首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

8.
9.
10.
11.
We have previously reported that growth factor receptor-bound protein-7 (Grb7), an Src-homology 2 (SH2)-containing adaptor protein, enables interaction with focal adhesion kinase (FAK) to regulate cell migration in response to integrin activation. To further elucidate the signaling events mediated by FAK·Grb7 complexes in promoting cell migration and other cellular functions, we firstly examined the phos pho ryl a ted tyrosine site(s) of Grb7 by FAK using an in vivo mutagenesis. We found that FAK was capable of phos pho rylating at least 2 of 12 tyrosine residues within Grb7, Tyr-188 and Tyr-338. Moreover, mutations converting the identified Tyr to Phe inhibited integrin-dependent cell migration as well as impaired cell proliferation but not survival compared with the wild-type control. Interestingly, the above inhibitory effects caused by the tyrosine phos pho ryl a tion-deficient mutants are probably attributed to their down-regulation of phospho-Tyr-397 of FAK, thereby implying a mechanism by competing with wild-type Grb7 for binding to FAK. Consequently, these tyrosine phos pho ryl a tion-deficient mutants evidently altered the phospho-Tyr-118 of paxillin and phos pho ryl a tion of ERK1/2 but less on phospho-Ser-473 of AKT, implying their involvement in the FAK·Grb7-mediated cellular functions. Additionally, we also illustrated that the formation of FAK·Grb7 complexes and Grb7 phos pho ryl a tion by FAK in an integrin-dependent manner were essential for cell migration, proliferation and anchorage-independent growth in A431 epidermal carcinoma cells, indicating the importance of FAK·Grb7 complexes in tumorigenesis. Our data provide a better understanding on the signal transduction event for FAK·Grb7-mediated cellular functions as well as to shed light on a potential therapeutic in cancers.Growth factor receptor bound protein-7 (Grb7)2 is initially identified as a SH2 domain-containing adaptor protein bound to the activated EGF receptor (1). Grb7 is composed of an N-terminal proline-rich region, following a putative RA (Ras-associating) domain and a central PH (pleckstrin homology) domain and a BPS motif (between PH and SH2 domains), and a C-terminal SH2 domain (26). Despite the lack of enzymatic activity, the presence of multiple protein-protein interaction domains allows Grb7 family adaptor proteins to participate in versatile signal transduction pathways and, therefore, to regulate many cellular functions (46). A number of signaling molecules has been reported to interact with these featured domains, although most of the identified Grb7 binding partners are mediated through its SH2 domain. For example, the SH2 domain of Grb7 has been demonstrated to be capable of binding to the phospho-tyrosine sites of EGF receptor (1), ErbB2 (7), ErbB3 and ErbB4 (8), Ret (9), platelet-derived growth factor receptor (10), insulin receptor (11), SHPTP2 (12), Tek/Tie2 (13), caveolin (14), c-Kit (15), EphB1 (16), G6f immunoreceptor protein (17), Rnd1 (18), Shc (7), FAK (19), and so on. The proceeding α-helix of the PH domain of Grb7 is the calmodulin-binding domain responsible for recruiting Grb7 to plasma membrane in a Ca2+-dependent manner (20), and the association between the PH domain of Grb7 and phosphoinositides is required for the phosphorylation by FAK (21). Two additional proteins, NIK (nuclear factor κB-inducing kinase) and FHL2 (four and half lim domains isoform 2), in association with the GM region (Grb and Mig homology region) of Grb7 are also reported, although the physiological functions for these interactions remain unknown (22, 23). Recently, other novel roles in translational controls and stress responses through the N terminus of Grb7 are implicated for the findings of Grb7 interacting with the 5′-untranslated region of capped targeted KOR (kappa opioid receptor) mRNA and the Hu antigen R of stress granules in an FAK-mediated phosphorylation manner (24, 25).Unlike its member proteins Grb10 and Grb14, the role of Grb7 in cell migration is unambiguous and well documented. This is supported by a series of studies. Firstly, Grb7 family members share a significantly conserved molecular architecture with the Caenorhabditis elegans Mig-10 protein, which is involved in neuronal cell migration during embryonic development (4, 5, 26), suggesting that Grb7 may play a role in cell migration. Moreover, Grb7 is often co-amplified with Her2/ErbB2 in certain human cancers and tumor cell lines (7, 27, 28), and its overexpression resulted in invasive and metastatic consequences of various cancers and tumor cells (23, 2933). On the contrary, knocking down Grb7 by RNA interference conferred to an inhibitory outcome of the breast cancer motility (34). Furthermore, interaction of Grb7 with autophosphorylated FAK at Tyr-397 could promote integrin-mediated cell migration in NIH 3T3 and CHO cells, whereas overexpression of its SH2 domain, an dominant negative mutant of Grb7, inhibited cell migration (19, 35). Recruitment and