首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix d-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense.  相似文献   

2.
Synthetic peptides composed of multiples of the consensus heparin-binding Cardin and Weintraub sequences AKKARA and ARKKAAKA are antimicrobial. Replacement of lysine and arginine by histidine in these peptides completely abrogates their antimicrobial and heparin-binding activities at neutral pH. However, the antibacterial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) as well as the fungus Candida albicans, was restored at acidic conditions (pH 5.5). Fluorescence microscopy and FACS analysis showed that the binding of the histidine-rich peptides to E. coli and Candida was significantly enhanced at pH 5.5. Likewise, fluorescence studies for assessment of membrane permeation as well as electron microscopy analysis of peptide-treated bacteria, paired with studies of peptide effects on liposomes, demonstrated that the peptides induce membrane lysis only at acidic pH. No discernible hemolysis was noted for the histidine-rich peptides. Similar pH-dependent antimicrobial activities were demonstrated for peptides derived from histidine-rich and heparin-binding regions of human kininogen and histidine-rich glycoprotein. The results demonstrate that the presence of an acidic environment is an important regulator of the activity of histidine-rich antimicrobial peptides.  相似文献   

3.
An analysis of a series of five peptides composed of various portions of the pleurocidin (Plc) sequence identified a l2-amino acid fragment from the C-terminus of Plc, designated Plc-2, as the smallest fragment that retained a antimicrobial activity comparable to that of the parent compound. MIC tests in vitro with low-ionic-strength medium showed that Plc-2 has potent activity against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus but not against Enterococcus faecalis. The antifungal activity of the synthetic peptides against phytopathogenic fungi, such as Fusarium oxysporum, Colletotrichum sp., Aspergillus niger and Alternaria sp., also identified Plc-2 as a biologically active peptide. Microscopy studies of fluorescently stained fungi treated with Plc-2 demonstrated that cytoplasmic and nuclear membranes were compromised in all strains of phytopathogenic fungi tested. Together, these results identify Plc-2 as a potential antimicrobial agent with similar properties to its parent compound, pleurocidin. In addition, it demonstrated that the KHVGKAALTHYL residues are critical for the antimicrobial activity described for pleurocidin.  相似文献   

4.
Amphibian skin secretions contain a broad spectrum of biologically active compounds, particularly antimicrobial peptides, which are considered to constitute a first line of defence against bacterial infection. Here we describe the identification of two prototype peptides representing a novel structural class of antimicrobial peptide from the skin secretion of the oriental broad-folded frog, Hylarana latouchii. Named hylaranin-L1 (GVLSAFKNALPGIMKIIVamide) and hylaranin-L2 (GVLSVIKNALPGIMRFIAamide), both peptides consist of 18 amino acid residues, are C-terminally amidated and are of unique primary structures. Their primary structures were initially deduced by MS/MS fragmentation sequencing from reverse-phase HPLC fractions of skin secretion that demonstrated antimicrobial activity. Subsequently, their precursor-encoding cDNAs were cloned from a skin secretion-derived cDNA library and their primary structures were confirmed unequivocally. Synthetic replicates of both peptides exhibited broad-spectrum antimicrobial activity with mean inhibitory concentrations (MICs) of 34 μM against Gram-negative Escherichia coli, 4.3 μM against Gram-positive Staphylococcus aureus and 4–9 μM against the yeast, Candida albicans. Both peptides exhibited little haemolytic activity (<6 %) at the MICs for S. aureus and C. albicans. Amphibian skin secretions thus continue to provide novel antimicrobial peptide structures that may prove to be lead compounds in the design of new classes of anti-infection therapeutics.  相似文献   

5.

Background

Antimicrobial peptides (AMPs) are receiving increasing attention due to resistance development against conventional antibiotics. Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in an array of infections such as ocular infections, cystic fibrosis, wound and post-surgery infections, and sepsis. The goal of the study was to design novel AMPs against these pathogens.

