首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ERK signaling regulates proliferation, survival, drug resistance, and angiogenesis in cancer. Although the mechanisms regulating ERK activation are not fully understood, we previously demonstrated that ERK phosphorylation is elevated by heparanase, an enzyme associated with aggressive behavior of many cancers. In the present study, myeloma cell lines expressing either high or low levels of heparanase were utilized to determine how heparanase stimulates ERK signaling. We discovered that the insulin receptor was abundant on cells expressing either high or low levels of heparanase, but the receptor was highly phosphorylated in heparanase-high cells compared with heparanase-low cells. In addition, protein kinase C activity was elevated in heparanase-high cells, and this enhanced expression of insulin receptor substrate-1 (IRS-1), the principle intracellular substrate for phosphorylation by the insulin receptor. Blocking insulin receptor function with antibody or a small molecule inhibitor or knockdown of IRS-1 expression using shRNA diminished heparanase-mediated ERK activation in the tumor cells. In addition, up-regulation of the insulin signaling pathway by heparanase and the resulting ERK activation were dependent on heparanase retaining its enzyme activity. These results reveal a novel mechanism whereby heparanase enhances activation of the insulin receptor signaling pathway leading to ERK activation and modulation of myeloma behavior.  相似文献   

2.
Abstract: Activation of tyrosine kinase-linked receptors has been shown to stimulate Ca2+-independent protein kinase C isoforms in nonneuronal cells. We have examined this signaling pathway in the nervous system. Incubating bag cell neurons from the marine mollusk Aplysia californica with concentrations of insulin known to stimulate a tyrosine kinase-linked receptor in these cells persistently activated and down-regulated the Ca2+-independent protein kinase C (Apl II), whereas insulin only transiently activated and did not down-regulate the Ca2+-activated protein kinase C (Apl I). The effects of insulin may be mediated by activation of phosphoinositide 3-kinase because (a) diC16phosphatidylinositol 3,4,5-trisphosphate, a synthetic phosphoinositide 3-kinase product, stimulated autophosphorylation of baculovirus-expressed Apl II, but not of Apl I, and (b) wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked the activation and down-regulation of Apl II by insulin but not the transient activation of Apl I. These results suggest that activators of tyrosine kinase-linked receptors may mediate some of their effects in neurons through activation of Ca2+-independent protein kinase C isoforms.  相似文献   

3.
Although arsenite is an established carcinogen, the mechanisms underlying its tumor-promoting properties are poorly understood. Previously, we reported that arsenite treatment leads to the activation of the extracellular signal-regulated kinase (ERK) in rat PC12 cells through a Ras-dependent pathway. To identify potential mediators of the upstream signaling cascade, we examined the tyrosine phosphorylation profile in cells exposed to arsenite. Arsenite treatment rapidly stimulated tyrosine phosphorylation of several proteins in a Ras-independent manner, with a pattern similar to that seen in response to epidermal growth factor (EGF) treatment. Among these phosphorylated proteins were three isoforms of the proto-oncoprotein Shc as well as the EGF receptor (EGFR). Tyrosine phosphorylation of Shc allowed for enhanced interactions between Shc and Grb2 as identified by coimmunoprecipitation experiments. The arsenite-induced tyrosine phosphorylation of Shc, enhancement of Shc and Grb2 interactions, and activation of ERK were all drastically reduced by treatment of cells with either the general growth factor receptor poison suramin or the EGFR-selective inhibitor tyrphostin AG1478. Down-regulation of EGFR expression through pretreatment of cells with EGF also attenuated ERK activation and Shc tyrosine phosphorylation in response to arsenite treatment. These results demonstrate that the EGFR and Shc are critical mediators in the activation of the Ras/ERK signaling cascade by arsenite and suggest that arsenite acts as a tumor promoter largely by usurping this growth factor signaling pathway.  相似文献   

