首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The actinotrocha of Phoronis muelleri has one pair of ectodermally derived, monociliated protonephridia. The duct runs mainly between the epidermis and the lining of the hyposphere coelom, pierces the septum and extends into the blastocoel. The proximal part is branched and closed up by terminal complexes consisting of two morphologically different cells which both serve filtration. During metamorphosis, the terminal complexes and the branches of the duct are cast off. The cells degenerate, pass into the remaining duct and are endocytosed by the duct cells. After metamorphosis the remaining part of the protonephridial duct is U-shaped, blindly closed and borders on the prospective lophophoral vessel. In a later stage the duct receives a ciliated funnel, which consists of monociliated epithelio-muscle cells and is a derivative of the lining of the metacoel. Thus, a part of the protonephridial duct of the larva and the whole metanephridial duct of the adult are identical. Aspects of a possible homology between phoronid nephridia and such organs in other bilaterians are discussed.  相似文献   

2.
The epidermis of the tentacles of Phoronis australis consists of six cell types: supporting cells, choanocyte-like sensory cells, both types monociliated, secretory A-cells with a mucous secretion, and three kinds of B-cells with mucoprotein secretions. On cross-sections of the tentacle, one can distinguish four faces: the frontal one, heavily ciliated and located between the two frontolateral rows of sensory cells, the lateral and the abfrontal ones. The orientation of the basal structures of the cilia is related to the direction of their beat. The basiepidermal nervous system is grouped mainly at the frontal and abfrontal faces. The basement membrane is thickest on the frontal face and consists of circular collagen fibrils near the epidermis and longitudinal ones near the peritoneum. All peritoneal cells surrounding the mesocoel are provided with smooth longitudinal myofibrils, and isolated axons are situated between these cells and the basement membrane. The wall of the single blood capillary in each tentacle consists of epitheliomuscular cells with circular myofilaments, lying on a thin internal basal lamina; there is no endothelium.  相似文献   

3.
The view that early cleavage in Phoronida follows a radial pattern is widely accepted. However, data supporting this characterization are ambiguous. Studies have been repeatedly reporting variation between individual embryos, and the occurrence of embryos exhibiting oblique divisions or nonradial cell arrangements. Such embryos were often considered to represent variation within radial cleavage, or artificial appearances. Cleavage in Phoronis muelleri was previously characterized as “derived radial,” but also oblique spindles and cell elongations, and shifted cell arrangements were observed. We studied the early cleavage in P. muelleri applying 4D microscopy, fluorescent staining, and confocal laser scanning microscopy. To deal with the problem of variation we provide statistical evaluations of our data. These show that oblique divisions do not represent variational abnormalities. In fact, they reveal that most cells divide obliquely from the third cleavage onwards. What is more, in almost all cells the axis of the third cleavage is inclined dextrally. The fourth cleavage is even stronger sinistrally pronounced. Subsequently, the pattern of alternating cleavage orientation is largely restricted to animal and vegetal blastomeres. As a result of the obliqueness of divisions, four cells encircle the poles in most embryos. Cross furrows are occasionally present. We found no indications for radial cleavage in P. muelleri. In contrast, the observed cleavage displays several characters consistent with the pattern of spiral cleavage. A close relation of phoronid and spiralian cleavage is also suggested by molecular phylogenies, allying both groups in the Lophotrochozoa. We suggest our findings to represent morphological support for this lophotrochozoan/spiralian affinity of Phoronida.  相似文献   

4.
Summary In several metasomal blood vessels of Phoronis muelleri myofilament-containing podocytes are the predominant cell-type. In some regions the podocytes can build a labyrinth resembling e.g. the glomerular epithelium of Enteropneusta and the axial organ of Asteroidea.Financially supported by DFG (Sto 75/4)  相似文献   

