首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catalytic steam reforming of renewable feedstock to renewable energy or chemicals always goes with intense coking activities that produce carbonaceous products leading to low performance and eventual catalyst deactivation. Supported metal catalyst such as Ni/Al2O3 is known to catalysed gasification and decomposition of biomass feedstock largely for renewable fuel production with promising results. Catalyst deactivation from high carbon deposition, agglomeration and phase transformations resulting to rapid deactivation are some of the issues identified with the use of the catalyst. In this work, improvement on the coke resistance and catalytic properties of Ni/Al2O3 catalyst is sought via the use of a thermally stable and coke-resistant perovskite La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) as catalyst promoter/modifier and involving Zirconia-doped Ceria (Ce-Zr) as alternative support in steam reforming of pure and by-product glycerol. The stabilizing influence of the LSCM on the Ni catalyst has improved stability against agents of deactivation with a consequent significant improvement of catalytic activity of Ni/Al2O3 in H2 production and robust suppression of carbon deposition. Particularly, the synergy between the LSCM promoter and alternative Ce0.75Zr0.25O2 support enhanced the basic and redox properties known for Ce0.75Zr0.25O2 support in contrast to the week acid centres in γ-Al2O3 support which further improved nickel stability, catalyst–support interaction with a resultant high catalytic activity and robust coke suppression as a result of enhanced oxygen mobility. There is correlation between the product distribution, nature of coke deposited and reforming temperature as well as type of support and structural modification. Hence, integration of a robust perovskite material as a catalyst promoter and choice of support could be tailored in design and development of robust catalyst systems to improve the performance of supported metal catalysts, particularly the suppression of carbon deposition for hydrocarbon and biomass conversion to renewable fuel or chemicals.  相似文献   

2.
The aim of this study was to investigate biohydrogen production from biofuel-reforming processes using new multi-component bulk-type cobalt-based catalysts. The addition of different components to improve the catalytic performance was studied. Monometallic cobalt catalyst and catalysts containing Ru (ca. 1%) and/or Na (ca. 0.5%) were characterized and tested in the 623-673 K temperature range in ethanol steam reforming (ESR) with a steam/carbon ratio (S/C) of 3. The catalysts showed a high performance for hydrogen production and, except for H(2) and CO(2), only small amounts of by-products were obtained, depending on the temperature and the catalyst used. The catalyst containing both Ru and Na (Co-Ru(Na)) showed the best catalytic behavior in ESR. It operated stably for at least 12 days under cycles of oxidative steam reforming of glycerol/ethanol mixtures (S/C=2) and activation under O(2).  相似文献   

3.
In this work, an experimental study of biomass gasification in different operation conditions has been carried out in an updraft gasifier combined with a porous ceramic reformer. The effects of gasifier temperature, steam to biomass ratio (S/B), and reforming temperature on the gas characteristic parameters were investigated with and without porous ceramic filled in reformer. The results indicated that considerable synergistics effects were observed as the porous ceramic was filled in reformer leading to an increase in the hydrogen production. With the increasing gasifier temperature varying from 800 to 950 °C, hydrogen yield increased from 49.97 to 79.91 g H2/kg biomass. Steam/biomass ratio of 2.05 seemed to be optimal in all steam-gasification runs. The effect of reforming temperature for water-soluble tar produced in porous ceramic reforming was also investigated, and it was found that the conversion ratio of total organic carbon (TOC) contents is between 71.08% and 75.74%.  相似文献   

4.
Crude glycerol, generated as waste by-product in biodiesel production process, has been considered as an important carbon source for converting to value-added bioproducts recently. Free fatty acids (FFAs) can be used as precursors for the production of biofuels or biochemicals. Microbial biosynthesis of FFAs can be achieved by introducing an acyl–acyl carrier protein thioesterase into Escherichia coli. In this study, the effect of metabolic manipulation of FFAs synthesis cycle, host genetic background and cofactor engineering on FFAs production using glycerol as feed stocks was investigated. The highest concentration of FFAs produced by the engineered stain reached 4.82 g/L with the yield of 29.55% (g FFAs/g glycerol), about 83% of the maximum theoretical pathway value by the type II fatty acid synthesis pathway. In addition, crude glycerol from biodiesel plant was also used as feedstock in this study. The FFA production was 3.53 g/L with a yield of 24.13%. The yield dropped slightly when crude glycerol was used as a carbon source instead of pure glycerol, while it still can reach about 68% of the maximum theoretical pathway yield.  相似文献   