4.
Methylglyoxal is a typical 2-oxoaldehyde derived from glycolysis. We show here that methylglyoxal activates the Pkc1-Mpk1 mitogen-activated protein (MAP) kinase cascade in a target of rapamycin complex 2 (TORC2)-dependent manner in the budding yeast Saccharomyces cerevisiae. We demonstrate that TORC2 phosphorylates Pkc1 at Thr1125 and Ser1143. Methylglyoxal enhanced the phosphorylation of Pkc1 at Ser1143, which transmitted the signal to the downstream Mpk1 MAP kinase cascade. We found that the phosphorylation status of Pkc1T1125 affected the phosphorylation of Pkc1 at Ser1143, in addition to its protein levels. Methylglyoxal activated mammalian TORC2 signaling, which, in turn, phosphorylated Akt at Ser473. Our results suggest that methylglyoxal is a conserved initiator of TORC2 signaling among eukaryotes.  相似文献   

5.
6.
丙戊酸钠活化大鼠海马和额叶ERK-1/2信号传导通路   总被引:2,自引:0,他引:2  
为探讨慢性服用丙戊酸钠对中枢神经系统细胞外调控激酶 (ERK) 1/ 2信号传导通路活性的影响 ,阐明丙戊酸钠治疗躁狂抑郁症作用的可能分子机制 ,将 4 0只雄性Wistar大鼠随机分为实验组和对照组 ,每组各 2 0只 .实验组大鼠用含丙戊酸钠的饲料喂养 ,对照组大鼠用常规饲料喂养 ,4周后取大鼠海马和额叶组织制备蛋白质样本 ,蛋白质印迹方法分析海马和额叶组织丝裂原活化的蛋白激酶激酶 (MEK)、ERK 1/ 2、MAPK活化的蛋白激酶 1(RSK1)、cAMP效应元件结合因子 (CREB)的磷酸化水平以及Bcl 2的表达水平 ,电泳迁移率变动分析(EMSA)方法分析海马和额叶组织激活蛋白 1(AP 1)的DNA结合活性 .与对照组比较 ,丙戊酸钠显著增强海马和额叶MEK、ERK 1/ 2、RSK1、CREB和AP1的活性 ,上调海马和额叶Bcl 2的表达 .结果表明 :慢性服用丙戊酸钠激活中枢神经系统ERK 1/ 2信号传导通路、上调中枢神经系统Bcl 2蛋白表达 ,这些作用可能与丙戊酸钠治疗躁狂抑郁症的作用有关  相似文献   

7.
The tumor suppressor serine-threonine kinase LKB1 is mutated in Peutz-Jeghers syndrome (PJS) and in epithelial cancers, including hormone-sensitive organs such as breast, ovaries, testes, and prostate. Clinical studies in breast cancer patients show low LKB1 expression is related to poor prognosis, whereas in PJS, the risk of breast cancer is similar to the risk from germline mutations in breast cancer (BRCA) 1/BRCA2. In this study, we investigate the role of LKB1 in estrogen receptor α (ERα) signaling. We demonstrate for the first time that LKB1 binds to ERα in the cell nucleus in which it is recruited to the promoter of ERα-responsive genes. Furthermore, LKB1 catalytic activity enhances ERα transactivation compared with LKB1 catalytically deficient mutants. The significance of our discovery is that we demonstrate for the first time a novel functional link between LKB1 and ERα. Our discovery places LKB1 in a coactivator role for ERα signaling, broadening the scientific scope of this tumor suppressor kinase and laying the groundwork for the use of LKB1 as a target for the development of new therapies against breast cancer.  相似文献   