5.
Summary The nervous system of the actinotroch larva of Phoronis muelleri has been investigated with the transmission electron microscope (TEM). Attempts have been made to localize all of the major nerves and to reveal the cytoarchitecture of the apical ganglion. The nervous system is intraepithelial in position and consists of an apical ganglion, located on the epistome, with at least four different cell types, including monopolar sensory cells and mono- or multipolar neuron-like cells. From the anterior part of the apical ganglion three median nerves extend to the edge of the epistome; two of these nerves connect to nerves which follow the edge of the epistome all the way to the junction of the epistome and the mesosome. From the posterior part of the ganglion extend two lateral nerves which continue along the tentacular ring. Each tentacle has three nerves located on the frontal side which connect to the nerve ring along the tentacles. Along the posterior ciliary band is a minor nerve ring. In addition, a nerve net is found on the epistome, mesosome, and metasome, but no longitudinal nerves were observed between the posterior ciliary band and the apical ganglion. All nerve cells were found in the apical ganglion and none was observed along the nerves. Sensory cells (probably mechanoreceptors) are located in two rows on each tentacle; sensory organs such as eyes and statocysts were not observed.Abbreviations ac accessory centricle - aen anterior epistome edge nerve - af abfrontal cells - bl basal lamina - bl.c blastocoel coelomocyte - ci cilium - co collar - cp cell process - cr ciliary root - ec 1 epistome edge cell type 1 - mne mouth nerve ring - mo mouth - mp metasomal pouch - ms mesosome - mt metasome - mu muscle - n nerve process - ne nerve - np neuropil - nu nucleus - pc 1 posterior ciliary band cell type 1 - ec 2 epistome edge cell type 2 - ec 3 epistome edge cell type 3 - epi epidermis - es epistome - ese epistome edge - fc frontal cell - gc 1 type 1 ganglion cells - gc 2 type 2 ganglion cells - gc 3 type 3 ganglion cells - ge gut epithelium - ij intermediate junction - laf lateroabfrontal cell - lc lateral cell - lfc laterofrontal cell - lgc lateral ganglion cell - me metacoel epithelium - lne longitudinal median epistome nerves - pc 2 posterior ciliary band cell type 2 - pc procoel - pe procoel epithelium - pen posterior epistome edge nerve - pr posterior ciliary band - p.rec proximal recess of procoel epithelium - prne nerve ring along posterior ciliary band - sj septate junction - sne secondary nerve along the tentacular ring - t tentacle - tr tentacular ring - trne horseshoe-shaped nerve along the tentacular ring  相似文献   

6.
7.
8.
9.
The organization of the lophophore is the main feature used for the identification of phoronid species. The structure of the lophophore and tentacles in seven phoronid species (Phoronis ovalis, P. ijimai, P. hippocrepia, P. svetlanae, P. australis, Phoronopsis harmeri, and Ph. malakhovi) collected in different areas of the World Ocean was studied. Two new patterns of the phoronid lophophore structure were found: “transition to horseshoe-shaped” (as in P. ovalis from Aniva Bay and in P. ijimai from the coast of Iturup Island, Sea of Okhotsk) and “transition to spiral” (in burrowing specimens P. hippocrepia from Aniva Bay, P. svetlanae and Ph. harmeri from Vostok Bay, Sea of Japan). For the first time it was shown that phoronid species with different types of the lophophore structure possess different kinds of tentacles. Thus, five types of phoronid tentacles were identified that vary in the shape of their cross section: rounded, oval, ellipsoid, rectangular, and skittle-shaped. A correlation was found between lophophore organization and the type of tentacles in phoronids. A table of the correlation between body size, lophophore organization, tentacle structure, and mode of life in different phoronid species is proposed.  相似文献   