5.
In this study, using wood chips and polyethylene (PE) as fuels, the effects of air and/or steam as reagents on the tar reforming were clarified quantitatively with a simulated gasifier/reformer apparatus of a two-staged gasification process. The results show that when only steam or air was supplied into the reformer, the tar residual rate (defined as the ratio of the tar amount in the reformed gas to the tar amount in the pyrolysis gas) and the carbon particulate concentration in both reformed gases produced from pyrolysis gases of wood chips and PE decreased with the increase of the steam ratio (H2O/C, 0–1.0) or the air ratio (ER, 0–0.30). Supplying steam into the reformer to suppress carbon particulate formation for PE pyrolysis gas is more effective than for wood chips pyrolysis gas. Comparing with the results of steam only reforming, the effect of air supply on reduction of the tar residual rate was more significant, while that on suppression of carbon particulate formation was smaller.  相似文献   

6.
Catalytic steam reforming of glycerol for H2 production has been evaluated experimentally in a continuous flow fixed-bed reactor. The experiments were carried out under atmospheric pressure within a temperature range of 400–700 °C. A commercial Ni-based catalyst and a dolomite sorbent were used for the steam reforming reactions and in situ CO2 removal. The product gases were measured by on-line gas analysers. The results show that H2 productivity is greatly increased with increasing temperature and the formation of methane by-product becomes negligible above 500 °C. The results suggest an optimal temperature of ∼500 °C for the glycerol steam reforming with in situ CO2 removal using calcined dolomite as the sorbent, at which the CO2 breakthrough time is longest and the H2 purity is highest. The shrinking core model and the 1D-diffusion model describe well the CO2 removal under the conditions of this work.  相似文献   

7.
Chen T  Wu C  Liu R 《Bioresource technology》2011,102(19):9236-9240
Steam reforming of two kinds of bio-oil from rice husks fast pyrolysis was conducted for hydrogen production at three temperatures (650, 750 and 850 °C) with Ni-based catalyst in a fixed-bed reactor. The gas composition and organic compounds in liquid condensate were detected by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), respectively. In addition, the carbon deposition was also investigated. The results showed that the mole fraction range of hydrogen was within 55.8-61.3% at all temperatures and more hydrogen was produced at the higher temperature. The highest H? efficiency of bio-oil steam reforming was 45.33% when extra water was added. The bio-oil with lower content of chemical compounds has a higher H? efficiency, but its hydrogen volume was less. Analysis of the liquid condensate showed that most of the organic compounds were circularity compounds. The carbon deposition can decrease the bio-oil conversion, and it was easier to form at the temperature of 750 °C.  相似文献   

8.
In this study, crude glycerol with high potassium concentration was purified using acid treatment and used as carbon source for lipid production using Yarrowia lipolytica SKY7. The crude glycerol was purified using phosphoric acid (pH 2) followed by centrifugation. When purified glycerol was used as carbon source for fermentation, higher biomass productivity (0.54 g/L/h) and lipid productivity (0.2 g/L/h) was observed at 96 h compared to crude glycerol. Results indicated that 6.32 g/L potassium in crude glycerol medium was inhibitory for cell growth and lipid production by Y. lipolytica. Yield coefficients, productivities and specific growth rates were calculated for each glycerol medium. The process performance with purified glycerol medium was comparable to that of pure glycerol medium. A higher lipid yield was obtained in purified glycerol medium (0.21 g/g glycerol) than crude glycerol medium (0.124 g/g glycerol). During purification of crude glycerol, KH2PO4 was also produced as by-product. This study provides a way for valorization of crude glycerol with high potassium concentration for microbial lipid production.  相似文献   

9.
Biodiesel and lactic acid from rapeseed oil was produced using sodium silicate as catalyst. The transesterification in the presence of the catalyst proceeded with a maximum yield of 99.6% under optimized conditions [3% (w/w) sodium silicate, methanol/oil molar ratio 9/1, reaction time 60 min, reaction temperature 60 °C, and stirring rate 250 rpm]. After six consecutive transesterification reactions, the catalyst was collected and used for catalysis of the conversion of glycerol to lactic acid. A maximum yield of 80.5% was achieved when the reaction was carried out at a temperature of 300 °C for 90 min. Thus, sodium silicate is an effective catalyst for transesterification and lactic acid production from the biodiesel by-product, glycerol.  相似文献   