8.
The binding of the adaptor protein APPL1 to adiponectin receptors is necessary for adiponectin-induced AMP-activated protein kinase (AMPK) activation in muscle, yet the underlying molecular mechanism remains unknown. Here we show that in muscle cells adiponectin and metformin induce AMPK activation by promoting APPL1-dependent LKB1 cytosolic translocation. APPL1 mediates adiponectin signaling by directly interacting with adiponectin receptors and enhances LKB1 cytosolic localization by anchoring this kinase in the cytosol. Adiponectin also activates another AMPK upstream kinase Ca2+/calmodulin-dependent protein kinase kinase by activating phospholipase C and subsequently inducing Ca2+ release from the endoplasmic reticulum, which plays a minor role in AMPK activation. Our results show that in muscle cells adiponectin is able to activate AMPK via two distinct mechanisms as follows: a major pathway (the APPL1/LKB1-dependent pathway) that promotes the cytosolic localization of LKB1 and a minor pathway (the phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathway) that stimulates Ca2+ release from intracellular stores.Adiponectin, an adipokine abundantly expressed in adipose tissue, exhibits anti-diabetic, anti-inflammatory, and anti-atherogenic properties and hence is a potential therapeutic target for various metabolic diseases (13). The beneficial effects of adiponectin are mediated through the direct interaction of adiponectin with its cell surface receptors, AdipoR1 and AdipoR2 (4, 5). Adiponectin increases fatty acid oxidation and glucose uptake in muscle cells by activating AMP-activated protein kinase (AMPK)3 (4, 6), which depends on the interaction of AdipoR1 with the adaptor protein APPL1 (Adaptor protein containing Pleckstrin homology domain, Phosphotyrosine binding domain, and Leucine zipper motif) (5). However, the underlying mechanisms by which APPL1 mediates adiponectin signaling to AMPK activation and other downstream targets remain unclear.AMPK is a serine/threonine protein kinase that acts as a master sensor of cellular energy balance in mammalian cells by regulating glucose and lipid metabolism (7, 8). AMPK is composed of a catalytic α subunit and two noncatalytic regulatory subunits, β and γ. The NH2-terminal catalytic domain of the AMPKα subunit is highly conserved and contains the activating phosphorylation site (Thr172) (9). Two AMPK variants, α1 and α2, exist in mammalian cells that show different localization patterns. AMPKα1 subunit is localized in non-nuclear fractions, whereas the AMPKα2 subunit is found in both nucleus and non-nuclear fractions (10). Biochemical regulation of AMPK activation occurs through various mechanisms. An increase in AMP level stimulates the binding of AMP to the γ subunit, which induces a conformational change in the AMPK heterotrimer and results in AMPK activation (11). Studies have shown that the increase in AMPK activity is not solely via AMP-dependent conformational change, rather via phosphorylation by upstream kinases, LKB1 and CaMKK. Dephosphorylation by protein phosphatases is also important in regulating the activity of AMPK (12).LKB1 has been considered as a constitutively active serine/threonine protein kinase that is ubiquitously expressed in all tissues (13, 14). Under conditions of high cellular energy stress, LKB1 acts as the primary AMPK kinase through an AMP-dependent mechanism (1517). Under normal physiological conditions, LKB1 is predominantly localized in the nucleus. LKB1 is translocated to the cytosol, either by forming a heterotrimeric complex with Ste20-related adaptor protein (STRADα/β) and mouse protein 25 (MO25α/β) or by associating with an LKB1-interacting protein (LIP1), to exert its biological function (1822). Although LKB1 has been shown to mediate contraction- and adiponectin-induced activation of AMPK in muscle cells, the underlying molecular mechanisms remain elusive (15, 23).CaMKK is another upstream kinase of AMPK, which shows considerable sequence and structural homology with LKB1 (2426). The two isoforms of CaMKK, CaMKKα and CaMKKβ, encoded by two distinct genes, share ∼70% homology at the amino acid sequence level and exhibit a wide expression in rodent tissues, including skeletal muscle (2734). Unlike LKB1, AMPK phosphorylation mediated by CaMKKs is independent of AMP and is dependent only on Ca2+/calmodulin (35). Hence, it is possible that an LKB1-independent activation of AMPK by CaMKK exists in muscle cells. However, whether and how adiponectin stimulates this pathway in muscle cells are not known.In this study, we demonstrate that in muscle cells adiponectin induces an APPL1-dependent LKB1 translocation from the nucleus to the cytosol, leading to increased AMPK activation. Adiponectin also activates CaMKK by stimulating intracellular Ca2+ release via the PLC-dependent mechanism, which plays a minor role in activation of AMPK. Taken together, our results demonstrate that enhanced cytosolic localization of LKB1 and Ca2+-induced activation of CaMKK are the mechanisms underlying adiponectin-stimulated AMPK activation in muscle cells.  相似文献   

