共查询到20条相似文献,搜索用时 9 毫秒
1.
Amy H. Andreotti Pamela L. Schwartzberg Raji E. Joseph Leslie J. Berg 《Cold Spring Harbor perspectives in biology》2010,2(7)
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-γ. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both αβ and γδ T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.The Tec family nonreceptor tyrosine kinases, Tec, Btk, Itk/Emt/Tsk, Rlk/Txk, and Bmx/Etk, are expressed primarily in hematopoietic cells and serve as important mediators of antigen receptor signaling in lymphocytes (Berg et al. 2005; Felices et al. 2007; Readinger et al. 2009). The demonstration that the human B-cell immunodeficiency, X-linked agammaglobulinemia (XLA), is caused by mutations in Btk first underscored the importance of this tyrosine kinase family in lymphocyte development and antigen receptor signaling (Rawlings et al. 1993; Thomas et al. 1993; Tsukada et al. 1993; Vetrie et al. 1993). T lymphocytes express three Tec kinases: Itk, Rlk and Tec. To date, only Itk has been found to have a clearly defined function in T cells, leading to the conclusion that Itk is the predominant Tec kinase in T cells. In this review, we will cover recent findings that highlight the critical role of Itk in T-cell signaling and function. 相似文献
2.
cAMP反应序列结合蛋白及其家族与转录调节 总被引:8,自引:0,他引:8
cAMP反应序列结合蛋白(cAMP-responsiveelementbindingprotein,CREB)经磷酸化激活后,可参与cAMP诱导的多种靶基因的转录调控。新近研究表明,CREB的转录调节作用可能是通过CREB结合蛋白(CREB-bindingprotein,CBP)实现的。在神经系统中,CREB可能介导神经递质诱导的基因表达,并能通过放大神经营养因子的信号,参与神经细胞增殖、分化、存活等生物效应。 相似文献
3.
Patrick Doherty Josie Furness Emma J. Williams Frank S. Walsh 《Journal of neurochemistry》1994,62(6):2124-2131
Abstract: Activation of tyrosine kinases is established as an important mechanism for controlling growth cone motility and neurite outgrowth. We have tested the effects of a range of tyrosine kinase inhibitors on neurite outgrowth from postnatal day 4 cerebellar granule cells cultured over confluent monolayers of 3T3 fibroblasts. The only agent that had any effect was herbimycin A, which stimulated neurite outgrowth. The response is shown to be attributable to a direct effect of this tyrosine kinase inhibitor on neurones. The neurite outgrowth response to herbimycin A was inhibited by two other tyrosine kinase inhibitors, which on their own did not affect neurite outgrowth. The data suggest that the response to herbimycin A reflects either a direct or indirect activation of one or more protein tyrosine kinases. Independent signalling events downstream from tyrosine kinase activation underlying the neurite outgrowth response to herbimycin A include increased activity of protein kinase C and calcium influx into neurones through both N-and L-type calcium channels. 相似文献
4.
Madhusudan Dey Brian Rick Mann Ashish Anshu M. Amin-ul Mannan 《The Journal of biological chemistry》2014,289(9):5747-5757
Protein kinase R (PKR) functions in a plethora of cellular processes, including viral and cellular stress responses, by phosphorylating the translation initiation factor eIF2α. The minimum requirements for PKR function are homodimerization of its kinase and RNA-binding domains, and autophosphorylation at the residue Thr-446 in a flexible loop called the activation loop. We investigated the interdependence between dimerization and Thr-446 autophosphorylation using the yeast Saccharomyces cerevisiae model system. We showed that an engineered PKR that bypassed the need for Thr-446 autophosphorylation (PKRT446∼P-bypass mutant) could function without a key residue (Asp-266 or Tyr-323) that is essential for PKR dimerization, suggesting that dimerization precedes and stimulates activation loop autophosphorylation. We also showed that the PKRT446∼P-bypass mutant was able to phosphorylate eIF2α even without its RNA-binding domains. These two significant findings reveal that PKR dimerization and activation loop autophosphorylation are mutually exclusive yet interdependent processes. Also, we provide evidence that Thr-446 autophosphorylation during PKR activation occurs in a cis mechanism following dimerization. 相似文献
5.