10.
11.
Morphological variation among larval body plans must be placed into a phylogenetic and ecological context to assess whether similar morphologies are the result of phylogenetic constraints or convergent selective pressures. Investigations are needed of the diverse larval forms within the Lophotrochozoa, especially the larvae of phoronids and brachiopods. The actinotroch larva of Phoronis pallida (Phoronida) was reared in the laboratory to metamorphic competence. Larval development and growth were followed with video microscopy, SEM, and confocal microscopy. Early developmental features were similar to other phoronid species. Gastrulation was accomplished by embolic invagination of the vegetal hemisphere. Mesenchymal cells were found in the remaining blastocoelic space after invagination began. Mesenchymal cells formed the body wall musculature during the differentiation of larval features. Body wall musculature served as the framework from which all other larval muscles proliferated. Larval growth correlated best with developmental stage rather than age. Consistent with other phoronid species, differentiation of juvenile tissues occurred most rapidly at the latest stages of larval development. The minimum precompetency period of P. pallida was estimated to be approximately 4-6 weeks. Previously published studies have documented that the planktonic embryos of P. pallida develop faster than the brooded embryos of P. vancouverensis. However, these data showed that the difference in developmental rate between the two species decreased in succeeding larval stages. There may be convergent selective pressures that result in similar timing to metamorphic competence among phoronid and brachiopod planktotrophic larval types. Morphological differences between these larval types result from heterochronic developmental shifts in the differentiation of juvenile tissue. Similarities in the larval morphology of phoronids and basal deuterostomes are likely the result of functional and developmental constraints rather than a shared (recent) evolutionary origin. These constraints are imposed by the functional design of embryological stages, feeding structures, and swimming structures.  相似文献   

12.
A new type of phoronid development, viviparity of larvae, has been discovered in a new phoronid species that lives as a commensal of digging sand shrimps in Vostok Bay, the Sea of Japan. The embryos develop in the mother’s trunk coelom up to the young larva stage. During development, embryos increase in size twice and probably obtain nutriment from the mother’s coelomic fluid. Spawning occurs by young larvae, which are released through nephridiopores. The new type of development is described in a phoronid that has a small body size but a high fertility, producing large amounts of extremely small eggs. The combination of viviparity and large number of eggs increases the number of competent larvae that can undergo metamorphosis in the burrows of shrimps.  相似文献   

13.
Resume Trois types de parois ont été décrits dans l'appareil circulatoire du tronc dePhoronis psammophila. La succession des diverses couches de chaque type est la suivante: 1. cellules péritonéales — lame basale — rares cellules endothéliales; 2. cellules myoépithéliales — lame basale — rares cellules endothéliales; 3. une couche de muscles circukires, puis une de muscles longitudinaux — épaisse lame basale — endothélium continu.
On the wall structure of the circulatory system inPhoronis psammophila Cori (Phoronida, Lophophorata)
Summary Three types of wall structure of blood vessels have been described. It consists of the following distinct layers, from exterior to interior: 1. peritoneal cells — thin basal lamina — some endothelial cells; 2. myoepithelial cells resting on a basal lamina — some endothelial cells; 3. circular and longitudinal muscle layers of myoepithelial cells — thick basal lamina — continuous endothelial lining.

Abréviations C capillaire - ce cavité coelomique - ce cellule endothéliale - cm cellule myoépithé'liale - cp cellule péritonéale - fc fibre musculaire circulaire - fl fibre musculaire longitudinale - gs globule sanguin - lb lame basale - m myofibrille - mf myofilament - tvp tissu vasopéritonéal - V vaisseau sanguin  相似文献   

14.
The organization of the body cavity lining in selected regions of the juvenile and adult of the interstitial hesionid polychaete Microphthalmus cf. listensis is described. Tissues comprising the body cavity lining in the juvenile consist of somatic and splanchnic circular and longitudinal muscles and undifferentiated cells. Somatic and splanchnic cell layers exhibit epithelial ( = eucoelomate) organization in the pharyngeal region. In the midbody, some undifferentiated cells exhibiting mesenchymal organization persist among the epithelially organized somatic and splanchnic cells, forming a gradation between eucoelomate and acoelomate tissue organizations. A coelomic cavity is absent. Tissues comprising the body cavity lining of the adult consist of somatic and splanchnic circular and longitudinal myocytes and coelenchymal cells. Coelenchymal cells are shown from serial section analysis to be mesenchymal in organization and derived from the somatic peritoneum. A 30–65-nm coelomic cavity lies between the apices of somatic and splanchnic cell layers in the pharyngeal region. In the anterior setigerous segments, the coelom is reduced to a narrow cavity surrounded by coelenchymal cells lying midventrally between the paired ejaculatory ducts. There is a regional obliteration of the splanchnic musculature in the posterior segments so that apices of the coelenchymal cells lie in direct apposition to the basal extracellular matrix of the gut. The coeom is only present middorsally as a 0.7-μm-wide cavity. Although the coelomic cavity is highly reduced in the adult, the body cavity lining still reveals its origin from the epithelial ( = eucoelomate) organization. The findings of this study illustrate possible organizational intermediates in the evolution of the acoelomate from the eucoelomate condition in annelids.  相似文献   

