran are the products of multiple and ongoing evolutionary events. This information must be incorporated into management policies for their future conservation.  相似文献   

8.
NEW RECORDS OF WATER MITES (ACARI: Hydrachnidia) from Baishih River drainage of north Taiwan, are presented. Twelve species are recorded, of which ten are new for Taiwan; two of them, Torrenticola projectura and Hygrobates taiwanicus are described as new for science.  相似文献   

9.
We examined intra- and interspecific predation of adult females and immature stages of the generalist Neoseiulus californicus and the specialist Phytoseiulus persimilis. Adult females and immatures of both predators exhibited higher predation rates on larvae than on eggs and protonymphs. N. californicus fed more inter- than intraspecifically. Predation on P. persimilis by N. californicus was more severe than vice versa. P. persimilis had higher predation rates on conspecifics than heterospecifics and was more prone to cannibalism than N. californicus. When provided with phytoseiid prey, P. persimilis suffered higher mortality than N. californicus. When held without food, adult females and protonymphs of N. californicus survived longer than the corresponding stages of P. persimilis. N. californicus females were able to sustain oviposition when preying upon P. persimilis, whereas cannibalizing females did not lay eggs. Females of P. persimilis were not able to sustain oviposition, irrespective of con- or heterospecific prey. Immatures of both predators were able to reach adulthood when provided with either con- or heterospecifics. Juvenile development of N. californicus was shorter with heterospecific vs. conspecific larvae; mortality of P. persimilis immatures was less when feeding on conspecific vs. heterospecific larvae. Different behavioral pattern in intra- and interspecific predation are discussed in regard to their feeding types (generalist vs. specialist).  相似文献   

10.
Abstract

Studies on the life history and life table parameters of Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) were carried out under laboratory conditions of 25?±?1?°C and 65?±?5% RH; 30?±?1?°C and 60?±?5% RH; 35?±?1?°C and 55?±?5% RH. As prey, immature stages of tetranychid spider mite T. urticae Koch (Acari: Tetranychidae) and the moving stages of the Tomato Russet Mite A. lycopersici (Massee) (Acari: Eriophyideae) were selected. The predatory phytoseiid mite, Neoseiulus cucumeris (Oudemans) was able to develop successfully from egg to adult stage through the entire life history on both preys. The higher of different temperatures and relative humidities shortened the development and increased reproduction and prey consumption and vice versa. The maximum reproduction (3.91, and 3.09 eggs/♀/day) was recorded at 35?°C and 65% RH, while the minimum (2.12, and 1.90 eggs/♀/day) was at 25?±?1?°C and 55?±?5% RH. when N. cucumeris fed on A. lycopersici and T. urticae, respectively. The reproductive rate on eriophyid was significantly higher than previously recorded on tetranychid. Life table parameters indicated that feeding of phytoseiid mite N. cucumeris on tomato russet mite A. lycopersici led to the highest reproduction rate (rm?=?0.268, 0.232 and 0.211 females/female/day), while feeding on T.urticae gave the lowest reproduction rate (rm?=?0.159, 0.143 and 0.131) at 35?°C and 55% RH, 30?°C and 60% RH and 25?°C and 65% RH, respectively. The population of N. cucumeris multiplied (36.81, 28.71 and 20.47) and (24.60, 19.58 and 14.62 times) in a generation time of (20.10, 23.20 and 25.14) and (22.35, 25.36 and 27.79 days) when a predator fed on A. lycopersici and T. urticae at the same temperature above mentioned, respectively. These results suggest that the two mites, particularly A. lycopersici, proved to be suitable prey for N.cucumeris, as a facultative predator.  相似文献   

11.
Macroinvertebrate communities of large rivers have experienced dramatic species turnovers in the last decades, which still go on. The analysis of genetic population structure plays a central role in understanding and predicting these biological invasions. Two points of view are considered: the influence of the invasion history on the genetic structuring and the potential implications of genetic structure for future invasibility. Expectations about selectively neutral genetic variation in simple invasion models are compared to case studies of amphipods and Dreissena. The genetic patterns of one amphipod species of the Gammarus fossarum complex yield strong evidence for a stepwise regional colonisation. Other invasive amphipods show similar, but less clear genetic characteristics. Long-distance colonisation is probably common in Dreissena polymorpha, but subsequent downstream swamping of larvae obscures the expected genetic pattern by homogenising neighbouring populations.

