共查询到20条相似文献,搜索用时 15 毫秒
1.
Deposition and canopy exchange processes in central-German beech forests differing in tree species diversity 总被引:1,自引:0,他引:1
Atmospheric deposition is an important nutrient input to forests. The chemical composition of the rainfall is altered by the forest canopy due to interception and canopy exchange. Bulk deposition and stand deposition (throughfall plus stemflow) of Na+, Cl?, K+, Ca2+, Mg2+, PO 4 3? , SO 4 2? , H+, Mn2+, Al3+, Fe2+, NH 4 + , NO 3 ? and Norg were measured in nine deciduous forest plots with different tree species diversity in central Germany. Interception deposition and canopy exchange rates were calculated with a canopy budget model. The investigated forest plots were pure beech (Fagus sylvatica L.) plots, three-species plots (Fagus sylvatica, Tilia cordata Mill. or T. platyphyllos Scop. and Fraxinus excelsior L.) and five-species plots (Fagus sylvatica, T. cordata or T. platyphyllos, Fraxinus excelsior, Acer platanoides L., A. pseudoplatanus L. or A. campestre L. and Carpinus betulus L.). The interception deposition of all ions was highest in pure beech plots and was negatively related to the Shannon index. The stand deposition of K+, Ca2+, Mg2+ and PO 4 3? was higher in mixed species plots than in pure beech plots due to higher canopy leaching rates in the mixed species plots. The acid input to the canopy and to the soil was higher in pure beech plots than in mixed species plots. The high canopy leaching rates of Mn2+ in pure beech plots indicated differences in soil properties between the plot types. Indeed, pH, effective cation exchange capacity and base saturation were lower in pure beech plots. This may have contributed to the lower leaching rates of K+, Ca2+ and Mg2+ compared to the mixed species plots. However, foliar analyses indicated differences in the ion status among the tree species, which may additionally have influenced canopy exchange. In conclusion, the nutrient input to the soil resulting from deposition and canopy leaching was higher in mixed species plots than in pure beech plots, whereas the acid input was highest in pure beech plots. 相似文献
2.
Abstract. We tested whether interspecific variation in tree seedling establishment in canopy gaps was significantly related to interspecific variation in tree density, for seven deciduous forest tree species (Quercus alba, Hamamelis virginiana, Acer rubrum, Sassafras albidum, Quercus rubra, Prunus serotina, Ostrya virginiana). For each species, seedling establishment was calculated as the difference in seedling density before experimental gap creation versus three years after gap creation. In each of the six experimentally-created gap types (33 % or 66 % removal of tree basal area from 0.01-ha, 0.05-ha or 0.20-ha patches), differences in seedling establishment among species were significantly related to differences in their density in the tree canopy. A regression model with loge tree density as the independent variable accounted for between 93 % and 98 % of interspecific variation in seedling establishment. Our results provide empirical support for models of tree dynamics in gaps that assume seedling establishment depends on canopy tree density. 相似文献
3.
Architecture of Iberian canopy tree species in relation to wood density,shade tolerance and climate 总被引:1,自引:0,他引:1
Lourens Poorter Elena Lianes Mariano Moreno-de las Heras Miguel A. Zavala 《Plant Ecology》2012,213(5):707-722
Tree architecture has important consequences for tree performance as it determines resource capture, mechanical stability
and dominance over competitors. We analyzed architectural relationships between stem and crown dimensions for 13 dominant
Iberian canopy tree species belonging to the Pinaceae (six Pinus species) and Fagaceae (six Quercus species and Fagus sylvatica) and related these architectural traits to wood density, shade tolerance and climatic factors. Fagaceae had, compared with
Pinaceae, denser wood, saplings with wider crowns and adults with larger maximal crown size but smaller maximal height. In
combination, these traits enhance light acquisition and persistence in shaded environments; thus, contributing to their shade
tolerance. Pinaceae species, in contrast, had low-density wood, allocate more resources to the formation of the central trunk
rather than to branches and attained taller maximal heights, allowing them to grow rapidly in height and compete for light
following disturbances; thus, contributing to their high light requirements. Wood density had a strong relationship with tree
architecture, with dense-wooded species having smaller maximum height and wider crowns, probably because of cheaper expansion
costs for producing biomechanically stable branches. Species from arid environments had shorter stems and shallower crowns
for a given stem diameter, probably to reduce hydraulic path length and assure water transport. Wood density is an important
correlate of variation in tree architecture between species and the two dominant families, with potentially large implications
for their resource foraging strategies and successional dynamics. 相似文献
4.
