首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P0), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P0 Leu or Ile residues reveals two distinct modes of accommodation for β-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.  相似文献   

2.
3.
4.
《遗传学报》2019,46(10):499-503
<正>The pattern recognition receptors (PRRs) act as the first line of defense against pathogens and are common molecular targets in the conflict between viruses and their host (Tan et al.,2018).The RIG-I-like receptors (RLRs),including RIG-I (Yoneyama et al.,2004),MDA5 (Andrejeva et al.,2004),and LGP2 (Saito et al.,2007),are PRRs and reside in the cytoplasm.These proteins recognize the RNA structures of different viral RNA species.All RLRs have an intermediate RNA helicase domain that catalyzes ATP hydrolysis and a C-terminal domain (CTD).RIG-I and MDA5,but not LGP2,contain tandem caspase recruitment domains at their N-termini  相似文献   

5.
In response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single- and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome, whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differences.  相似文献   

6.
7.
8.
The cellular protein retinoic acid-inducible gene I (RIG-I) senses intracellular viral infection and triggers a signal for innate antiviral responses including the production of type I IFN. RIG-I contains a domain that belongs to a DExD/H-box helicase family and exhibits an N-terminal caspase recruitment domain (CARD) homology. There are three genes encoding RIG-I-related proteins in human and mouse genomes. Melanoma differentiation associated gene 5 (MDA5), which consists of CARD and a helicase domain, functions as a positive regulator, similarly to RIG-I. Both proteins sense viral RNA with a helicase domain and transmit a signal downstream by CARD; thus, these proteins share overlapping functions. Another protein, LGP2, lacks the CARD homology and functions as a negative regulator by interfering with the recognition of viral RNA by RIG-I and MDA5. The nonstructural protein 3/4A protein of hepatitis C virus blocks the signaling by RIG-I and MDA5; however, the V protein of the Sendai virus selectively abrogates the MDA5 function. These results highlight ingenious mechanisms for initiating antiviral innate immune responses and the action of virus-encoded inhibitors.  相似文献   

9.
10.
The addition of α2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.  相似文献   