First, a brief review of general characteristics of riverine invasions is followed by a discussion of the utility of genetic tools for inferring taxon and source population identity.  相似文献   


12.
Black-capped vireos ( Vireo atricapilla ), an endangered, migratory species dependent upon early successional habitat, have experienced significant recovery since its protection. In light of its vagility and known increase in population size and range, limited genetic differentiation would be expected in the species. Using 15 microsatellite loci and an extensive sampling regime, we detected significant overall genetic differentiation ( F ST = 0.021) and high interpopulation differentiation compared to other migratory birds. Although proximate sites (separated by < 20 km) tended to be genetically similar, there was no apparent association of either geographical distance or landscape attributes with differentiation between sites. Evidence of a population bottleneck was also detected in a site located near other large concentrations of birds. Although black-capped vireos are capable of large-scale movements and the population has experienced a recent expansion, dispersal appears too insufficient to eliminate the genetic differentiation resulting from restricted colonization of ephemeral habitats.  相似文献   

13.
14.
New records of torrenticolid water mites (Acari: Hydrachnidia, Torrenticolidae) from Nanshih River, Taiwan, are presented. Two new species are described: Torrenticola nanshihensis and Torrenticola taiwanicus; the latter species is compared with Torrenticola ussuriensis (Sokolow, 1940), a poorly known species which is re-described based on a new material from the Russian Far East; Monatractides cf. circuloides (Halík, 1930)is reported for the first time for Taiwan.  相似文献   

15.
A list of species of the water mitegenus Lebertia Neuman, 1880 known from Turkey is provided, based on bibliographical data and results from recent field work, mainly in the Southwestern part of the country. We describe one new species, Lebertia martini sp. n. and report new 28 locality records from 6 provinces for the three previously known species.  相似文献   

16.
Nonrandom patterns of mating and dispersal create fine-scale genetic structure in natural populations — especially of social mammals — with important evolutionary and conservation genetic consequences. Such structure is well-characterized for typical mammalian societies; that is, societies where social group composition is stable, dispersal is male-biased, and males form permanent breeding associations in just one or a few social groups over the course of their lives. However, genetic structure is not well understood for social mammals that differ from this pattern, including elephants. In elephant societies, social groups fission and fuse, and males never form permanent breeding associations with female groups. Here, we combine 33 years of behavioural observations with genetic information for 545 African elephants ( Loxodonta africana ), to investigate how mating and dispersal behaviours structure genetic variation between social groups and across age classes. We found that, like most social mammals, female matrilocality in elephants creates co-ancestry within core social groups and significant genetic differentiation between groups (ΦST = 0.058). However, unlike typical social mammals, male elephants do not bias reproduction towards a limited subset of social groups, and instead breed randomly across the population. As a result, reproductively dominant males mediate gene flow between core groups, which creates cohorts of similar-aged paternal relatives across the population. Because poaching tends to eliminate the oldest elephants from populations, illegal hunting and poaching are likely to erode fine-scale genetic structure. We discuss our results and their evolutionary and conservation genetic implications in the context of other social mammals.  相似文献   

17.
1. In a region of south‐eastern England, we investigated the hierarchical genetic structure of populations of two stream‐dwelling caddisflies (Trichoptera: Polycentropodidae) with contrasting distributions: Plectrocnemia conspersa inhabits numerous small, patchily distributed seeps and streams, while the confamilial Polycentropus flavomaculatus is found in fewer but larger streams and rivers. We also contrasted the genetic structure of P. conspersa in the lowland south‐east with that in an upland region in the north west. 2. Microsatellite genotypes were obtained from samples of both species taken from a ‘core area’ and at sites 15, 40 and 100 km from this core (two regions for P. conspersa, totalling 45 sites and 1405 larvae; one region for P. flavomaculatus, totalling 10 sites and 269 larvae). 3. The genetic structure of P. conspersa differed in the two regions. In the upland north‐west, significant genetic differentiation was observed at a spatial scale of around 40 km from the core, while there was no structure in the lowland south‐east up to around 100 km. Areas of high altitude did not appear directly to reduce gene flow, whereas other potential landscape barriers, including particular geological formations, large urban areas and the sea had a pronounced effect. 4. Weak genetic differentiation in P. conspersa across large distances, particularly in the lowland south‐east, suggests that it disperses strongly, facilitating gene flow within and between catchments. Conversely, for P. flavomaculatus we found strong genetic differentiation between almost all sites, suggesting that dispersal is much more limited. 5. Greater dispersal in the patchily distributed P. conspersa than in P. flavomaculatus, which occupies larger and presumably more persistent habitats, could be a general feature of other similarly distributed aquatic insects. While higher relief is potentially a partial barrier to dispersal, P. conspersamust have effective gene flow through such apparently inhospitable terrain, perhaps attributable to dispersal between neighbouring small and ephemeral populations. Indeed, its exploitation of headwaters and seeps requires the ability to disperse between such sites. Apparently it cannot, however, overcome more continuous barriers, consisting of large tracts of landscape with few habitable larval sites. Such landscapes, including those created by humans, may have a stronger effect on population connectivity and colonization in the longer term.  相似文献   