5.
In a study of radial trends in specific gravity of ~100 individuals of six mixed-northern-hardwood-forest tree species, three species (Acer rubrum, Pinus strobus, and Betula papyrifera) showed radial increases and three species (Quercus rubrum, Tsuga canadensis, and Fagus grandifolia) radial decreases. Analysis of these data, together with a larger data set including both temperate and tropical tree species, focuses on relationship of radial trends to successional status, variation in inside versus outside wood, and factors affecting degree and direction of radial trend. We propose a model for radial trends in which (1) radial increases associated with low values of specific gravity are an early-successional characteristic and radial decreases associated with high values of specific gravity late successional, (2) the differences in specific gravity and its radial trends reflect growth strategy and biomechanical considerations, and (3) the convergence in values seen in older trees is due to constraints relating to support. 相似文献
6.
7.
Variation in density of epiphytic yeasts, filamentous fungi, and bacteria on apple leaves collected from eight trees at nine dates for two seasons was determined with respect to three positional factors: height, compass direction from the center of the tree, and lateral proximity to the canopy periphery. Univariate analyses of variance were performed on each of the microbial classes for each date according to a model that excluded tree effect but accounted for the positional factors with interactions. The assumption of no tree effect was explored by residual analysis and examination of the seasonal pattern of microbial densities for each tree. No persuasive evidence was obtained to invalidate this assumption. For filamentous fungi and yeasts, height and lateral position were the most significant factors withp<0.05 for yeasts at several periods. The two factors appeared to be of equal importance. Trends were less clear for bacteria, but all three positional factors and some two-way interactions seemed of some importance. For filamentous fungi and bacteria, frequently no factors were significant at a level of 0.10, but at almost all sampling dates certain positional factors and interactions were significant at a level of 0.25. Inspection of partial correlation coefficients indicated no apparent linear association between densities of most pairs of microbial classes. Implications of these results for experimental design and for the microbial ecology of the phylloplane community are discussed. 相似文献
8.
The influence of winter temperatures on the annual radial growth of six northern range margin tree species 总被引:1,自引:0,他引:1
Neil Pederson Edward R. Cook Gordon C. Jacoby Dorothy M. Peteet Kevin L. Griffin 《Dendrochronologia》2004,22(1):7-29
This study explores the influence of temperature on the growth of six northern range margin (NRM) tree species in the Hudson River Valley (HRV). The HRV has excellent geographic and floristic qualities to study the influence of climate change on forested ecosystems. Indices of radial growth for three populations per species are developed and correlated against average minimum and maximum monthly temperatures from 1897 to 1994. Only positive correlations to temperature are considered for this analysis. Principal component analysis (PCA) is performed on chronologies over the entire HRV and at four subregions. PCA reveals a strong common signal among populations at subregional and regional scales. January temperatures most limit growth at the ecosystem level, supporting the hypothesis that winter temperatures may control vegetational ecotones. Surprisingly, growth of the oak–hickory ecosystem is most limited by January temperatures only in the southern half of the study region. Chestnut and white oak are the primary species driving the geographic pattern. As winter xylem embolism is a constant factor for ring-porous species, snow cover and its interaction on fine root mortality may be the leading factors of the pattern of temperature sensitivity. Species-specific differences in temperature sensitivity are apparent. Atlantic white-cedar (AWC) and pitch pine are more sensitive to the entire winter season (December–March) while oak and hickory are most sensitive to January temperatures. AWC is most sensitive species to temperature. Chestnut and white oak in the HRV are more sensitive to winter temperature than red oak. Pignut hickory has the most unique response with significant relations to late growing season temperatures. Interestingly, AWC and pitch pine are sensitive to winter temperatures at their NRM while oak and hickory are not. Our results suggest that temperature limitations of growth may be species and phylogenetically specific. They also indicate that the influence of temperature on radial growth at species and ecosystem levels may operate differently at varying geographic scales. If these results apply broadly to other temperate regions, winter temperatures may play an important role in the terrestrial carbon cycle. 相似文献
9.