phosphorylation of Grb7 by EphB1 receptors enhanced cell migration in an ephrin-dependent manner (16). Recently, G7–18NATE, a selective Grb7-SH2 domain affinity cyclic peptide, was demonstrated to efficiently block cell migration of tumor cells (32, 36). In addition to cell migration, Grb7 has been shown to play a role in a variety of physiological and pathological events, for instance, kidney development (37), tumorigenesis (7, 14, 3841), angiogenic activity (20), proliferation (34, 42, 43), anti-apoptosis (44), gene expression regulation (24), Silver-Russell syndrome (45), rheumatoid arthritis (46), atopic dermatitis (47), and T-cell activation (17, 48). Nevertheless, it remains largely unknown regarding the downstream signaling events of Grb7-mediated various functions. In particular, given the role of Grb7 as an adaptor molecule and its SH2 domain mainly interacting with upstream regulators, it will be interesting to identify potential downstream effectors through interacting with the functional GM region or N-terminal proline-rich region.In this report, we identified two tyrosine phosphorylated sites of Grb7 by FAK and deciphered the signaling targets downstream through these phosphorylated tyrosine sites to regulate various cellular functions such as cell migration, proliferation, and survival. In addition, our study sheds light on tyrosine phosphorylation of Grb7 by FAK involved in tumorigenesis.  相似文献   

12.
13.
14.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

15.
16.
17.
Ubiquitination is essential for the endocytic sorting of various G protein-coupled receptors to lysosomes. Here we identify a distinct function of this covalent modification in controlling the later proteolytic processing of receptors. Mutation of all cytoplasmic lysine residues in the murine δ-opioid receptor blocked receptor ubiquitination without preventing ligand-induced endocytosis of receptors or their subsequent delivery to lysosomes, as verified by proteolysis of extramembrane epitope tags and down-regulation of radioligand binding to the transmembrane helices. Surprisingly, a functional screen revealed that the E3 ubiquitin ligase AIP4 specifically controls down-regulation of wild type receptors measured by radioligand binding without detectably affecting receptor delivery to lysosomes defined both immunochemically and biochemically. This specific AIP4-dependent regulation required direct ubiquitination of receptors and was also regulated by two deubiquitinating enzymes, AMSH and UBPY, which localized to late endosome/lysosome membranes containing internalized δ-opioid receptor. These results identify a distinct function of AIP4-dependent ubiquitination in controlling the later proteolytic processing of G protein-coupled receptors, without detectably affecting their endocytic sorting to lysosomes. We propose that ubiquitination or ubiquitination/deubiquitination cycling specifically regulates later proteolytic processing events required for destruction of the receptor''s hydrophobic core.A fundamental cellular mechanism contributing to homeostatic regulation of receptor-mediated signal transduction involves ligand-induced endocytosis of receptors followed by proteolysis in lysosomes. The importance of such proteolytic down-regulation has been documented extensively for a number of seven-transmembrane or G protein-coupled receptors (GPCRs),3 which comprise the largest known family of signaling receptors expressed in animals, as well as for other important signaling receptors, such as the epidermal growth factor receptor tyrosine kinase (15).One GPCR that is well known to undergo endocytic trafficking to lysosomes is the δ-opioid peptide receptor (DOR or DOP-R) (6). Following endocytosis, DOR traffics efficiently to lysosomes in both neural and heterologous cell models (68), whereas many membrane proteins, including various GPCRs, recycle rapidly to the plasma membrane (912). Such molecular sorting of internalized receptors between divergent recycling and degradative pathways is thought to play a fundamental role in determining the functional consequences of regulated endocytosis (2, 3, 13, 14). The sorting process that directs internalized DOR to lysosomes is remarkably efficient and appears to occur rapidly (within several min) after receptor endocytosis (11). Nevertheless, biochemical mechanisms that control lysosomal trafficking and proteolysis of DOR remain poorly understood.A conserved mechanism that promotes lysosomal trafficking of a number of membrane proteins, including various signaling receptors, is mediated by covalent modification of cytoplasmic lysine residues with ubiquitin (4, 1517). Ubiquitination was first identified as an endocytic sorting determinant in studies of vacuolar trafficking of the yeast GPCR Ste2p (18). Subsequent studies have established numerous examples of lysyl-ubiquitination being required for sorting endocytic cargo to lysosomes and have identified conserved machinery responsible for the targeting of ubiquitinated cargo to lysosomes (3, 17, 