15.
The structure of the larval nervous system and the musculature of Phoronis pallida were studied, as well as the remodeling of these systems at metamorphosis. The serotonergic portion of the apical ganglion is a U-shaped field of cell bodies that send projections into a central neuropil. The majority of the serotonergic cells are (at least) bipolar sensory cells, and a few are nonsensory cells. Catecholaminergic cell bodies border the apical ganglion. The second (hood) sense organ develops at competence and is composed of bipolar sensory cells that send projections into a secondary neuropil. Musculature of the competent larva includes circular and longitudinal muscle fibers of the body wall, as well as elevators and depressors of the tentacles and hood. The juvenile nervous system and musculature are developed prior to metamorphosis and are integrated with those of the larva. Components of the juvenile nervous system include a diffuse neural net of serotonergic cell bodies and fibers and longitudinal catecholaminergic fibers. The juvenile body wall musculature consists of longitudinal fibers that overlie circular muscle fibers, except in the cincture regions, where this pattern is reversed. Metamorphosis is initiated by the larval neuromuscular system but is completed by the juvenile neuromuscular system. During metamorphosis, the larval nervous system and the musculature undergo cell death, and the larval tentacles and gut are remodeled into the juvenile arrangement. Although the phoronid nervous system has often been described as deuterostome-like, these data show that several cytological aspects of the larval and juvenile neuromuscular systems also have protostome (lophotrochozoan) characteristics.  相似文献   

16.
The actinotroch larva of Phoronis muelleri has a pair of protonephridia located beneath the tentacle ring and draining the blastocoel; each protonephridium is composed of about 25 solenocytes and a nephroduct which opens in a nephropore on the ventral side of the metasome. The neck of the solenocytes consists of bars, mutually interconnected by a fenestration lamina. Inside the neck microvilli originate proximally in the proximal intrachoanal field and extend through the neck into the nephroduct. There is no canal cell. In cross section the nephroduct is composed of 5–7 monociliary cells, with the cilium protruding through a border of microvilli and extending into the nephroduct. The whole protonephridium is surrounded by a basal lamina. Comparisons of the actinotroch protonephridium with those of other groups have not revealed any convincing homologies. The protonephridia of the protostomians are all considered to be of ectodermal origin, while the cyrtopodocytes of Branchiostoma are mesodermal. The protonephridium of the actinotroch is ectodermal.  相似文献   

17.
Summary Glyoxylic-acid-induced fluorescence of catecholamines and antibodies against serotonin and FMRFamide were used to study the distribution of putative neurotransmitters in the actinotroch larva ofPhoronis muelleri Selys-Longchamps, 1903. Catecholamines occur in the neuropile of the apical ganglion, in the longitudinal median epistome nerves, in the epistome marginal nerves, and in the nerve along the bases of the tentacles. The tentacles have laterofrontal and latero-abfrontal bundles of processes that form two minor nerves along the lateral ciliary band of the tentacles, and a medio-frontal bundle of processes. Monopolar cells are located on the ventro-lateral part of the mesosome. Processes are located along the posterior ciliary band and as a reticulum in the epidermis. Serotonin-like immunoreactive cells and processes are located in the apical ganglion, in the longitudinal median epistome nerves, and as a dorsal and ventral pair of bundles along the tentacle bases. Processes from the latter extend into the tentacles as the medioabfrontal processes. The latero-abfrontal processes form a minor nerve along the ciliary band. The dorsal bundles forms the major nerve ring along the tentacles and processes extend from it to the metasome. Processes are located along the posterior ciliary band. FMRFamide-like immunoreactive cells and processes are found in the apical ganglion, in the longitudinal median epistome nerves and as a pair of lateral epistome processes projecting towards the ring of tentacles. In the tentacles, a pair of latero-frontal processes are found; these form a minor nerve along the ciliary band. A band of cells can be seen along the tentacle ring.  相似文献   