10.
Eighteen isolates representing six Fusarium species from diverse hosts and geographical origins were evaluated to determine
ribosomal DNA variation using polymerase chain reaction and restriction fragment length polymorphisms. No length variation
was observed for amplified 18S and 28S regions. However, amplification of the ITS region showed one isolate, a F. oxysporum,
to be about 120 bp larger than the remaining 17. Restriction digestions in the 18S region revealed polymorphisms within species
of F. oxysporum and F. solani. An amplified variable stretch of the 28S gene showed restriction site differences between F.
avenecum, F. sambucinum and F. sporotrichioides. A large degree of polymorphism was observed both between and within species
in the ITS region. Therefore, entire sequences of the ITS and the 5.8S subunit were obtained for 17 of the 18 isolates. These
sequences, along with those from eight additional isolates, were analysed using PAUP to assess the occurrence of DNA sequence
divergence within the ITS region. The lack of correlation between molecular-based relationships and species affinities inferred
from morphology for some isolates indicates that species designation can be unreliable using morphological data alone. Possible
reasons for the discordance of the sequence and morphological data are discussed.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
11.
Dakis‐Yaoba Ouédraogo Jean‐Louis Doucet Kasso Daïnou Fidèle Baya Achille Bernard Biwolé Nils Bourland Fousséni Fétéké Jean‐François Gillet Yao Lambert Kouadio Adeline Fayolle 《Biotropica》2018,50(3):465-476
Size at reproduction is a key aspect of species life history that is relatively understudied for long‐lived tropical trees. Here, we quantified reproductive diameter for 31 major timber species across 11 sites in Cameroon, Congo, and Central African Republic. Specifically, we examined whether (1) between‐species variability is correlated with other species traits; (2) reproductive diameter varies within‐species among sites; (3) reproductive status varies with crown exposure; and (4) the minimum cutting diameter limits (MCDL) imposed by national forest regulations enable seed trees to persist after logging operations. Consistent with studies conducted elsewhere in the tropics, we found great variability in diameter at reproduction among species, which correlated with adult stature (maximum diameter and height). For some species, reproductive diameter thresholds substantially varied between sites, and crown exposure had a significant positive effect on reproductive status. Most MCDLs were found to be suitable, with trees having a high probability of being seed trees at MCDL. Our findings have implications for the sustainable management of production forests, and they highlight questionable MCDLs for some species and between‐site variation in reproductive diameter. The study also highlights the need for long‐term phenological monitoring of tree species spanning a large range of ecological strategies to address both theoretical (species life history, allocation trade‐offs) and practical questions (MCDL). 相似文献
12.
13.
We evaluated leaf characteristics and herbivory intensities for saplings of fifteen tropical tree species differing in their successional position. Eight leaf traits were selected, related to the costs of leaf display (specific leaf area [SLA], water content), photosynthesis (N and P concentration per unit mass), and herbivory defence (lignin concentration, C:N ratio). We hypothesised that species traits are shaped by variation in abiotic and biotic (herbivory) selection pressures along the successional gradient. All leaf traits varied with the successional position of the species. The SLA, water content and nutrient concentration decreased, and lignin concentration increased with the successional position. Herbivory damage (defined as the percentage of damage found at one moment in time) varied from 0.9-8.5% among the species, but was not related to their successional position. Herbivory damage appeared to be a poor estimator of the herbivory rate experienced by species, due to the confounding effect of leaf lifespan. Herbivory rate (defined as percentage leaf area removal per unit time) declined with the successional position of the species. Herbivory rate was only positively correlated to water content, and negatively correlated to lignin concentration, suggesting that herbivores select leaves based upon their digestibility rather than upon their nutritive value. Surprisingly, most species traits change linearly with succession, while resource availability (light, nutrients) declines exponentially with succession. 相似文献
14.