9.
The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.  相似文献   

10.
11.
TrkA is a cell surface transmembrane receptor tyrosine kinase for nerve growth factor (NGF). TrkA has an NPXY motif and kinase regulatory loop similar to insulin receptor (INSR) suggesting that NGF→TrkA signaling might overlap with insulin→INSR signaling. During insulin or NGF stimulation TrkA, insulin receptor substrate-1 (IRS-1), INSR (and presumably other proteins) forms a complex in PC12 cells. In PC12 cells, tyrosine phosphorylation of INSR and IRS-1 is dependent upon the functional TrkA kinase domain. Moreover, expression of TrkA kinase-inactive mutant blocked the activation of Akt and Erk5 in response to insulin or NGF. Based on these data, we propose that TrkA participates in insulin signaling pathway in PC12 cells.  相似文献   

12.
Neprilysin (NEP) is a type II membrane metalloproteinase that cleaves physiologically active peptides at the cell surface thus regulating the local concentration of these peptides available for receptor binding and signal transduction. In addition, the cytoplasmic N-terminal domain of NEP interacts with the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) thereby regulating intracellular signaling via Akt. Thus, NEP serves dual functions in extracellular and intracellular signal transduction. Here, we show that NEP undergoes phosphorylation at serine residue 6 within the N-terminal cytoplasmic domain. In vitro and cell culture experiments demonstrate that Ser 6 is efficiently phosphorylated by protein kinase CK2. The phosphorylation of the cytoplasmic domain of NEP inhibits its interaction with PTEN. Interestingly, expression of a pseudophosphorylated NEP variant (Ser6Asp) abrogates the inhibitory effect of NEP on insulin/insulin-like growth factor-1 (IGF-1) stimulated activation of Akt. Thus, our data demonstrate a regulatory role of CK2 in the interaction of NEP with PTEN and insulin/IGF-1 signaling.  相似文献   

13.
摘要 目的:探讨circPPP1R12A(circ_0000423)调控p53信号通路对骨关节炎(osteoarthritis,OA)中软骨细胞增殖和凋亡的影响。方法:采用qRT-PCR检测circPPP1R12A在OA软骨细胞中的表达水平。在OA软骨细胞中分别转染oe-circPPP1R12A和sh-circPPP1R12A后,采用CCK-8检测细胞增殖情况;免疫荧光检测Ki-67阳性细胞表达率;流式细胞术检测细胞凋亡情况;qRT-PCR检测Ki-67和p53表达水平;Western Blot检测Cleaved-caspase3、P53、BCL-2和BAX的表达水平。结果:OA软骨细胞中circPPP1R12A的表达水平明显高于正常软骨细胞。过表达circPPP1R12A能够抑制OA软骨细胞增殖和促进细胞凋亡,通过上调p53表达激活p53信号通路,低表达circPPP1R12A能够促进OA软骨细胞增殖和抑制细胞凋亡,通过下调p53表达阻滞p53信号通路。在OA软骨细胞中同时低表达circPPP1R12A和过表达p53能够反转单独低表达circPPP1R12A对OA软骨细胞增殖和凋亡的影响。结论:circPPP1R12A在OA软骨细胞中明显高表达,circPPP1R12A能够通过激活p53信号通路抑制骨OA软骨细胞增殖和促进软骨细胞凋亡。circPPP1R12A可能成为OA治疗的干预靶点。  相似文献   

