首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To study the pulsed ultraviolet (UV) inactivation of poliovirus and adenovirus. METHODS AND RESULTS: Viral suspensions of 2 ml volume were exposed to varying numbers of polychromatic light pulses emitted from a xenon flashlamp. Ten pulses produced an approximately 4 log(10) reduction in poliovirus titre, and no infectious poliovirus remained after 25 pulses. With adenovirus, 10 pulses resulted in an approximately 1 log(10) reduction in infectivity. Adenovirus required 100 pulses to produce an approximately 3 log(10) reduction in infectivity, and 200 pulses to produce a greater than 4 log(10) reduction. CONCLUSIONS: Adenovirus was more resistant to pulsed UV treatment than poliovirus although both viruses showed susceptibility to the treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Pulsed UV-light treatment proved successful in the inactivation of poliovirus and adenovirus, and represents an alternative to continuous-wave UV treatment.  相似文献   

2.
3.
AIMS: To investigate the influence of the growth phase, growth temperature, storage time, pH and aw of the treatment medium on the resistance of Listeria monocytogenes to pulsed electric fields (PEF). METHODS AND RESULTS: Square wave pulses of 2 micros at a frequency of 1 Hz and 25 and 28 kV cm(-1) were used. Cells were more PEF resistant in the stationary than in the exponential phase at both incubation temperatures investigated (4 and 35 degrees C). Cells grown at 4 degrees C were more PEF sensitive than cells grown at 35 degrees C independent of the growth phase. After a treatment of 25 kV cm(-1) and 800 micros, 1.48, 3.86 and 5.09 log10 cycles of inactivation were obtained at pH 7.0, 5.4 and 3.8, respectively. A reduction in the aw of the treatment medium protected cells against PEF treatments. CONCLUSIONS: The PEF resistance of L. monocytogenes depended on different environmental factors. The influence of growth conditions and treatment medium characteristics should be known and controlled to obtain reproducible and reliable PEF inactivation data. SIGNIFICANCE AND IMPACT OF THE STUDY: Erroneous conclusions and misinterpretation of results are possible if factors affecting the PEF resistance of L. monocytogenes are not considered during PEF inactivation studies.  相似文献   

4.
The impact of pulsed Nd:YAG (neodymium-doped yttrium/aluminium garnet) laser irradiation on the marine biofilm-forming bacteria Pseudoalteromonas carrageenovora during two growth stages (log phase and stationary phase) and under two stresses (reduced temperature and nutrient limitation) was investigated. Bacteria were exposed to a laser fluence of 0.1 J x cm(-2) for 5, 10, and 15 min with a peak power of 20 MW x cm(-2), a pulse width of 5 ns, and an average power of 1 W x cm(-2) with a repetition rate of 10 Hz. The mortality of bacteria immediately after the irradiation as well as after a set period of time was determined. Mortality was higher among log-phase bacteria (72%) than bacteria in the stationary phase (51%) and those grown under nutrient limitation (51%). Bacteria grown at reduced temperature had a mortality of 49%. However, the differences in cell density of log-phase, stationary-phase, nutrient-limited, and low-temperature irradiated samples compared with controls after 5 h of incubation were 96, 93, 94, and 86%, respectively. The mortality values suggest that the same laser fluence has different degrees of effectiveness, depending on the physiological state of the bacteria.  相似文献   

