首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.The successful mitosis requires the assembly of a strictly bipolar mitotic apparatus that will ensure that chromosomes equally distribute to the daughter cells. This process is controlled by the centrosomes that are required for spindle formation and function (1). Abnormalities of centrosome have been demonstrated to cause chromosomal missegregation and generation of aneuploidy, consequently leading to cell malignant transformation and tumorigenesis (2, 3). The machinery that controls centrosome stability involves multiple important cellular proteins, including p53 (4), BRCA1 (5), Gadd45 (6, 7), p21 (8), and Cdk2/cyclin E (9). The precise coordination among those regulators maintains centrosome duplication and stability. Prior to mitosis, centrosomes undergo maturation (10), which is characterized by centrosome enlargement, recruitment of γ-tubulin, and an increased microtubule nucleation activity (11, 12). Centrosome maturation is regulated by several mitotic kinases (13), such as Plk1 (Polo-like kinase 1) (14), Aurora-A (15), and Nek2, a member of NIMA (never in mitosis gene A)-related kinase (16). Recently, a Plk1-regulated ninein-like protein, termed Nlp, has been characterized as an important molecule involved in centrosome maturation (17). Nlp interacts with γ-tubulin ring complex and stimulates microtubule nucleation in the interphase. Upon the G2/M transition, Nlp is subjected to phosphorylation by Plk1 and Nek2 (17, 18) and departs from the centrosome. It is thus suggested that the delicate association of Nlp with the centrosome is required for proper centrosome maturation and spindle assembly (17).BRCA1, a breast cancer susceptibility gene that accounts for more than 70% of hereditary breast cancer cases, is a critical regulator in the control of cell cycle progression (19, 20). BRCA1 interacts with multiple important cellular proteins, including RAD51 (21), BRCA2 (22), p53 (23), c-Myc (24), and p300 proteins (25). It is speculated that the BRCA1 protein may exert its control over cellular functions by acting as a platform for these proteins to converge and interact and may, therefore, create interactive modes for regulating their respective functions. BRCA1 is linked to the control of centrosome stability (26). Mouse embryonic fibroblasts (MEFs)3 carrying targeted deletion of exon 11 of the Brca1 gene exhibit centrosome amplification and abnormalities of spindle formation (5). BRCA1 may regulate centrosome duplication, probably through its interacting proteins such as p53 (23), BRCA2 (27), Cdk2 (28), and γ-tubulin (2931), or its downstream genes such as p21 (32) and Gadd45a (33, 34). Most recently, BRCA1 was reported to be required for mitotic spindle assembly through its interaction with three spindle pole proteins, TPX2, NuMA, nuclear mitotic apparatus protein; and XRHAMM, Xenopus homolog to human RHAXX (35). These findings strongly suggest that BRCA1 is involved in the mitotic machinery. However, the importance of BRCA1 in the control of mitotic progression still remains to be further defined.In this report, we demonstrate that BRCA1 physically interacts and colocalizes with Nlp. Nlp centrosomal localization and its protein stability are likely dependent on normal cellular BRCA1 function. Suppression of Nlp using the siRNA approach disturbs the process of chromosomal segregation and results in aberrant spindle formation, failure of chromosomal segregation, and aneuploidy.  相似文献   

6.
7.