18.
Phoronis pallida (Phoronida) occurs as a commensal within the burrow of Upogebia pugettensis (Decapoda: Thalassinidea). Upogebia-conditioned seawater (UCSW) induced an exploratory swimming behavior in competent larvae of P. pallida in a dosage-dependent manner. This behavior included a significant increase in swimming speed that was directed downward, along with the repeated probing of the bottom with the sensory portion of the oral hood. The waterborne cue from the shrimp was present in the gut effluent, and the swimming behavior was not the result of the elevated ammonia concentration. Molecular weight separation of the UCSW estimated that the cue was between 10 and 50 kDa. Enzymatic treatments showed that the cue's activity could be eliminated by arginase and significantly reduced by lipase. Competent larvae were also induced to metamorphose when exposed to 20 mM CsCl for 30 min. Larvae did not respond to CsCl when cultured about 4 weeks past the onset of competence. Compared with actinotroch larvae of other phoronid species, P. pallida larvae exhibit greater behavioral specificity and neuronal differences within the hood sense organ. These anatomical and behavioral differences may have been maintained through a coevolutionary process among P. pallida and species of thalassinid shrimps that share Upogebia life-history characteristics.  相似文献   

19.
Abstract. The hypothesis of a common ancestry of the lophophorate taxa Brachiopoda, Bryozoa, Phoronida, and the Deuterostomia can be traced back to the late 19th century when Masterman recognized a tripartite organization of the body consisting of pro-, meso-, and metasome, along with coelomic body cavities in each compartment, as characteristic for Echinodermata, Pterobranchia, Phoronida, and Brachiopoda. This idea became quite popular under the name "archicoelomate" concept. The organization of the phoronids, and especially of their transparent actinotroch larva, has for a long time been used as a touchstone for the validity of this concept. As a coelomic lining can reliably be recognized only on the ultrastructural level, this technique has been applied for adults of Phoronis ovalis , which is assumed to be a sister species to all other phoronids. Phoronis ovalis contains only two coelomic compartments, a posterior coelom inside the trunk (metasoma), occupying the space between the trunk epidermis and the digestive epithelium, and an anterior lophophoral coelom inside and basal to the tentacular crown (mesosoma). There is no coelomic cavity inside the epistome (prosoma). This part of the body is filled with myoepithelial cells, which are continuous with the epithelial lining of the lophophore cavity. These cells form a lumenless bilayer and possess long, tiny myofilamentous processes, which are completely embedded in an extracellular matrix. A comparison with data on P. muelleri shows that there is no need to assume three different coelomic cavities in Phoronida, in contrast to the predictions of the archicoelomate concept. At least for this taxon, a correspondence to the situation in deuterostomes can hardly be found.  相似文献   

20.
Microsporidia‐like spores (2.0–3.0 × 1.3–1.5 μm) were discovered upon examination of histological sections taken from Phoronis embryolabi Temereva, Chichvarkhin 2017 found inhabiting burrows of shrimps Nihonotrypeae japonica (Decapoda, Callianassidae) from the Sea of Japan, Russia. Ultrastructural examination of spores revealed one nucleus and a uniform polar filament of 7–11 coils. Representatives of the phylum Phoronida have never been recorded as hosts of microsporidia. Parasites developed in vasoperitoneal tissue and caused formation of multinucleate syncytia. Basing on unique host and fine morphology, we assign the novel finding to Microsporidium phoronidi n. sp. and place provisionally in the collective genus Microsporidium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号