11.
12.
13.
14.
15.
Smith-Lemli-Opitz syndrome (SLOS) and lathosterolosis are malformation syndromes with cognitive deficits caused by mutations of 7-dehydrocholesterol reductase (DHCR7) and lathosterol 5-desaturase (SC5D), respectively. DHCR7 encodes the last enzyme in the Kandutsch-Russel cholesterol biosynthetic pathway, and impaired DHCR7 activity leads to a deficiency of cholesterol and an accumulation of 7-dehydrocholesterol. SC5D catalyzes the synthesis of 7-dehydrocholesterol from lathosterol. Impaired SC5D activity leads to a similar deficiency of cholesterol but an accumulation of lathosterol. Although the genetic and biochemical causes underlying both syndromes are known, the pathophysiological processes leading to the developmental defects remain unclear. To study the pathophysiological mechanisms underlying SLOS and lathosterolosis neurological symptoms, we performed quantitative proteomics analysis of SLOS and lathosterolosis mouse brain tissue and identified multiple biological pathways affected in Dhcr7Δ3–5/Δ3–5 and Sc5d−/− E18.5 embryos. These include alterations in mevalonate metabolism, apoptosis, glycolysis, oxidative stress, protein biosynthesis, intracellular trafficking, and cytoskeleton. Comparison of proteome alterations in both Dhcr7Δ3–5/Δ3–5 and Sc5d−/− brain tissues helps elucidate whether perturbed protein expression was due to decreased cholesterol or a toxic effect of sterol precursors. Validation of the proteomics results confirmed increased expression of isoprenoid and cholesterol synthetic enzymes. This alteration of isoprenoid synthesis may underlie the altered posttranslational modification of Rab7, a small GTPase that is functionally dependent on prenylation with geranylgeranyl, that we identified and validated in this study. These data suggested that although cholesterol synthesis is impaired in both Dhcr7Δ3–5/Δ3–5 and Sc5d−/− embryonic brain tissues the synthesis of nonsterol isoprenoids may be increased and thus contribute to SLOS and lathosterolosis pathology. This proteomics study has provided insight into the pathophysiological mechanisms of SLOS and lathosterolosis, and understanding these pathophysiological changes will help guide clinical therapy for SLOS and lathosterolosis.Smith-Lemli-Opitz syndrome (SLOS1; Online Mendelian Inheritance in Man 270400) is a multiple malformation syndrome with cognitive and behavioral deficiencies due to an inborn error of cholesterol synthesis. Typical findings in SLOS include dysmorphic facial features, limb defects, genital anomalies, growth retardation, cognitive disabilities, behavioral problems, and autistic features (for a review, see Ref. 1). The incidence of SLOS has been estimated to be on the order of 1/20,000–1/70,000 (1). SLOS is an autosomal recessive disorder caused by mutation of the 7-dehydrocholesterol reductase gene (DHCR7) (24). DHCR7 catalyzes the final step in the Kandutsch-Russel cholesterol biosynthetic pathway. Impaired DHCR7 activity results in increased 7-dehydrocholesterol (7DHC) and decreased cholesterol levels (Fig. 1A). Lathosterolosis is a rare “SLOS-like” malformation syndrome due to mutations of lathosterol 5-desaturase (SC5D) (57). SC5D catalyzes the conversion of lathosterol to 7DHC. Thus, in lathosterolosis, like SLOS, there is a deficiency of cholesterol. However, the accumulating precursor sterol is lathosterol rather than 7DHC (Fig. 1A). Because of its rarity and the fact that all known cases of lathosterolosis were ascertained due to similarity with SLOS, the phenotypic spectrum of lathosterolosis has not been defined.Open in a separate windowFig. 1.Representative 2-DE maps of SLOS and lathosterolosis mouse brain proteins. A, SLOS and lathosterolosis are inborn errors of cholesterol synthesis. SLOS is caused by mutations in the DHCR7 gene. DHCR7 catalyzes the final step in cholesterol synthesis. Lathosterolosis is caused by mutations of the SC5D gene. Cholesterol levels are decreased in both SLOS and lathosterolosis, but the accumulating precursor sterol differs. In SLOS, 7DHC accumulates, whereas in lathosterolosis, the accumulating sterol is lathosterol. B, representative 2-DE maps of control (Dhcr7+/+ and Sc5d+/+), Dhcr7Δ3–5/Δ3–5, and Sc5d−/− mouse brain proteins. Eighty micrograms of the pooled protein sample from Dhcr7+/+, Dhcr7Δ3–5/Δ3–5, Sc5d+/+, and Sc5d−/− embryonic mouse brain tissues were separated on a pH 3–10 nonlinear IPG strip followed by electrophoretic separation on a 12% SDS-polyacrylamide gel. Acidic pH is to the left, and increased molecular mass is at the top. Compared with Dhcr7+/+ mouse brains, the protein spots with significantly decreased or increased expression in Dhcr7Δ3–5/Δ3–5 mouse brains are marked in Dhcr7+/+ and Dhcr7Δ3–5/Δ3–5 mouse brain 2-DE maps, respectively. Compared with Sc5d+/+ mouse brains, the protein spots with significantly decreased or increased expression in Sc5d−/− mouse brains are marked in Sc5d+/+ and Sc5d−/− mouse brain 2-DE maps, respectively. Supplemental Table 2 provides detailed information on the differentially expressed protein spots.Although the genetic and biochemical causes of SLOS are defined, the pathophysiological mechanisms contributing to specific malformations have not been delineated. The classic paradigm for the pathogenesis of an inborn error of metabolism includes the accumulation of a toxic precursor and/or deficiency of an essential product. In the case of SLOS, the observed defects are postulated to be caused, either singly or in combination, by cholesterol deficiency or the accumulation of 7DHC (8, 9).Cholesterol is an essential lipid with multiple critical functions. In addition to being a structural lipid in membranes and myelin, cholesterol is the precursor for bile acid, steroid hormone, neuroactive steroid, and oxysterol synthesis. In cellular membranes, cholesterol rafts are microdomains that function in receptor-mediated signal transduction. Functional defects in IgE receptor-mediated mast cell degranulation and cytokine production (10), N-methyl-d-aspartate receptor function (11), and serotonin 1A receptor ligand binding (12, 13) have been reported in SLOS. The altered sterol composition in SLOS affects the physiochemical properties and function of lipid rafts. Membrane domains incorporating 7DHC differ from those containing only cholesterol in protein composition (14), packing (15), and stability (1618). Substitution of 7DHC for cholesterol also decreases membrane bending rigidity (19). In addition, model membranes mimicking SLOS membranes have been reported to exhibit atypical membrane organization (20) and curvature (19). These alterations may have functional consequences. Depletion of cholesterol from hippocampal membranes and replenishment with 7-dehydrocholesterol does not restore ligand binding activity of the serotonin 1A receptor despite the recovery of the overall membrane order (12). Cholesterol is also necessary for maturation and function of the hedgehog family of morphogens during embryonic development, and several mechanisms by which sonic hedgehog signaling might be impaired in SLOS have been proposed (2123).To understand the pathophysiological processes underlying cognitive defects found in SLOS, we need to consider the potential detrimental effects of decreased cholesterol/functional sterol levels versus the potential toxic effects of increased 7DHC. To give insight into pathological effects due to cholesterol deficiency and precursor accumulation, we have produced mouse models deficient in either 7-dehydrocholesterol reductase (11) or lathosterol reductase (6) activity (Dhcr7Δ3–5/Δ3–5 and Sc5d−/−, respectively). Although the two models are similar in many respects, significant differences exist. Dhcr7 pups have relatively few physical malformations other than a low frequency of cleft palate but die during the 1st day of life due to failure to feed (11). In contrast Sc5d mutant embryos are stillborn and have multiple developmental malformations (6). In addition, although secretory granule formation is altered in both models, consistent with differing physiochemical properties of the two precursor sterols, the specific changes differ between the two models (19). For these reasons, a comparison of the two models will provide insight into common mechanisms that are likely due to cholesterol/sterol deficiency and syndrome-specific mechanisms that are due to specific effects of one of the two precursors.We now report the use of two-dimensional electrophoresis (2-DE) mass spectrometry proteomics analysis to identify proteins with altered expression in brain tissue from both Dhcr7 and Sc5d mutants with the goal of identifying novel pathophysiological mechanisms contributing to the neurological deficits in these two inborn errors of cholesterol synthesis. Because our focus was on identifying processes that could contribute to abnormal neurological development, our analysis was focused on brain tissue from E18.5 embryos. This embryonic age was selected because the biochemical defect increases with embryonic age (6, 11), and it is the latest time point for which we could obtain viable tissue for both mutants. Western blot analysis was used to validate selected individual proteins and pathways. Functional annotation suggested that alterations in mevalonate metabolism, glycolysis, oxidative stress, apoptosis, protein biosynthesis, intracellular trafficking, and cytoskeleton may contribute to the pathology of inborn errors of cholesterol synthesis. In addition, our data are consistent with the hypothesis that both cholesterol deficiency and increased precursor sterol levels contribute to SLOS and lathosterolosis pathology.  相似文献   