Proinflammatory cytokines induce nitric oxide-dependent DNA damage and ultimately β-cell death. Not only does nitric oxide cause β-cell damage, it also activates a functional repair process. In this study, the mechanisms activated by nitric oxide that facilitate the repair of damaged β-cell DNA are examined. JNK plays a central regulatory role because inhibition of this kinase attenuates the repair of nitric oxide-induced DNA damage. p53 is a logical target of JNK-dependent DNA repair; however, nitric oxide does not stimulate p53 activation or accumulation in β-cells. Further, knockdown of basal p53 levels does not affect DNA repair. In contrast, expression of growth arrest and DNA damage (GADD) 45α, a DNA repair gene that can be regulated by p53-dependent and p53-independent pathways, is stimulated by nitric oxide in a JNK-dependent manner, and knockdown of GADD45α expression attenuates the repair of nitric oxide-induced β-cell DNA damage. These findings show that β-cells have the ability to repair nitric oxide-damaged DNA and that JNK and GADD45α mediate the p53-independent repair of this DNA damage.Insulin-dependent diabetes mellitus is an autoimmune disease characterized by the selective destruction of insulin-secreting pancreatic β-cells found in the islets of Langerhans (1). Cytokines, released from invading leukocytes during insulitis, are believed to participate in the initial destruction of β-cells, precipitating the autoimmune response (2, 3). Treatment of rat islets with the macrophage-derived cytokine interleukin-1 (IL-1)2 results in the inhibition of glucose-stimulated insulin secretion and oxidative metabolism and in the induction of DNA damage that ultimately results in β-cell death (46). Nitric oxide, produced in micromolar levels following enhanced expression of the inducible nitric-oxide synthase in β-cells, mediates the damaging actions of cytokines on β-cell function (79). Nitric oxide inhibits insulin secretion by attenuating the oxidation of glucose to CO2, reducing cellular levels of ATP and, thereby, attenuating ATP-inhibited K+ channel activity (10, 11). The net effect is the inhibition of β-cell depolarization, calcium entry, and calcium-dependent exocytosis. In addition to the inhibition of β-cell function, nitric oxide induces DNA damage in β-cells (4, 12, 13). Nitric oxide or the oxidation products N2O3 and ONOO induce DNA damage through direct strand breaks and base modification (1416) and by inhibition of DNA repair enzymes, thereby enhancing the damaging actions of nitric oxide (17, 18).Recent studies have shown that β-cells maintain a limited ability to recover from cytokine-mediated damage (19, 20). The addition of a nitric-oxide synthase inhibitor to islets treated for 24 h with cytokine and continued culture with the nitric-oxide synthase inhibitor and cytokine results in a time-dependent restoration of insulin secretion, mitochondrial aconitase activity, and the repair of nitric oxide-damaged DNA (20, 21). Nitric oxide plays a dual role in modifying β-cell responses to cytokines. Nitric oxide induces β-cell damage and also activates a JNK-dependent recovery response that requires new gene expression (22). The ability of β-cells to recover from cytokine-mediated damage is temporally limited because cytokine-induced β-cell damage becomes irreversible following a 36-h incubation, and islets at this point are committed to degeneration (19).The purpose of this study was to determine the mechanisms by which β-cells repair nitric oxide-damaged DNA. Previous reports have shown that DNA damage induced by oxidizing agents, such as nitric oxide, is repaired through the base excision repair pathway (23), but how this pathway is activated in response to nitric oxide is unknown. Similar to the recovery of metabolic function, we now show that the activation of JNK by nitric oxide is required for repair of cytokine-induced DNA damage in β-cells. p53 is a logical candidate to mediate this repair because it plays a central role in DNA repair, is a target of JNK, and is activated by nitric oxide (2427). However, we show that cytokines do not stimulate p53 phosphorylation, and nitric oxide fails to stimulate p53 accumulation and phosphorylation. Growth arrest and DNA damage (GADD) 45α is a DNA damage-inducible gene that can be regulated by both p53-dependent and p53-independent mechanisms (2831). In contrast to p53, we show that cytokines stimulate GADD45α expression in a nitric oxide- and JNK-dependent manner and that siRNA-mediated knockdown of GADD45α results in an attenuation in the repair of nitric oxide-mediated DNA damage. These findings support a role for JNK in the regulation of GADD45α-dependent and p53-independent repair of nitric oxide-damaged β-cell DNA.  相似文献   

8.
9.
10.
11.