Methodology and Principal Findings

Antibacterial activity was determined by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was evaluated by hemolysis and effects on human epithelial cells. Liposome and fluorescence studies provided mechanistic information. Protease sensitivity was evaluated after subjection to human leukocyte elastase, staphylococcal aureolysin and V8 proteinase, as well as P. aeruginosa elastase. Highly active peptides were evaluated in ex vivo skin infection models. C-terminal end-tagging by W and F amino acid residues increased antimicrobial potency of the peptide sequences GRRPRPRPRP and RRPRPRPRP, derived from proline arginine-rich and leucine-rich repeat protein (PRELP). The optimized peptides were antimicrobial against a range of Gram-positive S. aureus and Gram-negative P. aeruginosa clinical isolates, also in the presence of human plasma and blood. Simultaneously, they showed low toxicity against mammalian cells. Particularly W-tagged peptides displayed stability against P. aeruginosa elastase, and S. aureus V8 proteinase and aureolysin, and the peptide RRPRPRPRPWWWW-NH2 was effective against various “superbugs” including vancomycin-resistant enterococci, multi-drug resistant P. aeruginosa, and methicillin-resistant S. aureus, as well as demonstrated efficiency in an ex vivo skin wound model of S. aureus and P. aeruginosa infection.

Conclusions/Significance

Hydrophobic C-terminal end-tagging of the cationic sequence RRPRPRPRP generates highly selective AMPs with potent activity against multiresistant bacteria and efficiency in ex vivo wound infection models. A precise “tuning” of toxicity and proteolytic stability may be achieved by changing tag-length and adding W- or F-amino acid tags.  相似文献   

6.

Background

Cellular prion-related protein (PrPc) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrPc, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypotesize that PrPc could exert antimicrobial activity.

Methodology and Principal Findings

Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the “classical” human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking) liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-α in vitro.

Conclusions

The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.  相似文献   

7.
A pronounced membrane selectivity is demonstrated for short, hydrophilic, and highly charged antimicrobial peptides, end-tagged with aromatic amino acid stretches. The mechanisms underlying this were investigated by a method combination of fluorescence and CD spectroscopy, ellipsometry, and Langmuir balance measurements, as well as with functional assays on cell toxicity and antimicrobial effects. End-tagging with oligotryptophan promotes peptide-induced lysis of phospholipid liposomes, as well as membrane rupture and killing of bacteria and fungi. This antimicrobial potency is accompanied by limited toxicity for human epithelial cells and low hemolysis. The functional selectivity displayed correlates to a pronounced selectivity of such peptides for anionic lipid membranes, combined with a markedly reduced membrane activity in the presence of cholesterol. As exemplified for GRR10W4N (GRRPRPRPRPWWWW-NH(2)), potent liposome rupture occurs for anionic lipid systems (dioleoylphosphatidylethanolamine (DOPE)/dioleoylphosphatidylglycerol (DOPG) and Escherichia coli lipid extract) while that of zwitterionic dioleoylphosphatidylcholine (DOPC)/cholesterol is largely absent under the conditions investigated. This pronounced membrane selectivity is due to both a lower peptide binding to the zwitterionic membranes (z≈-8-10mV) than to the anionic ones (z≈-35-40mV), and a lower degree of membrane incorporation in the zwitterionic membranes, particularly in the presence of cholesterol. Replacing cholesterol with ergosterol, thus mimicking fungal membranes, results in an increased sensitivity for peptide-induced lysis, in analogy to the antifungal properties of such peptides. Finally, the generality of the high membrane selectivity for other peptides of this type is demonstrated.  相似文献   

8.
Increasing numbers of bacterial strains being resistant to conventional antibiotics emphasize the urgent need for new antimicrobial agents. One strategy is based on host defence peptides that can be found in every organism including humans. We have studied the antimicrobial peptide LF11, derived from the pepsin cleavage product of human lactoferrin, known for its antimicrobial and lipid A-binding activity, and peptide C12LF11, the N-lauryl-derivative of LF11, which has owing to the attached hydrocarbon chain an additional hydrophobic segment. The influence of this hydrocarbon chain on membrane selectivity was studied using model membranes composed of dipalmitoylphosphatidylglycerol (DPPG), mimicking bacterial plasma membranes, and of dipalmitoylphosphatidylcholine (DPPC), a model system for mammalian membranes. A variety of biophysical techniques was applied. Thereby, we found that LF11 did not affect DPPC bilayers and showed only moderate effects on DPPG membranes in accordance with its non-hemolytic and weak antimicrobial activity. In contrast, the introduction of the N-lauryl group caused significant changes in the phase behaviour and lipid chain packing in both model membrane systems. These findings correlate with the in vitro tests on methicillin resistant S. aureus, E. coli, P. aeruginosa and human red blood cells, showing increased biological activity of C12LF11 towards these test organisms. This provides evidence that both electrostatic and hydrophobic interactions are crucial for biological activity of antimicrobial peptides, whereas a certain balance between the two components has to be kept, in order not to loose the specificity for bacterial membranes.  相似文献   