10.
Succinic acid was produced by fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. When cells were anaerobically cultured in a medium containing 6.5 g/L glycerol, a high succinic acid yield (133%) was obtained while avoiding the formation of by-product acetic acid. The gram ratio of succinic acid to acetic acid was 25.8:1, which is 6.5 times higher than that obtained using glucose (ca. 4:1) as a carbon source. Therefore, succinic acid can be produced with much less by-product formation by using glycerol as a carbon source, which will facilitate its purification. When glucose and glycerol were cofermented with the increasing ratio of glucose to glycerol, the gram ratio of succinic acid to acetic acid and succinic acid yield decreased, suggesting that glucose enhanced acetic acid formation irrespective of the presence of glycerol. Glycerol consumption by A. succiniciproducens required unidentified nutritional components present in yeast extract. By intermittently feeding yeast extract along with glycerol, a high succinic acid yield (160%) could be obtained while still avoiding acetic acid formation. This resulted in the highest ratio of succinic acid to acetic acid (31.7:1).  相似文献   

11.
Lipase-catalyzed alcoholysis of soybean oil deodorizer distillate (SODD) for biodiesel production was studied. During this system both free fatty acids and glycerides could be converted to biodiesel simultaneously. tert-Butanol has been adopted as the reaction medium, in which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated completely. There was no obvious loss in lipase activity even after being repeatedly used for 120 cycles. Fine-pored silica gel and 3 Å molecular were found to be effective to control by-product water concentration and much higher biodiesel yield could be achieved with those adsorbents present in the reaction system. The highest biodiesel yield of 97% could be achieved with 3 Å molecular sieve as the adsorbent.  相似文献   

12.
Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD+-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.  相似文献   

13.
The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors at mesophilic temperature using granular and non-granular sludge. Due to the high KOH concentration of this by-product, H3PO4 was added to recover this alkaline catalyst as agricultural fertilizer (potassium phosphates). Although it would not be economically viable, a volume of glycerol was distilled and utilised as reference substrate. The anaerobic revalorisation of glycerol using granular sludge achieved a biodegradability of around 100%, while the methane yield coefficient was 0.306 m3 CH4/kg acidified glycerol. Anaerobic digestion could be a good option for revalorising this available, impure and low priced by-product derived from the surplus of biodiesel companies. The organic loading rate studied was 0.21–0.38 g COD/g VSS d, although an inhibition phenomenon was observed at the highest load.  相似文献   

14.
A genetically engineered Pichia pastoris FPHY34 strain containing a 1.3 kb thermostable phytase gene (fphy) evolved by DNA shuffling was constructed and screened. Expression and purification conditions for the recombinant phytase were developed in this study. The effect of Pi on recombinant phytase expression and cell growth of P. pastoris FPHY34 was tested in shake flask culture. Optimization of carbon sources for cell growth and methanol feeding strategies for phytase expression in P. pastoris FPHY34 was carried out in a 50-L fermenter by fed-batch fermentation. The purification of phytase was investigated by micro-filtration and ultra-filtration followed by desalting, ion-exchange chromatography, and gel filtration in the ÄKTA system. It showed that the optimum inorganic phosphorus is 13.6 g L−1 and that glucose can be used as a substrate for P. pastoris cell growth instead of glycerol; the biomass yield of glycerol (YX/S) is slightly higher than that of glucose. Different profiles of lag phase and respiratory quotient (RQ) displayed between glucose and glycerol as the sole carbon source. The maximum phytase activity in per millimetre reached 2508 U mL−1 at a methanol feed rate of 3.0 mL L−1 h−1 after 80 h period of induction. A purification factor of 41.1 with a 32% yield was achieved after chromatographic purification. The specific enzyme activity was 80 U mg−1 and 3281 U mg−1 in that supernatant fraction and after gel filtration purification, respectively. The strain P. pastoris FPHY34 showed a promising application in phytase industrial production.  相似文献   

