首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not formed during fermentation by cell suspensions, possibly due to low intracellular concentrations of fructose 1,6-bisphosphate and/or pyruvate.  相似文献   

3.
Treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide was shown to abolish the inhibition by fructose 2,6-bisphosphate, which also protected the enzyme against this chemical modification [Reyes, A., Burgos, M. E., Hubert, E., and Slebe, J. C. (1987),J. Biol. Chem. 262, 8451–8454]. On the basis of these results, it was suggested that a single reactive sulfhydryl group was essential for the inhibition. We have isolated a peptide bearing the N-ethylmaleimide target site and the modified residue has been identified as cysteine-128. We have further examined the reactivity of this group and demonstrated that when reagents with bulky groups are used to modify the protein at the reactive sulfhydryl [e.g., N-ethylmaleimide or 5,5-dithiobis-(2-nitrobenzoate)], most of the fructose 2,6-bisphosphate inhibition potential is lost. However, there is only partial or no loss of inhibition when smaller groups (e.g., cyanate or cyanide) are introduced. Kinetic and ultraviolet difference spectroscopy-binding studies show that the treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide causes a considerable reduction in the affinity of the enzyme for fructose 2,6-bisphosphate while affinity for fructose 1,6-bisphosphate does not change. We can conclude that modification of this reactive sulfhydryl affects the enzyme sensitivity to fructose 2,6-bisphosphate inhibition by sterically interfering with the binding of this sugar bisphosphate, although this residue does not seem to be essential for the inhibition to occur. The results also suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate may interact with the enzyme in a different way.  相似文献   

4.
Astrocytes are important in regulating the microencironment of neurons both by catabolic and synthetic pathways. The glutamine synthetase (GS) activity observed in astrocytes affects neurons by removing toxic substances, NH3 and glutamate; and by providing an important neuronal substrate, glutamine. This glutamate cycle might play a critical role during periods of hypoxia and ischemia, when an increase in extracellular excitatory amino acids is observed. It was previously shown in our laboratory that fructose-1,6-bisphosphate (FBP) protected cortical astrocyte cultures from hypoxic insult and reduced ATP loss following a prolonged (18–30 hrs) hypoxia. In the present study we established the effects of FBP on the level of glutamate uptake and GS activity under normoxic and hypoxic conditions. Under normoxic conditions, [U-14C]glutamate uptake and glutamine production were independent of FBP treatment; whereas under hypoxic conditions, the initial increase in glutamate uptake and an overall increase in glutamine production in astrocytes were FBP-dependent. Glutamine synthetase activity was dependent on FBP added during the 22 hours of either normoxic- or hypoxic-treatment, hence significant increases in activity were observed due to FBP regardless of the oxygen/ATP levels in situ. These studies suggest that activation of GS by FBP may provide astrocytic protection against hypoxic injury.  相似文献   

5.
6.
Several recently identified antifungal compounds share the backbone structure of acetophenones. The aim of the present study was to develop new isobutyrophenone analogs as new antifungal agents. A series of new 2,4-dihydroxy-5-methyl isobutyrophenone derivatives were prepared and characterized by 1H, 13C NMR and MS spectroscopic data. These products were evaluated for in vitro antifungal activities against seven plant fungal pathogens by the mycelial growth inhibitory rate assay. Compounds 3, 4a, 5a, 5b, 5e, 5f and 5g showed a broad-spectrum high antifungal activity. On the other hand, for the first time, these compounds were also assayed as potential inhibitors against Class II fructose-1,6-bisphosphate aldolase (Fba) from the rice blast fungus, Magnaporthe grisea. Compounds 5e and 5g were found to exhibit the inhibition constants (Ki) for 15.12 and 14.27?μM, respectively, as the strongest competitive inhibitors against Fba activity. The possible binding-modes of compounds 5e and 5g were further analyzed by molecular docking algorithms. The results strongly suggested that compound 5g could be a promising lead for the discovery of new fungicides via targeting Class II Fba.  相似文献   