Polo-like kinases regulate many aspects of mitotic and meiotic progression from yeast to man. In early mitosis, mammalian Polo-like kinase 1 (Plk1) controls centrosome maturation, spindle assembly, and microtubule attachment to kinetochores. However, despite the essential and diverse functions of Plk1, the full range of Plk1 substrates remains to be explored. To investigate the Plk1-dependent phosphoproteome of the human mitotic spindle, we combined stable isotope labeling by amino acids in cell culture with Plk1 inactivation or depletion followed by spindle isolation and mass spectrometry. Our study identified 358 unique Plk1-dependent phosphorylation sites on spindle proteins, including novel substrates, illustrating the complexity of the Plk1-dependent signaling network. Over 100 sites were validated by in vitro phosphorylation of peptide arrays, resulting in a broadening of the Plk1 consensus motif. Collectively, our data provide a rich source of information on Plk1-dependent phosphorylation, Plk1 docking to substrates, the influence of phosphorylation on protein localization, and the functional interaction between Plk1 and Aurora A on the early mitotic spindle.During mitosis, multiple processes, such as mitotic entry, spindle assembly, chromosome segregation, and cytokinesis, must be carefully coordinated to ensure the error-free distribution of chromosomes into the newly forming daughter cells. The physical separation of the chromosomes to opposite poles of the cell is driven by the mitotic spindle, a proteinaceous and highly dynamic microtubule (MT)1-based macromolecular machine. Spindle assembly begins early in mitosis and is completed when the bipolar attachment of microtubules to kinetochore (KT) pairs is achieved (1, 2). Polo-like kinase 1 (Plk1), a serine/threonine-specific kinase first identified in Drosophila (3), is one of the key regulators of this essential mitotic process and has therefore attracted much attention (46). In agreement with its diverse functions, the localization of Plk1 during mitosis is dynamic. Plk1 first associates with centrosomes in prophase before it localizes to spindle poles and KTs in prometaphase and metaphase. During anaphase, Plk1 is recruited to the central spindle and finally accumulates at the midbody during telophase. Proteomics studies using oriented peptide libraries have shown that two so-called polo boxes at the C-terminal end of Plk1, the polo box domain (PBD), are crucial for the localization of this kinase to cellular structures (7, 8). This domain binds to specific phosphorylated sequence motifs that are created by other priming kinases or are self-primed by Plk1 itself, thus providing an efficient mechanism to regulate localization and substrate selectivity in time and space (911).Despite the pleiotropic and critical functions of Plk1 during mitosis, only a limited number of target proteins and phosphorylation sites on substrates have so far been identified or studied in detail (46, 12). The difficulties in identification of bona fide Plk1 substrates stem from the low abundance of some substrates, technical limitations for determining in vivo phosphorylation sites, the requirement for Plk1 localization for recognition of some substrates, and the possibility that Plk1 may phosphorylate a broader consensus motif than determined previously (13). Recent developments in mass spectrometry (MS)-based proteomics have allowed the identification of a large number of in vivo phosphorylation sites from complex samples (14). However, the nature of the kinase(s) responsible for most of these phosphorylation events is still unclear, and the assignment of phosphorylation sites to individual kinases remains a challenging task. Previously, we explored the human mitotic spindle by MS and successfully identified a large number of novel spindle proteins and phosphorylation sites (15, 16). Now, the development of quantitative methods to monitor in vivo phosphorylation changes in complex samples (1719) represents a unique opportunity to address the role of individual kinases in spindle function.To study Plk1 function at the mitotic spindle, we combined quantitative proteomics using stable isotope labeling by amino acids in cell culture (SILAC) (20) with the isolation of human mitotic spindles and phosphopeptide enrichment. To expand the experimental coverage of Plk1 substrates and gain further insight into direct and indirect functions of Plk1, we compared the phosphoproteomes of mitotic spindles isolated from cells lacking Plk1 activity with spindles from cells with fully active kinase. Two independent approaches were used to interfere with Plk1 activity: protein depletion using an inducible small hairpin (shRNA) cell line and selective inhibition of the kinase by the small molecule inhibitor ZK-thiazolidinone (TAL) (21). Phosphorylation sites found to be down-regulated after Plk1 inhibition/depletion were subsequently validated using in vitro phosphorylation of synthetic peptide arrays. This approach identified many candidate Plk1 substrates, allowed confirmation of direct phosphorylation by Plk1 of more than 100 sites identified in vivo, and suggested a broader phosphorylation consensus motif for this kinase. Collectively, our data set provides a rich resource for in-depth studies on the spindle-associated Plk1-dependent phosphoproteome. This is illustrated by selective follow-up studies in which we validated the Plk1-dependent localization of substrates to centrosomes and kinetochores. In particular, using a phosphospecific antibody, we confirmed Plk1-dependent CENP-F phosphorylation in vivo and demonstrated that CENP-F localization to kinetochores depends on Plk1 kinase activity. Furthermore, we identified several Aurora A-dependent phosphorylation events that are regulated by Plk1, supporting the emerging view of an intimate functional relationship between Plk1 and Aurora A kinase (22, 23).  相似文献   

12.