6.
Bradykinin B2 Receptor-Mediated Mitogen-Activated Protein Kinase Activation in COS-7 Cells Requires Dual Signaling via Both Protein Kinase C Pathway and Epidermal Growth Factor Receptor Transactivation 下载免费PDF全文
Antje Adomeit Angela Graness Steffen Gross Klaus Seedorf Reinhard Wetzker Claus Liebmann 《Molecular and cellular biology》1999,19(8):5289-5297
The signaling routes linking G-protein-coupled receptors to mitogen-activated protein kinase (MAPK) may involve tyrosine kinases, phosphoinositide 3-kinase gamma (PI3Kgamma), and protein kinase C (PKC). To characterize the mitogenic pathway of bradykinin (BK), COS-7 cells were transiently cotransfected with the human bradykinin B(2) receptor and hemagglutinin-tagged MAPK. We demonstrate that BK-induced activation of MAPK is mediated via the alpha subunits of a G(q/11) protein. Both activation of Raf-1 and activation of MAPK in response to BK were blocked by inhibitors of PKC as well as of the epidermal growth factor (EGF) receptor. Furthermore, in PKC-depleted COS-7 cells, the effect of BK on MAPK was clearly reduced. Inhibition of PI3-Kgamma or Src kinase failed to diminish MAPK activation by BK. BK-induced translocation and overexpression of PKC isoforms as well as coexpression of inactive or constitutively active mutants of different PKC isozymes provided evidence for a role of the diacylglycerol-sensitive PKCs alpha and epsilon in BK signaling toward MAPK. In addition to PKC activation, BK also induced tyrosine phosphorylation of EGF receptor (transactivation) in COS-7 cells. Inhibition of PKC did not alter BK-induced transactivation, and blockade of EGF receptor did not affect BK-stimulated phosphatidylinositol turnover or BK-induced PKC translocation, suggesting that PKC acts neither upstream nor downstream of the EGF receptor. Comparison of the kinetics of PKC activation and EGF receptor transactivation in response to BK also suggests simultaneous rather than consecutive signaling. We conclude that in COS-7 cells, BK activates MAPK via a permanent dual signaling pathway involving the independent activation of the PKC isoforms alpha and epsilon and transactivation of the EGF receptor. The two branches of this pathway may converge at the level of the Ras-Raf complex. 相似文献
7.
Omar A. Quintero William C. Unrath Stanley M. Stevens Jr. Uri Manor Bechara Kachar Christopher M. Yengo 《The Journal of biological chemistry》2013,288(52):37126-37137
Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells. 相似文献
8.
9.
Jesse E. Jun Ming Yang Hang Chen Arup K. Chakraborty Jeroen P. Roose 《Molecular and cellular biology》2013,33(12):2470-2484
Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. 相似文献
10.
11.
12.
13.
Amanda Mikels Yasuhiro Minami Roel Nusse 《The Journal of biological chemistry》2009,284(44):30167-30176
14.
Min-Jung Kim In-Ja Park Hee Yun Insug Kang Wonchae Choe Sung-Soo Kim Joohun Ha 《The Journal of biological chemistry》2010,285(19):14617-14627
15.
16.