1922).The CXCR4 chemokine receptor provides a clear example of ubiquitin-dependent lysosomal sorting of a mammalian GPCR. Ubiquitination of the carboxyl-terminal cytoplasmic domain of the CXCR4 receptor, mediated by the E3 ubiquitin ligase AIP4, is specifically required for the HRS- and VPS4-dependent trafficking of internalized receptors to lysosomes. Blocking this ubiquitination event by Lys → Arg mutation of the receptor specifically inhibits trafficking of internalized receptors to lysosomes, resulting in recycling rather than lysosomal proteolysis of receptors after ligand-induced endocytosis (2325).Lysosomal trafficking of DOR, in contrast, is not prevented by mutation of cytoplasmic lysine residues (26) and can be regulated by ubiquitination-independent protein interaction(s) (27, 28). Nevertheless, both wild type and lysyl-mutant DORs traffic to lysosomes via a similar pathway as ubiquitin-dependent membrane cargo and require both HRS and active VPS4 to do so (29). These observations indicate that DOR engages the same core endocytic mechanism utilized by ubiquitination-directed membrane cargo but leave unresolved whether ubiquitination of DOR plays any role in this important cellular mechanism of receptor down-regulation.There is no doubt that DOR can undergo significant ubiquitination in mammalian cells, including HEK293 cells (3032), where lysosomal trafficking of lysyl-mutant receptors was first observed (26). Ubiquitination was shown previously to promote proteolysis of DOR by proteasomes and to function in degrading misfolded receptors from the biosynthetic pathway (30, 31). A specific role of ubiquitination in promoting proteasome- but not lysosome-mediated proteolysis of DOR has been emphasized (32) and proposed to contribute to proteolytic down-regulation of receptors also from the plasma membrane (33).To our knowledge, no previous studies have determined if DOR ubiquitination plays any role in controlling receptor proteolysis mediated by lysosomes, although this represents a predominant pathway by which receptors undergo rapid down-regulation following ligand-induced endocytosis in a number of cell types, including HEK293 cells (8). In the present study, we have taken two approaches to addressing this fundamental question. First, we have investigated in greater detail the effects of lysyl-mutation on DOR ubiquitination and trafficking. Second, we have independently investigated the role of ubiquitination in controlling lysosomal proteolysis of wild type DOR. Our results clearly establish the ability of DOR to traffic efficiently to lysosomes in the absence of any detectable ubiquitination. Further, they identify a distinct and unanticipated function of AIP4-dependent ubiquitination in regulating the later proteolytic processing of receptors and show that this distinct ubiquitin-dependent regulatory mechanism operates effectively downstream of the sorting decision that commits internalized receptors for delivery to lysosomes.  相似文献   

18.
19.
The human JC polyomavirus (JCV) is the etiologic agent of the fatal central nervous system (CNS) demyelinating disease progressive multifocal leukoencephalopathy (PML). PML typically occurs in immunosuppressed patients and is the direct result of JCV infection of oligodendrocytes. The initial event in infection of cells by JCV is attachment of the virus to receptors present on the surface of a susceptible cell. Our laboratory has been studying this critical event in the life cycle of JCV, and we have found that JCV binds to a limited number of cell surface receptors on human glial cells that are not shared by the related polyomavirus simian virus 40 (C. K. Liu, A. P. Hope, and W. J. Atwood, J. Neurovirol. 4:49–58, 1998). To further characterize specific JCV receptors on human glial cells, we tested specific neuraminidases, proteases, and phospholipases for the ability to inhibit JCV binding to and infection of glial cells. Several of the enzymes tested were capable of inhibiting virus binding to cells, but only neuraminidase was capable of inhibiting infection. The ability of neuraminidase to inhibit infection correlated with its ability to remove both α(2-3)- and α(2-6)-linked sialic acids from glial cells. A recombinant neuraminidase that specifically removes the α(2-3) linkage of sialic acid had no effect on virus binding or infection. A competition assay between virus and sialic acid-specific lectins that recognize either the α(2-3) or the α(2-6) linkage revealed that JCV preferentially interacts with α(2-6)-linked sialic acids on glial cells. Treatment of glial cells with tunicamycin, but not with benzyl N-acetyl-α-d-galactosaminide, inhibited infection by JCV, indicating that the sialylated JCV receptor is an N-linked glycoprotein. As sialic acid containing glycoproteins play a fundamental role in mediating many virus-cell and cell-cell recognition processes, it will be of interest to determine what role these receptors play in the pathogenesis of PML.Approximately 70% of the human population worldwide is seropositive