9.
The endangered anuran species, Odorrana ishikawae, is endemic to only two small Japanese Islands, Amami and Okinawa. To assess the innate immune system in this frog, we investigated antimicrobial peptides in the skin using artificially bred animals. Nine novel antimicrobial peptides containing the C-terminal cyclic heptapeptide domain were isolated on the basis of antimicrobial activity against Escherichia coli. The peptides were members of the esculentin-1 (two peptides), esculentin-2 (one peptide), palustrin-2 (one peptide), brevinin-2 (three peptides) and nigrocin-2 (two peptides) antimicrobial peptide families. They were named esculentin-1ISa, esculentin-1ISb, esculentin-2ISa, palustrin-2ISa, brevinin-2ISa, brevinin-2ISb, brevinin-2ISc, nigrocin-2ISa and nigrocin-2ISb. Peptide primary structures suggest a close relationship with the Asian odorous frogs, Odorrana grahami and Odorrana hosii. These antimicrobial peptides possessed a broad-spectrum of growth inhibition against five microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis and Candida albicans). Nine different cDNAs encoding the precursor proteins were also cloned and showed that the precursor proteins exhibited a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and an antimicrobial peptide at the C-terminus.  相似文献   

10.

Background

NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn).

Results

In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P.

Conclusions

NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane.  相似文献   

11.
Defensins are members of a large and diverse family of antimicrobial peptides (AMPs) containing three or four intramolecular disulfide bonds. They are widely distributed from vertebrates to invertebrates, and serve as critical defense molecules protecting the host from the invasion of pathogens or protozoan parasites. Cotesia vestalis is a small endoparasitoid wasp that lays eggs in larvae of Plutella xylostella, a cosmopolitan pest of cruciferous crops. We identified and characterized three full-length cDNAs encoding putative defensin-like peptides from C. vestalis, named CvDef1, CvDef2 and CvDef3. Phylogenetic analyses of these sequences showed that they are present in two clades, CITDs and PITDs, indicating a diversity of defensins in C. vestalis. We analyzed their expression patterns in larvae, pupae and adults by semi-quantitative RT-PCR. The results showed that CvDef1 mRNA was expressed from the end stage of the second instar larva, CvDef3 mRNA from the early stage of the second instar larva, and CvDef2 mRNA was expressed in all developmental stages of C. vestalis. Furthermore, CvDef1 showed antimicrobial activity against gram-positive and gram-negative bacteria. Growth kinetics of Staphylococcus aureus indicated that CvDef1 had much better antimicrobial ability than ampicillin, making it a potential candidate for practical use. Transmission electron microscopic (TEM) examination of CvDef1-treated S. aureus cells showed extensive damage to the cell membranes. Our results revealed the basic properties of three defensins in C. vestalis for the first time, which may pave the way for further study of the functions of defensins in parasitism and innate immunity of C. vestalis.  相似文献   

12.
13.
UyCT peptides are antimicrobial peptides isolated from the venom of the Australian scorpion. The activity of the UyCT peptides against Gram positive and Gram negative bacteria and red blood cells was determined. The membrane interactions of these peptides were evaluated by dye release (DR) of the fluorophore calcein from liposomes and isothermal titration calorimetry (ITC); and their secondary structure was determined by circular dichroism (CD). Three different lipid systems were used to mimic red blood cells, Escherichia coli and Staphylococcus aureus membranes. UyCT peptides exhibited broad spectrum antimicrobial activity with low MIC for S. aureus and multi-drug resistant Gram negative strains. Peptide combinations showed some synergy enhancing their potency but not hemolytic activity. The UyCT peptides adopted a helical structure in lipid environments and DR results confirmed that the mechanism of action is by disrupting the membrane. ITC data indicated that UyCT peptides preferred prokaryotic rather than eukaryotic membranes. The overall results suggest that UyCT peptides could be pharmaceutical leads for the treatment of Gram negative multiresistant bacterial infections, especially against Acinetobacter baumanni, and candidates for peptidomimetics to enhance their potency and minimize hemolysis. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