14.
We previously demonstrated that the mTORC1/S6K1 pathway is activated by insulin and nutrient overload (e.g. amino acids (AA)), which leads to the inhibition of the PI3K/Akt pathway via the inhibitory serine phosphorylation of IRS-1, notably on serine 1101 (Ser-1101). However, even in the absence of AA, insulin can still promote IRS-1 Ser-1101 phosphorylation by other kinases that remain to be fully characterized. Here, we describe a new negative regulator of IRS-1, the p90 ribosomal S6 kinase (RSK). Computational analyses revealed that Ser-1101 within IRS-1 falls into the consensus motif of RSK. Moreover, recombinant RSK phosphorylated IRS-1 C-terminal fragment on Ser-1101, which was prevented by mutations of this site or when a kinase-inactive mutant of RSK was used. Using antibodies directed toward the phosphorylation sites located in the activation segment of RSK (Ser-221 or Ser-380), we found that insulin activates RSK in L6 myocytes in the absence of AA overload. Inhibition of RSK using either the pharmacological inhibitor BI-D1870 or after adenoviral expression of a dominant negative RSK1 mutant (RSK1-DN) showed that RSK selectively phosphorylates IRS-1 on Ser-1101. Accordingly, expression of the RSK1-DN mutant in L6 myocytes and FAO hepatic cells improved insulin action on glucose uptake and glucose production, respectively. Furthermore, RSK1 inhibition prevented insulin resistance in L6 myocytes chronically exposed to high glucose and high insulin. These results show that RSK is a novel regulator of insulin signaling and glucose metabolism and a potential mediator of insulin resistance, notably through the negative phosphorylation of IRS-1 on Ser-1101.  相似文献   

15.
16.
毒蝇碱型乙酰胆碱受体 (muscarinicacetylcholinereceptor,mAChR)和Bcl 2家族蛋白均具有调控神经细胞凋亡和生存的作用 ,然而mAChR和Bcl 2家族蛋白之间的内在联系即信号转导通路仍然不清楚。为此 ,对mAChR调控神经母细胞瘤SH SY5Y细胞生存蛋白Bcl 2和磷酸化Bad的信号转导通路进行了研究。结果显示 :(1)mAChR激动剂卡巴可 (carbachol)不仅活化SH SY5Y细胞的MEK/ERK 1/ 2 ,而且上调Bcl 2和磷酸化Bad的表达 ;(2 )mAChR拮抗剂阿托品、MEK抑制剂PD980 5 9、PKC抑制剂bisindolymaleimide I和Src抑制剂PP1均能完全阻断或显著减弱卡巴可的上述作用 ,但G蛋白脱偶联剂百日咳毒素和PI 3激酶抑制剂wortmannin对卡巴可的上述作用无明显影响 ;(3)显性负突变Ras和Raf均能阻断卡巴可上调转染至SH SY5Y细胞内的Bcl 2启动子的转录调控活性。结果表明 :mAChR通过Gq/ 11、PKC和Src依赖的Ras ERK 1/ 2信号转导通路上调SH SY5Y细胞Bcl 2和磷酸化Bad蛋白表达。这一研究将有助于揭示神经递质、神经营养因子和神经营养药物等抑制神经细胞凋亡、促进神经细胞生存的分子机制。  相似文献   

17.
从大鼠的肝脏克隆胰岛素受体底物1(IRS-1)的PH结构域基因并进行谷胱甘肽S-转移酶(GST)融合表达,研究该结构域与蛋白激酶C(PKC)的结合情况,并为进一步寻找其新配基打下基础,研究采用一步法从大鼠新鲜肝组织中提取总RNA,以RT-PCR的方法扩增目的基因片段,测序证明序列正确,再将正确的目的基因片段定向克隆到表达载体pGEX-4T-1中,以IPTG在26℃下诱导,获得与GST的融合表达,表  相似文献   