15.
A range of recombinant strains of Escherichia coli were developed to produce 1,3-propanediol (1,3-PDO), an important C3 diol, from glucose. Two modules, the glycerol-producing pathway converting dihydroxyacetone phosphate to glycerol and the 1,3-PDO-producing pathway converting glycerol to 1,3-PDO, were introduced into E. coli. In addition, to avoid oxidative assimilation of the produced glycerol, glycerol oxidative pathway was deleted. Furthermore, to enhance the carbon flow to the Embden- Meyerhof-Parnas pathway, the Entner-Doudoroff pathway was disrupted by deleting 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase. Finally, the acetate production pathway was removed to minimize the production of acetate, a major and toxic by-product. Flask experiments were carried out to examine the performance of the developed recombinant E. coli. The best strain could produce 1,3-PDO with a yield of 0.47 mol/mol glucose. Along with 1,3-PDO, glycerol was produced with a yield of 0.33 mol/mol glucose.  相似文献   

16.
The effects of crude glycerol on the performance of single-stage anaerobic reactors treating different types of organic waste were examined. A reactor treating the organic fraction of municipal solid waste produced 1400 mL CH4/d before the addition of glycerol and 2094 mL CH4/d after the addition of glycerol. An enhanced methane production rate was also observed when a 1:4 mixture of olive mill wastewater and slaughterhouse wastewater was supplemented with crude glycerol. Specifically, by adding 1% v/v crude glycerol to the feed, the methane production rate increased from 479 mL/d to 1210 mL/d. The extra glycerol-COD added to the feed did not have a negative effect on the reactor performance in either case. Supplementation of the feed with crude glycerol also had a significant positive effect on anaerobic fermentation reactors. Hydrogen yield was 26 mmole H2/g VS added and 15 mmole H2/g VS added in a reactor treating the organic fraction of municipal solid waste and a 1:4 mixture of olive mill and slaughterhouse wastewater. The addition of crude glycerol to the feed enhanced hydrogen yield at 2.9 mmole H2/g glycerol added and 0.7 mmole H2/g glycerol added.  相似文献   

17.
Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.  相似文献   

18.
The purpose of this research was to study the enhancement of rifamycin SV (RSV) yield according to the feeding method of a carbon source for Amycolatopsis mediterranei MM2. RSV produced during fermentation dropped sharply after reaching a maximum, and it was found that this trend of RSV production resulted from simultaneous production and degradation of RSV. To reduce RSV degradation during incubation, the effect of carbon source on cell growth was investigated. Based on the results, glucose was a better carbon source than glycerol for cell growth, although glycerol was better than glucose for RSV production, as reported in our previous study. To confirm this, RSV yield and dry cell weight (DCW) were measured according to the feeding method of carbon source using a 5-L size bioreactor. Results showed that initial cell growth rate and RSV yield were significantly increased regardless of the addition method of glucose into glycerol, provided glucose was present in the initial stage of cell growth.  相似文献   

19.
Xu Y  Du W  Liu D  Zeng J 《Biotechnology letters》2003,25(15):1239-1241
A new enzymatic route for biodiesel production from soybean oil was developed using methyl acetate as a novel acyl acceptor. Novozym 435 (immobilized Candida antarctica lipase) gave the highest methyl ester (ME) yield of 92%. The optimum conditions of the transesterification were 30% enzyme based on oil weight; a molar ratio of methyl acetate/oil of 12:1; temperature 40 °C and reaction time 10 h. Since no glycerol was produced in the process, this method is very convenient for recycling the catalyst and by-product triacetylglycerol showed no negative effect on the fuel property.  相似文献   

20.
tert-Butanol, as a novel reaction medium, has been adopted for lipase-catalyzed transesterification of rapeseed oil for biodiesel production, with which both the negative effects caused by excessive methanol and by-product glycerol could be eliminated. Combined use of Lipozyme TL IM and Novozym 435 was proposed further to catalyze the methanolysis and the highest biodiesel yield of 95% could be achieved under the optimum conditions (tert-butanol/oil volume ratio 1:1; methanol/oil molar ratio 4:1; 3% Lipozyme TL IM and 1% Novozym 435 based on the oil weight; temperature 35 °C; 130 rpm, 12 h). There was no obvious loss in lipase activity even after being repeatedly used for 200 cycles with tert-butanol as the reaction medium. Furthermore, waste oil was also explored for biodiesel production and it has been found that lipase also showed good stability in this novel system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号