以福建省建瓯市万木林自然保护区6个优势树种为研究对象,使用Li-6400便携式光合测定仪离体测定6个树种1—5级细根呼吸速率。单因素和双因素方差分析表明:树种、序级及其交互作用对6种树种细根比根呼吸均有极显著影响(P<0.01);6种树种细根比根呼吸均随序级的升高呈极显著下降(P<0.01),这种变化可分别用二次函数,三次函数,指数函数或幂函数来拟合。相关性分析表明比根长和氮浓度可以很好地表征同一树种不同序级细根的比根呼吸,但两者不能有效表征不同树种同一序级的比根呼吸。协方差分析表明:细根比根呼吸与比根长的相关性在不同树种间具有显著差异,但在不同序级间则表现一致;细根比根呼吸与氮浓度的相关性则在不同树种和序级间均表现不一致。结果表明细根内部存在明显的功能异质性,而比根长可反映特定树种细根的这种功能异质性。 相似文献
15.
Pierre-Michel Forget 《Oecologia》1991,85(3):434-439
Summary A comparative study was conducted on the recruitment patterns of two non-pioneer tree species, one dispersed by arboreal mammals and birds (Virola michelii, Myristicaceae) and the other by rodents (Moronobea coccinea, Clusiaceae). These species differ in fruiting phenology, seed size, dispersal distance, germination time and seed nutrient exhaustion. In both species, establishment patterns were consistent with the escape hypothesis and the Janzen-Connell model. Virola seeds need not be buried to survive and germinate, and may produce a seedling carpet beneath the parent. Moronobea seedlings only establish from seeds buried by scatterhoarding rodents in the surrounding understory. One-year survival of Virola seedlings was 47.8% and was greater >10 m than < 10 m from the largest parent tree. In contrast, survival of Moronobea seedlings was 56% 3 years after seed dispersal. Survival of juveniles was greater in gaps than in the understory for Virola but not for Moronobea. Moronobea survival was greater than Virola survival in both microhabitats. Both species establish in the understory, yet both grew faster in gaps. Virola appeared to be more gap-dependent than Moronobea which may persist several years in the understory until a gap occurs. Virola and Moronobea illustrate two intermediate recruitment patterns along an hypothetical continuum of nonpioneer species replacement (Bazzaz and Pickett 1980; Swaine and Whitmore 1988). 相似文献
16.
Merja Elo Jean‐Michel Roberge Ari Rajasärkkä Mikko Mönkkönen 《Journal of Biogeography》2012,39(8):1462-1472
Aim An area’s ability to support species may be dependent not only on the total amount of available energy it contains but also on energy density (i.e. available energy per unit area). Acknowledging these two aspects of energy availability may increase mechanistic understanding of how increased energy availability results in increased species richness. We studied the relationship between energy density, its variation in space and boreal forest bird species richness and investigated two possible mechanisms: (1) metabolic constraints of organisms, and (2) increased resource availability for specialists. Location Protected areas in Finland’s boreal forest. Methods We tested whether bird species richness was best determined by total energy availability in an area or by energy density and its variation within the area, before and after including bird abundance in the models. We evaluated two main explanatory variables: tree growth reflecting the rate of energy production and tree volume as a measure of biomass. In addition, we modelled individual species’ responses to energy density and its variation, and evaluated the prediction of the metabolic constraints hypothesis that small species are limited by energy density whereas large species are limited by total energy availability in the area. Results Energy density and its variation were good predictors of species richness: together with abundance they explained 84% of variation in species richness (compared with 74% for abundance alone). Pure metabolic constraints were unlikely to explain this relationship. Instead, the mechanism probably involved increased habitat heterogeneity benefiting specialist species. Total energy availability was also an important factor determining species richness but its effect was indirect via abundance. Main conclusions Our results corroborate the importance of energy availability as a driver of species richness in forest bird communities, and they indicate that energy density and its variation in the landscape strongly influence species richness even after accounting for abundance. 相似文献
17.
Plant tissues typically contain a diverse complement of secondary metabolites that serve as protection against various biotic and abiotic hazards. Chemical similarities are commonly used to infer phylogenetic relationships among plant taxa, but the studies are typically based on the mean concentration of each compound in each study species, thus overlooking within-species variability. In order to investigate patterns of intra- and interspecific chemical variation in plants, we measured the concentrations of condensed tannins and 36 other phenolic compounds in 120 leaf samples representing six northern Salix species. Multivariate clustering and ordination analyses of the data show that: (1) Despite considerable within-species variation in chemical profiles, intraspecific variability is on average lower than the variation among species. (2) Interspecific similarities are sensitive to the data analysis methods used, and different chemical classes produce partly contradictory results. (3) Compounds within each biosynthetic class tend to behave in a correlated manner and, consequently, overall chemical similarities are weakly correlated with the phylogeny of the studied species. The conclusion is that chemical data are poorly suited for phylogenetic inference, unless methods for data analysis are improved to take into account the biosynthetic routes by which the compounds are produced. 相似文献
18.