18.
Receptor tyrosine kinase ROR1, an embryonic protein involved in organogenesis, is expressed in certain hematological malignancies and solid tumors, but is generally absent in adult tissues. This makes the protein an ideal drug target for cancer therapy. In order to assess the suitability of ROR1 as a cell surface antigen for targeted therapy of lung adenocarcinoma, we carried out a comprehensive analysis of ROR1 protein expression in human lung adenocarcinoma tissues and cell lines. Our data show that ROR1 protein is selectively expressed on lung adenocarcinoma cells, but do not support the hypothesis that expression levels of ROR1 are associated with aggressive disease. However silencing of ROR1 via siRNA treatment significantly down-regulates the activity of the PI3K/AKT/mTOR signaling pathway. This is associated with significant apoptosis and anti-proliferation of tumor cells. We found ROR1 protein expressed in lung adenocarcinoma but almost absent in tumor-adjacent tissues of the patients. The finding of ROR1-mediated proliferation signals in both tyrosine kinase inhibitor (TKI)-sensitive and -resistant tumor cells provides encouragement to develop ROR1-directed targeted therapy in lung adenocarcinoma, especially those with TKI resistance.  相似文献   

19.
Elevated circulating free fatty acid levels are important contributors to insulin resistance in the muscle and liver, but the underlying mechanisms require further elucidation. Here, we show that geranylgeranyl diphosphate synthase 1 (GGPPS), which is a branch point enzyme in the mevalonic acid pathway, promotes lipid-induced muscle insulin resistance through activation of the RhoA/Rho kinase signaling pathway. We have found that metabolic perturbation would increase GGPPS expression in the skeletal muscles of db/db mice and high fat diet-fed mice. To address the metabolic effects of GGPPS activity in skeletal muscle, we generated mice with specific GGPPS deletions in their skeletal muscle tissue. Heterozygous knock-out of GGPPS in the skeletal muscle improved systemic insulin sensitivity and glucose homeostasis in mice fed both normal chow and high fat diets. These metabolic alterations were accompanied by activated PI3K/Akt signaling and enhanced glucose uptake in the skeletal muscle. Further investigation showed that the free fatty acid-stimulated GGPPS expression in the skeletal muscle was able to enhance the geranylgeranylation of RhoA, which further induced the inhibitory phosphorylation of IRS-1 (Ser-307) by increasing Rho kinase activity. These results implicate a crucial role of the GGPPS/RhoA/Rho kinase/IRS-1 pathway in skeletal muscle, in which it mediates lipid-induced systemic insulin resistance in obese mice. Therefore, skeletal muscle GGPPS may represent a potential pharmacological target for the prevention and treatment of obesity-related type 2 diabetes.  相似文献   

20.
The target of rapamycin (TOR) kinase belongs to the highly conserved eukaryotic family of phosphatidylinositol 3-kinase-related kinases. TOR proteins are found at the core of two evolutionary conserved complexes, known as TORC1 and TORC2. In fission yeast, TORC2 is dispensable for proliferation under optimal growth conditions but is required for starvation and stress responses. TORC2 has been implicated in a wide variety of functions; however, the signals that regulate TORC2 activity have so far remained obscure. TORC2 has one known direct substrate, the AGC kinase Gad8, which is related to AKT in human cells. Gad8 is phosphorylated by TORC2 at Ser-546 (equivalent to AKT Ser-473), leading to its activation. Here, we show that glucose is necessary and sufficient to induce Gad8 Ser-546 phosphorylation in vivo and Gad8 kinase activity in vitro. The glucose signal that activates TORC2-Gad8 is mediated via the cAMP/PKA pathway, a major glucose-sensing pathway. By contrast, Pmk1, similar to human extracellular signal-regulated kinases and a major stress-induced mitogen activated protein kinase (MAPK) in fission yeast, inhibits TORC2-dependent Gad8 phosphorylation and activation. Inhibition of TORC2-Gad8 also occurs in response to ionic or osmotic stress, in a manner dependent on the cAMP/PKA and Pmk1-MAPK signaling pathways. Our findings highlight the significance of glucose availability in regulation of TORC2-Gad8 and indicate a novel link between the cAMP/PKA, Pmk1/MAPK, and TORC2-Gad8 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号