13.
14.
Although PTIP is implicated in the DNA damage response, through interactions with 53BP1, the function of PTIP in the DNA damage response remain elusive. Here, we show that RNF8 controls DNA damage-induced nuclear foci formation of PTIP, which in turn regulates 53BP1 localization to the DNA damage sites. In addition, SMC1, a substrate of ATM, could not be phosphorylated at the DNA damage sites in the absence of PTIP. The PTIP-dependent pathway is important for DNA double strand breaks repair and DNA damage-induced intra-S phase checkpoint activation. Taken together, these results suggest that the role of PTIP in the DNA damage response is downstream of RNF8 and upstream of 53BP1. Thus, PTIP regulates 53BP1-dependent signaling pathway following DNA damage.The DNA damage response pathways are signal transduction pathways with DNA damage sensors, mediators, and effectors, which are essential for maintaining genomic stability (13). Following DNA double strand breaks, histone H2AX at the DNA damage sites is rapidly phosphorylated by ATM/ATR/DNAPK (410), a family homologous to phosphoinositide 3-kinases (11, 12). Subsequently, phospho-H2AX (γH2AX) provides the platform for accumulation of a larger group of DNA damage response factors, such as MDC1, BRCA1, 53BP1, and the MRE11·RAD50·NBS1 complex (13, 14), at the DNA damage sites. Translocalization of these proteins to the DNA double strand breaks (DSBs)3 facilitates DNA damage checkpoint activation and enhances the efficiency of DNA damage repair (14, 15).Recently, PTIP (Pax2 transactivation domain-interacting protein, or Paxip) has been identified as a DNA damage response protein and is required for cell survival when exposed to ionizing radiation (IR) (1, 1618). PTIP is a 1069-amino acid nuclear protein and has been originally identified in a yeast two-hybrid screening as a partner of Pax2 (19). Genetic deletion of the PTIP gene in mice leads to early embryonic lethality at embryonic day 8.5, suggesting that PTIP is essential for early embryonic development (20). Structurally, PTIP contains six tandem BRCT (BRCA1 carboxyl-terminal) domains (1618, 21). The BRCT domain is a phospho-group binding domain that mediates protein-protein interactions (17, 22, 23). Interestingly, the BRCT domain has been found in a large number of proteins involved in the cellular response to DNA damages, such as BRCA1, MDC1, and 53BP1 (7, 2429). Like other BRCT domain-containing proteins, upon exposure to IR, PTIP forms nuclear foci at the DSBs, which is dependent on its BRCT domains (1618). By protein affinity purification, PTIP has been found in two large complexes. One includes the histone H3K4 methyltransferase ALR and its associated cofactors, the other contains DNA damage response proteins, including 53BP1 and SMC1 (30, 31). Further experiments have revealed that DNA damage enhances the interaction between PTIP and 53BP1 (18, 31).To elucidate the DNA damage response pathways, we have examined the upstream and downstream partners of PTIP. Here, we report that PTIP is downstream of RNF8 and upstream of 53BP1 in response to DNA damage. Moreover, PTIP and 53BP1 are required for the phospho-ATM association with the chromatin, which phosphorylates SMC1 at the DSBs. This PTIP-dependent pathway is involved in DSBs repair.  相似文献   

15.