Deborah Balzano Mohamad-Ali Fawal Jose V. Velázquez Clara M. Santiveri Joshua Yang Joaquín Pastor Ramón Campos-Olivas Nabil Djouder Daniel Lietha 《The Journal of biological chemistry》2015,290(41):24975-24985
Protein kinase B (PKB/Akt) is an important mediator of signals that control various cellular processes including cell survival, growth, proliferation, and metabolism. PKB promotes these processes by phosphorylating many cellular targets, which trigger distinct downstream signaling events. However, how PKB is able to selectively target its substrates to induce specific cellular functions remains elusive. Here we perform a systematic study to dissect mechanisms that regulate intrinsic kinase activity versus mechanisms that specifically regulate activity toward specific substrates. We demonstrate that activation loop phosphorylation and the C-terminal hydrophobic motif are essential for high PKB activity in general. On the other hand, we identify membrane targeting, which for decades has been regarded as an essential step in PKB activation, as a mechanism mainly affecting substrate selectivity. Further, we show that PKB activity in cells can be triggered independently of PI3K by initial hydrophobic motif phosphorylation, presumably through a mechanism analogous to other AGC kinases. Importantly, different modes of PKB activation result in phosphorylation of distinct downstream targets. Our data indicate that specific mechanisms have evolved for signaling nodes, like PKB, to select between various downstream events. Targeting such mechanisms selectively could facilitate the development of therapeutics that might limit toxic side effects. 相似文献
17.
茉莉酸在植物的生长发育、应激反应和次生代谢过程中起着重要的调控作用。转录抑制因子JAZ(Jasmonate ZIM-domain)蛋白则是茉莉酸信号从SCF^coi1受体复合物向下游茉莉酸应答基因转导的纽带。采用比较基因组学的方法。从多谱系的角度对植物JAZ蛋白家族进行分子进化分析并取得以下研究结果。(1)在藻类植物、苔藓植物、蕨类植物、裸子植物及单、双子叶植物6个不同谱系的15种代表植物基因组中,鉴定了82个JAZ同源基因,其中在低等藻类植物基因组中没有鉴定到JAZ同源基因,提示JAZ家族基因可能起源于陆生植物。(2)系统发育分析表明,在植物基因组中JAZ蛋白家族可分为10个保守的亚家族,而谱系特异扩增尤其是串联重复和区段重复可能是陆生植物JAZ家族基因扩增与进化的主要机制,并导致多个谱系特异的JAZ亚家族产生。(3)基因结构分析表明,JAZ家族基因含有0一7个数目不等、62—4222bp长度不等的内含子,提示在植物基因组进化过程中,JAZ家族基因可能发生内含-丢失或内含子插入缺失,进而导致基因外显子.内含子结构的多样性。该研究结果将为植物JAZ蛋白家族的深入研究提供参考。 相似文献
18.
19.
20.
Sayomi Higa-Nakamine Noriko Maeda Seikichi Toku Hideyuki Yamamoto 《The Journal of biological chemistry》2015,290(43):25974-25985
The receptor for gonadotropin-releasing hormone (GnRH) belongs to the G protein-coupled receptors (GPCRs), and its stimulation activates extracellular signal-regulated protein kinase (ERK). We found that the transactivation of ErbB4 was involved in GnRH-induced ERK activation in immortalized GnRH neurons (GT1–7 cells). We found also that GnRH induced the cleavage of ErbB4. In the present study, we examined signal transduction for the activation of ERK and the cleavage of ErbB4 after GnRH treatment. Both ERK activation and ErbB4 cleavage were completely inhibited by YM-254890, an inhibitor of Gq/11 proteins. Down-regulation of protein kinase C (PKC) markedly decreased both ERK activation and ErbB4 cleavage. Experiments with two types of PKC inhibitors, Gö 6976 and bisindolylmaleimide I, indicated that novel PKC isoforms but not conventional PKC isoforms were involved in ERK activation and ErbB4 cleavage. Our experiments indicated that the novel PKC isoforms activated protein kinase D (PKD) after GnRH treatment. Knockdown and inhibitor experiments suggested that PKD1 stimulated the phosphorylation of Pyk2 by constitutively activated Src and Fyn for ERK activation. Taken together, it is highly possible that PKD1 plays a critical role in signal transduction from the PKC pathway to the tyrosine kinase pathway. Activation of the tyrosine kinase pathway may be involved in the progression of cancer. 相似文献