18.
The Astigmata, a large and variable group, is still a subject of taxonomic dispute. Particularly, their origin from ancestors of the lower oribatid mites (e.g., Malaconothroidea) seems well documented by many lines of evidence. The structure of spermatozoa has been successfully applied to phylogenetic investigations in many animal groups. The aim of our study was to provide new data on spermatozoon structure in Astigmata and to consider its appropriateness in phylogenetic studies. The study reveals information on spermatozoa in 17 species of Astigmata (11 species studied for the first time) extending our knowledge to 18 species (one species known only from the literature) representing 12 families and 7 superfamilies. Spermatozoa have the same basic structure in all species: cells are multiform and the chromatin forms thin threads embedded directly in the cytoplasm; the acrosome is absent. The cytoplasm in most species contains electron-dense lamellae, varying in both number and arrangement within the cell. In Sarcoptoidea, electron-dense tubules in contact with lamellae margins were also observed in Psoroptidae (Psoroptes equi), whereas in two representatives of Sarcoptidae (Notoedres cati and Sarcoptes scabiei), only electron-dense tubules were found. In two species, Canestrinia sellnicki (Canestrinioidea: Canestriniidae) and Scutulanyssus obscurus (Analgoidea: Pteronyssidae), neither lamellae nor tubules were present. The mitochondria in a spermatozoon are usually gathered at the cell periphery and their structure is usually modified to form so-called mitochondrial derivatives. The chromatin threads are an autapomorphy strongly supporting the monophyly of Astigmata. As spermatozoa vary considerably between species in Astigmata, we deduce that sperm structure may be useful for phylogenetic analyses within the group. Several conclusions concerning the affinities within Astigmata are presented. Spermatology seems to be unhelpful, however, in questions on the origin of Astigmata (particularly for Astigmata-Oribatida relationships), since their sperm do not possess synapomorphies with sperm of the remaining groups of Acariformes, i.e., Endeostigmata, Prostigmata, and Oribatida.  相似文献   

19.
The species composition and seasonal dynamics of water mites were studied in a small softwater stream in southern Germany from October 1986 to November 1988. On average water mites contributed 5.5% by abundance and 1.8% by biomass to the total invertebrate community. Annual densities and biomasses averaged 623–1057 (mean 905) individuals M–2 and 45.9–75.6 mg (mean 64.0) dry mass m–2, respectively. 41 species were identified, Torrenticola elliptica (Torrenticolidae) being the most abundant. Nearly every taxon showed a distinct and consistent seasonality, with maximum abundance and biomass in summer and minimum values in winter. Both abundance and biomass of water mites were significantly correlated with water temperature (p < 0.001).  相似文献   

20.
A recent region-wide study determined that the central California coyote (Canis latrans) population was genetically subdivided according to habitat bioregions, supporting the hypothesis that coyotes exhibit a dispersal bias toward their natal habitat type. Here, we further investigated this hypothesis using radio-collared coyotes captured on a 150-km(2) study site on the border of (i.e. overlapping) two bioregions (Great Valley and Cascade Mountains). As predicted, most coyotes were assigned (based on a priori genetic criteria) to genetic clusters corresponding to one of these two bioregions. All of those assigned to the Great Valley genetic cluster were caught in (and for the most part, remained in) the Great Valley bioregion. However, contrary to expectations, the coyotes assigned to the Cascades genetic cluster occurred commonly in both bioregions. Nearly all resident individuals on the study site, regardless of the particular bioregion, were assigned to the Cascades genetic cluster, whereas a sizable fraction of nonresident (transient or dispersing) coyotes caught in the Great Valley bioregion were assigned to the Great Valley cluster. Even among resident coyotes, interrelatedness of packs was greater within than between bioregions, and packs with territories overlapping both bioregions were more closely related to those with territories completely within the Cascades bioregion than territories completely within the Great Valley bioregion. Finally, direct estimates indicated that gene flow was twice as high from the Cascades bioregion to the Great Valley bioregion than in the reverse direction. Collectively, these findings reveal the anatomy of the genetic subdivision as beginning abruptly at the bioregion boundary and ending diffusely within the Great Valley bioregion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号