The cis-trans peptidylprolyl isomerase Pin1 plays a critical role in regulating a subset of phosphoproteins by catalyzing conformational changes on the phosphorylated Ser/Thr-Pro motifs. The phosphorylation-directed ubiquitination is one of the major mechanisms to regulate the abundance of p27Kip1. In this study, we demonstrate that Pin1 catalyzes the cis-trans conformational changes of p27Kip1 and further mediates its stability through the polyubiquitination mechanism. Our results show that the phosphorylated Thr-187-Pro motif in p27Kip1 is a key Pin1-binding site. In addition, NMR analyses show that this phosphorylated Thr-187-Pro site undergoes conformational change catalyzed by Pin1. Moreover, in Pin1 knock-out mouse embryonic fibroblasts, p27Kip1 has a shorter lifetime and displays a higher degree of polyubiquitination than in Pin1 wild-type mouse embryonic fibroblasts, suggesting that Pin1 plays a critical role in regulating p27Kip1 degradation. Additionally, Pin1 dramatically reduces the interaction between p27Kip1 and Cks1, possibly via isomerizing the cis-trans conformation of p27Kip1. Our study thus reveals a novel regulatory mechanism for p27Kip1 stability and sheds new light on the biological function of Pin1 as a general regulator of protein stability.Cellular differentiation and cell cycle inhibition are tightly controlled via sensitive molecular mechanisms. p27Kip1, a member of the Cip/Kip family, is an essential cell cycle inhibitor that functions largely during the G0/G1 phase where it promotes the assembly of the cyclin D1-CDK4 complex and inhibits the kinase activity of the cyclin E-CDK2 complex in the G1-S phase (14). Several review articles have elegantly summarized and discussed the detailed cellular functions of p27Kip1 (16). p27Kip1 is also a phosphoprotein with multiple Ser/Thr phosphorylation sites, including Ser-10, Ser-178, and Thr-187, followed by a proline residue. Hence, these motifs are potential substrate sites for proline-directed kinases (5, 6). Compared with Ser-178, which has not yet been well studied, the phosphorylation of Ser-10 and Thr-187 has been well characterized to be important for the regulation of p27Kip1 function. For instance, Ser-10 has been found to be the major phosphorylation site of p27Kip1 (7) and to play an important role in regulating cell migration (810), although the regulation of Ser-10 phosphorylation is still not completely defined (11, 12).In contrast to Ser-10 and Thr-178, Thr-187 is the best characterized phosphorylation site on p27Kip1 and is known to regulate the complex formation of p27Kip1-cyclin E-CDK2 (12). In addition, it is also widely accepted that Thr-187 plays a crucial role in determining the abundance of mature p27Kip1 proteins. The phosphorylation of Thr-187 directs p27Kip1 to an SCFSkp2 ubiquitin ligase complex (consisting of Skp2-Skp1-Cks1-Cul1-Roc1), which in turn promotes the polyubiquitination and degradation of p27Kip1 (13, 14). The crystal structure of the Skp1-Skp2-Cks1-p27Kip1 phosphopeptide complex shows that p27Kip1 binds both Cks1 and Skp2 and that the C terminus of Skp2 and Cks1 forms the substrate recognition core of the SCF complex (15). Furthermore, the structure of this complex has revealed that the phosphorylation of Thr-187 in p27Kip1 is recognized by the phosphate-binding site of Cks1, indicating that Cks1 is not only a facilitator but also an indispensable component in p27Kip1 degradation machinery (15).Pin1 is a unique peptidyl-prolyl isomerase (PPIase)2 that recognizes only the phosphorylated Ser/Thr motif preceding a proline residue (16). In addition, Pin1 is very prominent in isomerizing the cis-trans conformation of prolyl-peptidyl bonds in its substrates, resulting in either the modification of their function (e.g. c-Jun (17), β-catenin (18), Bax (19), and Notch1 (20)) or modulation of their stability (e.g. cyclin D1 (21), p53 (22, 23), and NF-κB (24)). Loss of Pin1 in mice results in several phenotypes similar to those of cyclin D1-null mice (21) and neuronal degenerative phenotypes (2528), suggesting the conformational changes mediated by Pin1 may be crucial for the normal functioning of cells. Additionally, Pin1 also plays important roles in cancer and other cellular events, which have been extensively discussed in several recent review articles (2933).In this study, we show that Pin1 binds to p27Kip1, mainly through the phosphorylated Thr-187-Pro motif, and causes subsequent prolyl isomerization of this cell cycle protein. Moreover, we also find that Pin1 can protect p27Kip1 from degradation. Importantly, we demonstrate that by catalyzing conformational changes in p27Kip1, Pin1 hinders its association with Cks1, resulting in a reduction of polyubiquitination of p27Kip1 and protecting its degradation by SCFSkp2 complexes. Our results suggest that the cis-trans isomerization catalyzed by Pin1 represents a novel regulatory mechanism during post-phosphorylation of proteins and polyubiquitination-directed degradation pathways.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号