16.
Abstract— α-Bungarotoxin (α-BuTX) has been used as a marker for studying the acetylcholine receptors (AChRs) in the superior cervical ganglion (SCG) of the adult rat. Binding of [125I]α-BuTX to detergent-solubilized AChRs from rat SCG is a saturable and practically irreversible process. The rate constant of association of the toxin-receptor complex is 1.66 × 105M ?1 S?1. The receptor is of nicotinic type. One SCG of adult rat binds about 57 fmol of [125I]α-BuTX corresponding to 9.2 × 105 AChRs per sympathetic neuron. Light microscope autoradiography shows that AChRs are mainly localized along neuronal processes (probably dendrites). The perikarya exhibit a weak radioactive reaction, while the nerve fibres are devoid of AChRs. Following preganglionic denervation the number of AChRs never increases and their spatial distribution seems not to change.  相似文献   

17.
The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a “gatekeeper” that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion.  相似文献   

18.
Many pathogenic microorganisms have evolved hemoglobin-mediated nitric oxide (NO) detoxification mechanisms, where a globin domain in conjunction with a partner reductase catalyzes the conversion of toxic NO to innocuous nitrate. The truncated hemoglobin HbN of Mycobacterium tuberculosis displays a potent NO dioxygenase activity despite lacking a reductase domain. The mechanism by which HbN recycles itself during NO dioxygenation and the reductase that participates in this process are currently unknown. This study demonstrates that the NADH-ferredoxin/flavodoxin system is a fairly efficient partner for electron transfer to HbN with an observed reduction rate of 6.2 μm/min−1, which is nearly 3- and 5-fold faster than reported for Vitreoscilla hemoglobin and myoglobin, respectively. Structural docking of the HbN with Escherichia coli NADH-flavodoxin reductase (FdR) together with site-directed mutagenesis revealed that the CD loop of the HbN forms contacts with the reductase, and that Gly48 may have a vital role. The donor to acceptor electron coupling parameters calculated using the semiempirical pathway method amounts to an average of about 6.4 10−5 eV, which is lower than the value obtained for E. coli flavoHb (8.0 10−4 eV), but still supports the feasibility of an efficient electron transfer. The deletion of Pre-A abrogated the heme iron reduction by FdR in the HbN, thus signifying its involvement during intermolecular interactions of the HbN and FdR. The present study, thus, unravels a novel role of the CD loop and Pre-A motif in assisting the interactions of the HbN with the reductase and the electron cycling, which may be vital for its NO-scavenging function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号