5.
AIMS: The performance of three scanning CO(2) laser inactivation systems was assessed and included: a gantry system, a rapidly rotating mirror and a low-power hybrid system combining an oscillating mirror and rotary motion of the sample. METHODS AND RESULTS: Escherichia coli and Staphylococcus aureus were the target organisms on stainless steel, nutrient agar or moist collagen film and the laser power was varied from 2 to 1060 W (two laser sources). In general, a threshold energy density was identified, above which no inactivation was observed because the scanning velocity was too high (10 cm s(-1) for stainless steel, 660 W). Reducing the velocity increased the inactivation process until complete inactivation was observed at 1.3 cm s(-1) (E. coli, approximately 10(6) CFU per sample) and 0.82 cm s(-1) (S. aureus, approximately 10(8) CFU per sample); consequently, S. aureus organisms showed a greater resistance to laser irradiation. For the nutrient agar and collagen samples, the averages of the width of clearing were measured as a function of the translation velocity and the rates of inactivation (I(R), cm(2) s(-1)) were found; an optimum velocity was observed that produced the maximum rate of inactivation. At a laser power of 1060 W, the maximum value of I(R) was 140 cm(2) s(-1) ( approximately 10(7) CFU cm(-2)) for S. aureus on collagen and slightly less on nutrient agar (114 cm(2) s(-1), estimated from a best-fit polynomial, r(2) = 0.98). CONCLUSIONS: A comparison of the low- and high-power lasers produced values of 0.09 cm(2) s(-1) W(-1) (i.e. I(R) per Watt delivered) for S. aureus on nutrient agar with the low-power laser at 13 W and on collagen 0.13 cm(2) s(-1) W(-1) for 1060 W. The rate of inactivation was found to be a function of the laser power, translation velocity and properties of the substrate media. The three laser inactivation systems successfully demonstrated the potential speed, efficiency and application of such systems. SIGNIFICANCE AND IMPACT OF THE STUDY: Laser scanning systems offer the potential for rapid and efficient inactivation of surfaces, eliminating the need for chemical treatment.  相似文献   

6.
Biology Bulletin - The effect of nanosecond repetitive pulsed microwave radiation (RPMR, 10 GHz, 100 ns pulse duration, 8 Hz pulse repetition rate, 140 and 1500 W/cm2 peak power flux density...  相似文献   

7.
The current safety standards for radiofrequency and microwave exposure do not limit the peak power of microwave pulses for general or occupational exposures. While some biological effects, primarily the auditory effect, depend on pulsed microwaves, hazards associated with very high peak-power microwave pulses in the absence of whole-body heating are unknown. Five rhesus monkeys, Macaca mulatta, were exposed to peak-power densities of 131.8 W/cm2 (RMS) while performing a time-related behavioral task. The task was composed of a multiple schedule of reinforcement consisting of three distinct behavioral components: inter-response time, time discrimination, and fixed interval. Trained monkeys performed the multiple schedule during exposure to 1.3-GHz pulses at low pulse-repetition rates (2-32 Hz). No significant change was observed in any behavior during irradiation as compared to sham-irradiation sessions. Generalization of these findings to experimental results with higher peak-power densities, other pulse rates, different carrier frequencies, or other behaviors is limited.  相似文献   

8.
Pulsed light is a nonthermal processing technology recognized by the FDA for killing microorganisms on food surfaces, with cumulative fluences up to 12 J cm−2. In this study, we investigated its efficacy for inactivating murine norovirus 1 (MNV-1) as a human norovirus surrogate in phosphate-buffered saline, hard water, mineral water, turbid water, and sewage treatment effluent and on food contact surfaces, including high-density polyethylene, polyvinyl chloride, and stainless steel, free or in an alginate matrix. The pulsed-light device emitted a broadband spectrum (200 to 1,000 nm) at a fluence of 0.67 J cm−2 per pulse, with 2% UV at 8 cm beneath the lamp. Reductions in viral infectivity exceeded 3 log10 in less than 3 s (5 pulses; 3.45 J cm−2) in clear suspensions and on clean surfaces, even in the presence of alginate, and in 6 s (11 pulses; 7.60 J cm−2) on fouled surfaces except for stainless steel (2.6 log10). The presence of protein or bentonite interfered with viral inactivation. Analysis of the morphology, the viral proteins, and the RNA integrity of treated MNV-1 allowed us to elucidate the mechanisms involved in the antiviral activity of pulsed light. Pulsed light appeared to disrupt MNV-1 structure and degrade viral protein and RNA. The results suggest that pulsed-light technology could provide an effective alternative means of inactivating noroviruses in wastewaters, in clear beverages, in drinking water, or on food-handling surfaces in the presence or absence of biofilms.  相似文献   

9.
Female CD-1 mice immunized against the bacterium Streptococcus pneumoniae type III were exposed to 9-GHz pulsed microwaves (pulse repetition rate 970-1,000, pulse width 1.0 microseconds, peak power 1 W/cm2) at an average incident power density of 1 mW/cm2 (calculated SAR congruent to 0.47 W/kg) for 2 h per day for 5 days. Circulating antibody titers for the microwave-exposed animals were not significantly different from those of the sham-irradiated animals, and there were no differences in any of the hematological parameters analyzed, indicating that 9-GHz pulsed microwaves at 1 mW/cm2 do not alter the immune response of mice immunized against S pneumoniae.  相似文献   