7.
Abstract Antibodies (rabbit) have been prepared against total stroma from isolated spinach (Spinacia oleracea L. cv. Viking II) chloroplasts. These antibodies inhibited most of the aldolase activity present outside the chloroplasts in preparations of intact (80–95%) chloroplasts. They also reduced the amount of labelled fructose-1,6-bisphosphate found in the medium after 14CO2 fixation with such preparations. Both intact and broken chloroplasts were strongly agglutinated by the antibodies. The results indicate that the external fructose-1,6-bisphosphate was formed from excreted dihydroxyacetone phosphate by the action of aldolase and triose phosphate isomerase present outside the chloroplasts. The contamination of organelle preparations with free enzymes or enzymes adsorbed on the outer surface of the organelles is probably a general phenomenon. It is suggested that antibodies can be used as a tool to detect and selectively inhibit such contaminating enzyme activities.  相似文献   

8.
Upon storage, partially purified human erythrocyte pyruvate kinase (ATP: pyruvate-phosphotransferase, E.C. 2.7.1.40) from normal individuals was found to undergo a spontaneous oxidation to a form which displayed markedly reduced activity. This modified form of the enzyme exhibited kinetic patterns similar to those frequently reported for the enzyme in cases of nonspherocytic hemolytic anemia. The data are discussed in relation to the recently proposed theory that post-translational modification of pyruvate kinase is responsible for the abnormal kinetic patterns frequently encountered for this enzyme in the disease state. [Van Berkel, T. J. C., Koster, J. F., Kruyt, J. K. and Staal, G. E. J. 1973 Biochim. Biophys. Acta 321, 496–502].  相似文献   

9.
Fructose-2,6-bisphosphate (Fru-2,6-P(2)) is a potent allosteric activator of the ATP-dependent phosphofructokinase (PFK) in eukaryotes. Based on the sequence homology between rabbit muscle PFK and two bacterial PFKs and the crystal structures of the latter, Ser(530), Arg(292) and His(662) of the rabbit enzyme are implicated as binding sites for Fru-2,6-P(2). We report here the effects of three mutations, S530D, R292A, and H662A on the activation of rabbit muscle PFK by Fru-2,6-P(2). At pH 7.0 and the inhibitory concentrations of ATP, the native enzyme gives a classic sigmoidal response to changes in Fru-6-P concentration in the absence of Fru-2,6-P(2) and a nearly hyperbolic response in the presence of the activator. Under the same conditions, no activation was seen for S530D. On the other hand, H662A can be activated but requires a 10-fold or higher concentration of Fru-2,6-P(2). Limited activation was observed for mutant R292A. A model illustrating the sites for recognition of Fru-2,6-P(2) in rabbit muscle PFK as well as the mechanism of allosteric activation is proposed.  相似文献   

10.
The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m–2 under nitrogen and 50 W·m–2 under air, while NADP photoreduction was saturated at 240 W·m–2. Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.Abbreviations Fd ferredoxin - FBPase fructose-1,6-bisphosphatase - FTR ferredoxin-thioredoxin reductase - LEM light effect mediator - NADP-MDH NADP-malate dehydrogenase - Td thioredoxin  相似文献   

11.

Background

Fructose-1,6-bisphosphatase, a major enzyme of gluconeogenesis, is inhibited by AMP, Fru-2,6-P2 and by high concentrations of its substrate Fru-1,6-P2. The mechanism that produces substrate inhibition continues to be obscure.

Methods

Four types of experiments were used to shed light on this: (1) kinetic measurements over a very wide range of substrate concentrations, subjected to detailed statistical analysis; (2) fluorescence studies of mutants in which phenylalanine residues were replaced by tryptophan; (3) effect of Fru-2,6-P2 and Fru-1,6-P2 on the exchange of subunits between wild-type and Glu-tagged oligomers; and (4) kinetic studies of hybrid forms of the enzyme containing subunits mutated at the active site residue tyrosine-244.

Results

The kinetic experiments with the wild-type enzyme indicate that the binding of Fru-1,6-P2 induces the appearance of catalytic sites with lower affinity for substrate and lower catalytic activity. Binding of substrate to the high-affinity sites, but not to the low-affinity sites, enhances the fluorescence emission of the Phe219Trp mutant; the inhibitor, Fru-2,6-P2, competes with the substrate for the high-affinity sites. Binding of substrate to the low-affinity sites acts as a “stapler” that prevents dissociation of the tetramer and hence exchange of subunits, and results in substrate inhibition.