14.
The decapeptide killer peptide (KP) derived from the sequence of a single-chain, anti-idiotypic antibody acting as a functional internal image of a microbicidal, broad-spectrum yeast killer toxin (KT) was shown to exert a strong microbicidal activity against human pathogens. With the aim to exploit this peptide to confer resistance to plant pathogens, we assayed its antimicrobial activity against a broad spectrum of phytopathogenic bacteria and fungi. Synthetic KP exhibited antimicrobial activity in vitro towards Pseudomonas syringae, Erwinia carotovora, Botrytis cinerea, and Fusarium oxysporum. KP was also expressed in plants by using a Potato virus X (PVX)-derived vector as a fusion to the viral coat protein, yielding chimeric virus particles (CVPs) displaying the heterologous peptide. Purified CVPs showed enhanced antimicrobial activity against the above-mentioned plant pathogens and human pathogens such as Staphylococcus aureus and Candida albicans. Moreover, in vivo assays designed to challenge KP-expressing plants (as CVPs) with Pseudomonas syringae pv. tabaci showed enhanced resistance to bacterial attack. The results indicate that the PVX-based display system is a high-yield, rapid, and efficient method to produce and evaluate antimicrobial peptides in plants, representing a milestone for the large-scale production of high-added-value peptides through molecular farming. Moreover, KP is a promising molecule to be stably engineered in plants to confer broad-spectrum resistance to phytopathogens.  相似文献   

15.
The puroindoline proteins (PINA and PINB) of wheat display lipid-binding properties which affect the grain texture, a critical parameter for wheat quality. Interestingly, the same proteins also display antibacterial and antifungal properties, attributed mainly to their Tryptophan-rich domain (TRD). Synthetic peptides based on this domain also display selectivity towards bacterial and fungal cells and do not cause haemolysis of mammalian cells. However, the mechanisms of these activities are unclear, thus limiting our understanding of the in vivo roles of PINs and development of novel applications. This study investigated the mechanisms of antimicrobial activities of synthetic peptides based on the TRD of the PINA and PINB proteins. Calcein dye leakage tests and transmission electron microscopy showed that the peptides PuroA, Pina-M and Pina-W→F selectively permeabilised the large unilamellar vesicles (LUVs) made with negatively charged phospholipids mimicking bacterial membranes, but were ineffective against LUVs made with zwitterionic phospholipids mimicking eukaryotic membranes. Propidium iodide fluorescence tests of yeast (Saccharomyces cerevisiae) cells showed the peptides were able to cause loss of membrane integrity, PuroA and Pina-M being more efficient. Scanning electron micrographs of PINA-based peptide treated yeast cells showed the formation of pits or pores in cell membranes and release of cellular contents. Gel retardation assays indicated the peptides were able to bind to DNA in vitro, and the induction of filamental growth of E. coli cells indicated in vivo inhibition of DNA synthesis. Together, the results strongly suggest that the PIN-based peptides exert their antimicrobial effects by pore formation in the cell membrane, likely by a carpet-like mechanism, followed by intracellular mechanisms of activity.  相似文献   

16.
Tissue factor pathway inhibitor (TFPI) inhibits tissue factor-induced coagulation, but may, via its C terminus, also modulate cell surface, heparin, and lipopolysaccharide interactions as well as participate in growth inhibition. Here we show that C-terminal TFPI peptide sequences are antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungi Candida albicans and Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen for the “classic” human antimicrobial peptide LL-37. The killing of E. coli, but not P. aeruginosa, by the C-terminal peptide GGLIKTKRKRKKQRVKIAYEEIFVKNM (GGL27), was enhanced in human plasma and largely abolished in heat-inactivated plasma, a phenomenon linked to generation of antimicrobial C3a and activation of the classic pathway of complement activation. Furthermore, GGL27 displayed anti-endotoxic effects in vitro and in vivo in a mouse model of LPS shock. Importantly, TFPI was found to be expressed in the basal layers of normal epidermis, and was markedly up-regulated in acute skin wounds as well as wound edges of chronic leg ulcers. Furthermore, C-terminal fragments of TFPI were associated with bacteria present in human chronic leg ulcers. These findings suggest a new role for TFPI in cutaneous defense against infections.  相似文献   