10.
11.
Aims: The aim of this study was to evaluate the inactivation efficiency of Listeria monocytogenes ATCL3C 7644 and Salmonella enterica serovar Typhimurium strain DS88 by combined treatment of hypericin (Hyp)‐based photosensitization and high power pulsed light (HPPL). Methods and Results: Cells were incubated with Hyp (1 × 10?5 or 1 × 10?7 mol l?1) in PBS and illuminated with a light λ = 585 nm. For the combined treatment, bacteria were, after photosensitization, exposed to 350 pulses of HPPL (UV light dose = 0·023 J cm?2). Fluorescence measurements were performed to evaluate optimal time for cell–Hyp interaction. Results indicate that Hyp tends to bind both Listeria and Salmonella. After photosensitization treatment, Listeria population was reduced 7 log, whereas Salmonella was inactivated just 1 log. Electron photomicrograps of Salmonella and Listeria confirmed that photosensitization induced total collapse of the Listeria cell wall, but not that of Salmonella. After combined photosensitization–HPPL treatment, the population of Listeria was diminished by 7 log and Salmonella by 6·7 log. Conclusions: Listeria can be effectively inactivated by Hyp‐based photosensitization (7 log), whereas Salmonella is more resistant to photosensitization and can be inactivated just by 1 log in vitro. Combined treatment of photosensitization and pulsed light inactivates effectively (6·7–7 log) both the Gram‐positive and the more resistant to photosensitization Gram‐negative bacteria. Significance and Impact of the Study: A new approach to combat Gram‐positive and Gram‐negative bacteria is proposed, combining photosensitization with high power pulsed light.  相似文献   

12.
13.
The goal of this study was to investigate the photodynamic toxicity of TMPyP (5, 10, 15, 20-Tetrakis (1-methylpyridinium-4-yl)-porphyrin tetra p-toluenesulfonate) in combination with short pulses (ms) of an intense pulse light source within 10 s against Bacillus atrophaeus, Staphylococcus aureus, Methicillin-resistant S. aureus and Escherichia coli, major pathogens in food industry and in health care, respectively. Bacteria were incubated with a photoactive dye (TMPyP) that is subsequently irradiated with visible light flashes of 100 ms to induce oxidative damage immediately by generation of reactive oxygen species like singlet oxygen. A photodynamic killing efficacy of up to 6 log(10) (>99.9999%) was achieved within a total treatment time of 10 s using a concentration range of 1-100 μmol TMPyP and multiple light flashes of 100 ms (from 20 J cm(-2) up to 80 J cm(-2)). Both incubation of bacteria with TMPyP alone or application of light flashes only did not have any negative effect on bacteria survival. Here we could demonstrate for the first time that the combination of TMPyP as the respective photosensitizer and a light flash of 100 ms of an intense pulsed light source is enough to generate sufficient amounts of reactive oxygen species to kill these pathogens within a few seconds. Increasing antibiotic resistance requires fast and efficient new approaches to kill bacteria, therefore the photodynamic process seems to be a promising tool for disinfection of horizontal surfaces in industry and clinical purposes where savings in time is a critical point to achieve efficient inactivation of microorganisms.  相似文献   

14.
Aims: The study was focused on the possibility to inactivate food pathogen Bacillus cereus by 5‐aminolevulinic acid (ALA) – based photosensitization in vitro and after adhesion on the surface of packaging material. Methods and Results: Bacillus cereus was incubated with ALA (3–7·5 mmol l?1) for 5–60 min in different environment (PBS, packaging material and wheat grains) and afterwards illuminated with visible light. The light source used for illumination emitted light at λ = 400 nm with energy density at the position of the cells, 20 mW cm?2. The illumination time varied from 0 to 20 min, and subsequently a total energy dose was between 0 and 24 J cm?2. The obtained results indicate that B. cereus after the incubation with 3–7·5 mmol l?1 ALA produces suitable amounts of endogenous photosensitizers. Following illumination, micro‐organism inactivated even by 6·3 log. The inactivation of B. cereus after adhesion on the surface of food packaging by photosensitization reached 4 log. It is important to note that spores of B. cereus were susceptible to this treatment as well; 3·7‐log inactivation in vitro and 2·7‐log inactivation on the surface of packaging material were achieved at certain experimental conditions. Conclusions: Vegetative cells and spores of Gram‐positive food pathogen B. cereus were effectively inactivated by ALA‐based photosensitization in vitro. Moreover, the significant inactivation of B. cereus adhered on the surface of packaging material was observed. It was shown that photosensitization‐based inactivation of B. cereus depended on the total light dose (illumination time) as well as on the amount of endogenous porphyrins (initial ALA concentration, time of incubation with ALA). Significance and Impact of the Study: Our previous data, as well as the one obtained in this study, support the idea that photosensitization with its high selectivity, antimicrobial efficiency and nonthermal nature could serve in the future for the development of completely safe, nonthermal surface decontamination and food preservation techniques.  相似文献   