森林冠层绿度和树木年轮宽度是描述森林生长过程的重要指标,它们之间存在怎样的关系以及这种关系的稳定性如何目前还没有清晰的回答。森林冠层绿度通过遥感影像计算,在空间上连续,而树木年轮宽度是树木健康的综合指标,样点上具有代表性。森林冠层绿度和树木年轮宽度的关系的研究能增进对森林生长的多角度理解和森林生长状况的尺度转换。在山东蒙山地区采集了4个赤松(Pinus densiflora)林样点的树木年轮样本,获得了树木年轮宽度数据,分析了增强型植被指数(Enhanced Vegetation Index,EVI)与树木年轮宽度的关系。结果显示:1)对于健康森林,4月和6月的冠层绿度与树木年轮宽度存在因果关系;森林不健康时,两者关系较为复杂;2)其他月份冠层绿度与树干径向生长不存在因果关系,而是共同受其他环境因子,如气候因子的驱动;3)弱冠层绿度降低后5年内有显著的径向生长恢复,但是恢复年份少;强冠层绿度降低之前,树干径向生长已经开始降低,之后的5年内有着持续的径向生长降低。这些结果表明森林冠层绿度的降低并不能反映树干径向生长降低的开始,只有健康的森林冠层绿度和年轮宽度有相关关系。冠层绿度的降低对森林健康有强烈的影响,冠层绿度降低导致的径向生长的降低很难恢复。 相似文献
19.
Kasia Ziemińska Emily Rosa Sean M. Gleason N. Michele Holbrook 《Plant, cell & environment》2020,43(12):3048-3067
Water released from wood during transpiration (capacitance) can meaningfully affect daily water use and drought response. To provide context for better understanding of capacitance mechanisms, we investigated links between capacitance and wood anatomy. On twigs of 30 temperate angiosperm tree species, we measured day capacitance (between predawn and midday), water content, wood density, and anatomical traits, that is, vessel dimensions, tissue fractions, and vessel–tissue contact fractions (fraction of vessel circumference in contact with other tissues). Across all species, wood density (WD) and predawn lumen volumetric water content (VWCL-pd) together were the strongest predictors of day capacitance (r2adj = .44). Vessel–tissue contact fractions explained an additional ~10% of the variation in day capacitance. Regression models were not improved by including tissue lumen fractions. Among diffuse-porous species, VWCL-pd and vessel–ray contact fraction together were the best predictors of day capacitance, whereas among semi/ring-porous species, VWCL-pd, WD and vessel–fibre contact fraction were the best predictors. At predawn, wood was less than fully saturated for all species (lumen relative water content = 0.52 ± 0.17). Our findings imply that day capacitance depends on the amount of stored water, tissue connectivity and the bulk wood properties arising from WD (e.g., elasticity), rather than the fraction of any particular tissue. 相似文献
20.
应用Granier热消散探针,长期监测华南地区荷木、大叶相思和柠檬桉林不同径级样树的树干液流,结合同步观测的气象数据,求算冠层气孔导度(gc),并分析其对环境因子的响应方式及敏感性.结果表明: 不同季节荷木林日间平均gc显著高于大叶相思和柠檬桉(P<0.05)(除3月外).在干季和湿季,gc与光合有效辐射(PAR)呈现对数正相关关系(P<0.001),湿季gc对PAR响应比干季更敏感.gc与水汽压亏缺(VPD)在干湿季均呈现对数负相关关系(P<0.001),同样在湿季表现出更高的敏感性.湿季gc与VPD的偏相关系数高于干季,VPD对气孔行为的调控作用在湿季更为明显.随着土壤含水量的降低,gc对VPD的敏感性下降,荷木和柠檬桉林下降的幅度大于大叶相思林,荷木和柠檬桉林下降的幅度相当.通过综合分析gc对环境因子(PAR和VPD)的敏感性及其对土壤含水量变化的响应规律,发现乡土树种荷木作为植被恢复树种比外来引种的大叶相思和柠檬桉更为适宜. 相似文献