Conclusions

Binding of the first substrate molecule, in one dimer of the enzyme, produces a conformational change at the other dimer, reducing the substrate affinity and catalytic activity of its subunits.

General significance

Mimics of the substrate inhibition of fructose-1,6-bisphosphatase may provide a future option for combatting both postprandial and fasting hyperglycemia.  相似文献   

12.
13.
14.
Lee SJ  Kim HS  Kim do J  Yoon HJ  Kim KH  Yoon JY  Suh SW 《FEBS letters》2011,(2):307-312
Staphylococcus aureus LacD, a Class I tagatose-1,6-bisphosphate (TBP) aldolase, shows broadened substrate specificity by catalyzing the cleavage of 1,6-bisphosphate derivatives of d-tagatose, d-fructose, d-sorbose, and d-psicose. LacD.1 and LacD.2 are two closely-related Class I TBP aldolases in Streptococcus pyogenes. Here we have determined the crystal structures of S. aureus LacD and S. pyogenes LacD.1. Monomers of both enzymes are folded into a (β/α)8 barrel and two monomers associate tightly to form a dimer in the crystals. The structures suggest that the residues E189 and S300 of rabbit muscle Class I fructose-1,6-bisphosphate (FBP) aldolase are important for substrate specificity. When we mutated the corresponding residues of S. aureus LacD, the mutants (L165E, L275S, and L165E/L275S) showed enhanced substrate specificity toward FBP.

Structured summary

lacDbinds to lacD by X-ray crystallography(View interaction)lacD1binds to lacD1 by X-ray crystallography(View interaction)  相似文献   

15.
Intravenous administration of glucagon in mouse (200 μg/100 gm body wt), stimulated liver fructose-1,6-bisphosphatase at physiological pH by approximately 100% within 15 minutes. The stimulation was not due to protein synthesis. Similar stimulation was also observed on administration of cyclic AMP. Removal of the adrenal gland abolished the stimulatory effect of glucagon but not of cyclic AMP.  相似文献   

16.
17.
通过RT-PCR,结合RACE技术,得到了玉米(Zea mays L.)果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶的全长cDNA克隆,命名为mF2KP.氨基酸序列同源性比较发现,mF2KP蛋白可以分为两个部分:C端包含高度保守的催化功能区,N端为植物中特有的多肽.将mF2KP基因中一段包含完整催化功能区的片段在大肠杆菌(Escherichia coli)中表达,融合蛋白具有果糖-6-磷酸,2-激酶/果糖-2,6-二磷酸酶活性.Northern杂交证明在种子活力不同的幼苗中,mF2KP的转录水平存在明显差异.种子活力越高,幼苗中mF2KP的转录水平越低.  相似文献   

18.
19.
Lactate dehydrogenase (LDH) was purified from the siphon muscle of the intertidal ascidian Pyura stolonifera. The enzyme is unique among chordate LDHs but resembles some bacterial and platyhelminth LDHs in being activated by fructose 1,6-bisphosphate (FBP). Concentrations of FBP in the range 5μM to 0.5 mM increase Vmax of the pyruvate reductase reaction by 130% to 210%, and decrease Km pyruvate 5 to 11 fold and Km NADH 2.5 to 5 fold. The enzyme is also activated by inorganic phosphate, but requires a 50 fold higher concentration to attain the maximum activation achieved by 0.5 mM FBP. Of a range of metabolites tested, including other glycolytic sugar phosphates, only FBP and inorganic phosphate activated the enzyme. FBP activation was not observed with 16 representative vertebrate LDH homotetramers, but did occur to a limited extent with LDH from an echinoderm. LDH was the only pyruvate reductase enzyme detected in P. stolonifera siphon muscle, and its activity was much greater than that of phosphorylase or phosphofructokinase. The LDH reaction is utilized by P. Stolonifera during prolonged siphon closure on exposure to air when lactate, but not succinate, accumulates in the siphon muscle. While the ascidian enzyme provides the first example of a FBP activated LDH from a chordate, it remains to be determined if this unusual property has any role in metabolic regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号