15.
Summary Two different strains ofSaccharomyces cerevisiae, one diploid wild type and one haploid mutant deficient in excision repair were irradiated with laser pulses in the range 308 nm to 380 nm after 8-MOP treatment. Both the shoulder (Dq) and the final slope (Do) of the inactivation curves were dependent on wavelength which showed a broad minimum around 355 nm. No differences in inactivation were recorded after pulsed irradiations between the repetition rates of 5 Hz and 35 Hz. Irradiations with pulses of the energy density from 0.1 mJ/cm2 up to 26 mJ/cm2 resulted in a final slope increasing with pulse energy density. This was in contrast to the effects of irradiation alone.Abbreviations 8-MOP 8-methoxypsoralen - UV ultraviolet - PUVA therapy withPsoralen plusUV-A  相似文献   

16.
Aims:  Salmonellosis is one of the most common foodborne diseases in the world. The aim of this study was to evaluate the antibacterial efficiency of 5-aminolevulinic acid (ALA) based photosensitization against one of food pathogens Salmonella enterica .
Methods and Results:  Salmonella enterica was incubated with ALA (7·5 mmol l−1) for 1–4 h and afterwards illuminated with visible light. The light source used for illumination of S. enterica emitted light λ  = 400 nm with energy density 20 mW cm−2. The illumination time varied from 0 to 20 min and subsequently a total energy dose reached 0–24 J cm−2. The data obtained indicate that S. enterica is able to produce endogenous photosensitizer PpIX when incubated with ALA. Remarkable inactivation of micro-organisms can be achieved (6 log) after photosensitization. It is obvious that photosensitization-based inactivation of S. enterica depends on illumination as well as incubation with ALA time.
Conclusion:  ALA-based photosensitization can be an effective tool against multi-drug resistant Gram-negative bacteria S. enterica serovar Typhimurium.
Significance and Impact of the Study:  Experimental data and mathematical evaluations support the idea that ALA-based photosensitization can be a useful tool for the development of nonthermal food preservation technology in future.  相似文献   

17.
AIMS: Inactivation and sublethal injury of Lactobacillus plantarum at different pulsed electric field (PEF) strengths and total energy inputs were investigated to differentiate reversible and irreversible impacts on cell functionality. METHODS AND RESULTS: Lactobacillus plantarum was treated with PEF in model beer (MB) to determine critical values of field strength and energy input for cell inactivation. Below critical values, metabolic activity and membrane integrity were initially reduced without loss of viability. Above critical values, however, irreversible cell damage occurred. Presence of nisin or hop extract, during PEF treatment, resulted in an additional reduction of cell viability by 1;5 log cycles. Also, addition of the hop extract resulted in an additional two log cycles of sublethal injury. Partial reversibility of membrane damage was observed using propidium iodide (PI) uptake and staining. Inoculated MB containing hops was stored after PEF to evaluate the efficacy of such treatment for beer preservation. CONCLUSION: Cells were inactivated only above critical values of 13 kV x cm(-1) and 64 kJ x kg(-1); below these values cell damage was reversible. Storage experiments revealed that surviving cells were killed after 15 h storage in MB containing hops. SIGNIFICANCE AND IMPACT OF THE STUDY: Both reversible and irreversible cell damage due to PEF treatment was detected, depending on specific treatment conditions. The combination of PEF and hop addition is a promising nonthermal method of preservation for beer.  相似文献   