for JC virus (JCV). Like other polyomaviruses, JCV establishes a lifelong latent or persistent infection in its natural host (40, 49, 50, 68, 72). Reactivation of JCV in the setting of an underlying immunosuppressive illness, such as AIDS, is thought to lead to virus dissemination to the central nervous system (CNS) and subsequent infection of oligodendrocytes (37, 40, 66, 68). Reactivation of latent JCV genomes already present in the CNS has also been postulated to contribute to the development of progressive multifocal leukoencephalopathy (PML) following immunosuppression (19, 48, 55, 70, 75). Approximately 4 to 6% of AIDS patients will develop PML during the course of their illness (10). In the CNS, JCV specifically infects oligodendrocytes and astrocytes. Outside the CNS, JCV genomes have been identified in the urogenital system, in the lymphoid system, and in B lymphocytes (2, 17, 18, 30, 47, 59). In vitro, JCV infects human glial cells and, to a limited extent, human B lymphocytes (3, 4, 39, 41, 42). Recently, JCV infection of tonsillar stromal cells and CD34+ B-cell precursors has been described (47). These observations have led to the suggestion that JCV may persist in a lymphoid compartment and that B cells may play a role in trafficking of JCV to the CNS (4, 30, 47).Virus-receptor interactions play a major role in determining virus tropism and tissue-specific pathology associated with virus infection. Viruses that have a very narrow host range and tissue tropism, such as JCV, are often shown to interact with high affinity to a limited number of specific receptors present on susceptible cells (26, 44). In some instances, virus tropism is strictly determined by the presence of specific receptors that mediate binding and entry (7, 16, 27, 35, 46, 53, 56, 67, 73, 74, 76). In other instances, however, successful entry into a cell is necessary but not sufficient for virus growth (5, 8, 45, 57). In these cases, additional permissive factors that interact with viral regulatory elements are required.The receptor binding characteristics of several polyomaviruses have been described. The mouse polyomavirus (PyV) receptor is an N-linked glycoprotein containing terminal α(2-3)-linked sialic acid (1214, 22, 28). Both the large and small plaque strains of PyV recognize α(2-3)-linked sialic acid. The small-plaque strain also recognizes a branched disialyl structure containing α(2-3)- and α(2-6)-linked sialic acids. Neither strain recognizes straight-chain α(2-6)-linked sialic acid. The ability of the large- and small-plaque strains of PyV to differentially recognize these sialic acid structures has been precisely mapped to a single amino acid in the major virus capsid protein VP1 (21). The large-plaque strains all contain a glycine at amino acid position 92 in VP1, and the small-plaque strains all contain a negatively charged glutamic acid at this position (21). In addition to forming small or large plaques, these strains also differ in the ability to induce tumors in mice (20). This finding suggests that receptor recognition plays an important role in the pathogenesis of PyV.The cell surface receptor for lymphotropic papovavirus (LPV) is an O-linked glycoprotein containing terminal α(2-6)-linked sialic acid (26, 33, 34). Infection with LPV is restricted to a subset of human B-cell lines, and recognition of specific receptors is a major determinant of the tropism of LPV for these cells (26).Unlike the other members of the polyomavirus family, infection of cells by simian virus 40 (SV40) is independent of cell surface sialic acids. Instead, SV40 infection is mediated by major histocompatibility complex (MHC)-encoded class I proteins (5, 11). MHC class I proteins also play a role in mediating the association of SV40 with caveolae, a prerequisite for successful targeting of the SV40 genome to the nucleus of a cell (1, 63). Not surprisingly, SV40 has been shown not to compete with the sialic acid-dependent polyomaviruses for binding to host cells (15, 26, 38, 58).Very little is known about the early steps of JCV binding to and infection of glial cells. Like other members of the polyomavirus family, JCV is known to interact with cell surface sialic acids (51, 52). A role for sialic acids in mediating infection of glial cells has not been described. It is also not known whether the sialic acid is linked to a glycoprotein or a glycolipid. In a previous report, we demonstrated that JCV bound to a limited number of cell surface receptors on SVG cells that were not shared by the related polyomavirus SV40 (38). In this report, we demonstrate that virus binding to and infection of SVG cells is dependent on an N-linked glycoprotein containing terminal α(2-3)- and α(2-6)-linked sialic acids. Competitive binding assays with sialic acid-specific lectins suggest that the virus preferentially interacts with α(2-6)-linked sialic acids. We are currently evaluating the role of this receptor in determining the tropism of JCV for glial cells and B cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号