17.
Bacterial resistance to conventional antibiotics is a global threat that has spurred the development of antimicrobial peptides (AMPs) and their mimetics as novel anti-infective agents. While the bioavailability of AMPs is often reduced due to protease activity, the non-natural structure of AMP mimetics renders them robust to proteolytic degradation, thus offering a distinct advantage for their clinical application. We explore the therapeutic potential of N-substituted glycines, or peptoids, as AMP mimics using a multi-faceted approach that includes in silico, in vitro, and in vivo techniques. We report a new QSAR model that we developed based on 27 diverse peptoid sequences, which accurately correlates antimicrobial peptoid structure with antimicrobial activity. We have identified a number of peptoids that have potent, broad-spectrum in vitro activity against multi-drug resistant bacterial strains. Lastly, using a murine model of invasive S. aureus infection, we demonstrate that one of the best candidate peptoids at 4 mg/kg significantly reduces with a two-log order the bacterial counts compared with saline-treated controls. Taken together, our results demonstrate the promising therapeutic potential of peptoids as antimicrobial agents.  相似文献   

18.
The antimicrobial peptide, LP5, is a lysine-peptoid hybrid, with antimicrobial activity against clinically relevant bacteria. Here, we investigated how various environmental conditions affect the antimicrobial activity of LP5 against Staphylococcus aureus (S. aureus). We found that LP5 maintained activity under host physiological conditions of NaCl, MgCl2 and pH. However, when exposed to serum, LP5 lost activity. Furthermore, when increasing NaCl concentration and lowering pH, the peptide showed reduces activity. When investigating the tolerance mechanisms of S. aureus toward antimicrobial peptides, we found that LP5 was protease resistant. However, the dltA and vraF genes, involved in reducing the net anionic charge of the bacterial cell envelope and sensing of antimicrobial peptides, respectively, played a role in the tolerance of S. aureus against LP5. In addition, the exposure of S. aureus to sub-inhibitory concentrations of LP5 affected the expression of the major virulence factors of S. aureus, revealing a potential as anti-virulence compound. Thus, these results show how environmental factors affect the peptide efficiency and further add to the knowledge on how the peptide affects S. aureus, which is crucial information for designing new peptides for optimizing antimicrobial therapy.  相似文献   

19.
Insects show long-lasting antimicrobial immune responses that follow the initial fast-acting cellular processes. These immune responses are discussed to provide a form of phrophylaxis and/or to serve as a safety measure against persisting infections. The duration and components of such long-lasting responses have rarely been studied in detail, a necessary prerequisite to understand their adaptive value. Here, we present a 21 day proteomic time course of the mealworm beetle Tenebrio molitor immune-challenged with heat-killed Staphylococcus aureus. The most upregulated peptides are antimicrobial peptides (AMPs), many of which are still highly abundant 21 days after infection. The identified AMPs included toll and imd-mediated AMPs, a significant number of which have no known function against S. aureus or other Gram-positive bacteria. The proteome reflects the selective arena for bacterial infections. The results also corroborate the notion of synergistic interactions in vivo that are difficult to model in vitro.This article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’.  相似文献   

20.
Fluorescence spectroscopy is used to characterize the partition of three second-generation D,L-α-cyclic peptides to two lipid model membranes. The peptides have proven antimicrobial activity, particularly against Gram positive bacteria, and the model membranes are formed of either with 1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DMPG) or its mixture with 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), at a molar ratio of (1:1). The peptide's intrinsic fluorescence was used in the Steady State and/or Time Resolved Fluorescence Spectroscopy experiments, showing that the peptides bind to the membranes, and the extent of their partition is thereof quantified. The peptide-induced membrane leakage was followed using an encapsulated fluorescent dye.Overall, the partition is mainly driven by electrostatics, but also involves hydrophobic interactions. The introduction of a hydrocarbon tail in one of the residues of the parent peptide, CPR, adjacent to the tryptophan (Trp) residue, significantly improves the partition of the modified peptides, CPRT10 and CPRT14, to both membrane systems. Further, we show that the length of the tail is the main distinguishing factor for the extension of the partition process.The parent peptide induces very limited leakage, at odds with the peptides with tail, that promote fast leakage, increasing in most cases with peptide concentration, and being almost complete for the highest peptide concentration and negatively charged membranes.Overall, the results help the unravelling of the antimicrobial action of these peptides and are well in line with their proven high antimicrobial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号