18.
Limits on the exposure to high-peak-power, short-duration microwave pulses have only recently been adopted. Additional data, however, are needed to understand the effects that may be produced by exposure to high-peak-power pulsed microwaves. Four male rhesus monkeys (Macaca mulatta) were trained on an operant task for food pellet reward to investigate the behavioral effects of very high-peak-power 5.62 GHz microwaves. The operant task required monkeys to pull one plastic lever on a variable interval schedule (VI-25 s) and then respond to color signals and pull a second lever to obtain food. The monkeys were conditioned to perform a color discrimination task using one of three colors displayed by a fiber-optic cable. A red signal was the discriminative stimulus for responding on the first lever. A response on the second lever when a green signal was presented (1 s duration) delivered a food pellet. If a response on the second lever was made in the presence of a white signal, a 30-s timeout occurred. While performing the behavioral task, the monkeys were exposed to microwave pulses produced by either a military radar (FPS-26A) operating at 5.62 GHz or the same radar coupled to a Stanford linear energy doubler (SLED) pulse-forming device (ITT-2972) that enhanced peak power by a factor of nine by adding a high power pulse to the radar pulse. The effects of both types of pulses were compared to sham exposure. Peak field power densities tested were 518, 1270, and 2520 W/cm2 for SLED pulses and 56, 128, and 277 W/cm2 for the radar pulses. The microwave pulses (radar or SLED) were delivered at 100 pps (2.8 μs radar pulse duration, ≈ 50 ns SLED pulse duration) for 20 min and produced averaged whole-body SARs of 2,4, or 6 W/kg. Compared to sham exposures, significant alterations of lever responding, reaction time, and earned food pellets occurred during microwave exposure at 4 and 6 W/kg but not 2 W/kg. There were no differences between radar or SLED pulses in producing behavioral effects. ©1994 Wiley-Liss, Inc.
  • 1 This is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    19.
    AIMS: The effect of critical pulsed electric field (PEF) process parameters, such as electric field strength, pulse length and number of pulses, on inactivation of Lactobacillus plantarum was investigated. METHODS AND RESULTS: Experiments were performed in a pH 4.5 sodium phosphate buffer having a conductivity of 0.1 S m-1, using a laboratory-scale continuous PEF apparatus with a co-linear treatment chamber. An inactivation model was developed as a function of field strength, pulse length and number of pulses. Based on this inactivation model, the conditions for a PEF treatment were optimized with respect to the minimum energy required to obtain a certain level of inactivation. It was shown that the least efficient process parameter in the range investigated was the number of pulses. The most efficient way to optimize inactivation of Lact. plantarum was to increase the field strength up to 25.7 kV cm-1, at the shortest pulse length investigated, 0.85 micros, and using a minimum number of pulses. The highest inactivation of Lact. plantarum at the lowest energy costs is obtained by using the equation: E=26.7tau0.23, in which E is the field strength and tau the pulse length. An optimum is reached by substituting tau with 5.1. CONCLUSIONS: This study demonstrates that the correct choice of parameters, as predicted by the model described here, can considerably improve the PEF process. SIGNIFICANCE AND IMPACT OF THE STUDY: The knowledge gained in this study improves the understanding of the limitations and opportunities of the PEF process. Consequently, the advantage of the PEF process as a new option for non-thermal decontamination can be better utilized.  相似文献   

    20.
    Sodium-dependent high-affinity choline uptake was measured in various regions of the brains of rats irradiated for 45 min with either pulsed or continuous-wave low-level microwaves (2,450 MHz; power density, 1 mW/cm2; average whole-body specific absorption rate, 0.6 W/kg). Pulsed microwave irradiation (2-microseconds pulses, 500 pulses/s) decreased choline uptake in the hippocampus and frontal cortex but had no significant effect on the hypothalamus, striatum, and inferior colliculus. Pretreatment with a narcotic antagonist (naloxone or naltrexone; 1 mg/kg i.p.) blocked the effect of pulsed microwaves on hippocampal choline uptake but did not significantly alter the effect on the frontal cortex. Irradiation with continuous-wave microwaves did not significantly affect choline uptake in the hippocampus, striatum, and hypothalamus but decreased the uptake in the frontal cortex. The effect on the frontal cortex was not altered by pretreatment with narcotic antagonist. These data suggest that exposure to low-level pulsed or continuous-wave microwaves leads to changes in cholinergic functions in the brain.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号