首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Most human genes undergo alternative splicing, but aberrant splice forms are hallmarks of many cancers, usually resulting from mutations initiating abnormal exon skipping, intron retention, or the introduction of a new splice sites. We have identified a family of aberrant splice variants of HAS1 (the hyaluronan synthase 1 gene) in some B lineage cancers, characterized by exon skipping and/or partial intron retention events that occur either together or independently in different variants, apparently due to accumulation of inherited and acquired mutations. Cellular, biochemical, and oncogenic properties of full-length HAS1 (HAS1-FL) and HAS1 splice variants Va, Vb, and Vc (HAS1-Vs) are compared and characterized. When co-expressed, the properties of HAS1-Vs are dominant over those of HAS1-FL. HAS1-FL appears to be diffusely expressed in the cell, but HAS1-Vs are concentrated in the cytoplasm and/or Golgi apparatus. HAS1-Vs synthesize detectable de novo HA intracellularly. Each of the HAS1-Vs is able to relocalize HAS1-FL protein from diffuse cytoskeleton-anchored locations to deeper cytoplasmic spaces. This HAS1-Vs-mediated relocalization occurs through strong molecular interactions, which also serve to protect HAS1-FL from its otherwise high turnover kinetics. In co-transfected cells, HAS1-FL and HAS1-Vs interact with themselves and with each other to form heteromeric multiprotein assemblies. HAS1-Vc was found to be transforming in vitro and tumorigenic in vivo when introduced as a single oncogene to untransformed cells. The altered distribution and half-life of HAS1-FL, coupled with the characteristics of the HAS1-Vs suggest possible mechanisms whereby the aberrant splicing observed in human cancer may contribute to oncogenesis and disease progression.About 70–80% of human genes undergo alternative splicing, contributing to proteomic diversity and regulatory complexities in normal development (1). About 10% of mutations listed so far in the Human Gene Mutation Database (HGMD) of “gene lesions responsible for human inherited disease” were found to be located within splice sites. Furthermore, it is becoming increasingly apparent that aberrant splice variants, generated mostly due to splicing defects, play a key role in cancer. Germ line or acquired genomic changes (mutations) in/around splicing elements (24) promote aberrant splicing and aberrant protein isoforms.Hyaluronan (HA)3 is synthesized by three different plasma membrane-bound hyaluronan synthases (1, 2, and 3). HAS1 undergoes alternative and aberrant intronic splicing in multiple myeloma, producing truncated variants termed Va, Vb, and Vc (5, 6), which predicted for poor survival in a cohort of multiple myeloma patients (5). Our work suggests that this aberrant splicing arises due to inherited predispositions and acquired mutations in the HAS1 gene (7). Cancer-related, defective mRNA splicing caused by polymorphisms and/or mutations in splicing elements often results in inactivation of tumor suppressor activity (e.g. HRPT2 (8, 9), PTEN (10), MLHI (1114), and ATR (15)) or generation of dominant negative inhibitors (e.g. CHEK2 (16) and VWOX (17)). In breast cancer, aberrantly spliced forms of progesterone and estrogen receptors are found (reviewed in Ref. 3). Intronic mutations inactivate p53 through aberrant splicing and intron retention (18). Somatic mutations with the potential to alter splicing are frequent in some cancers (1925). Single nucleotide polymorphisms in the cyclin D1 proto-oncogene predispose to aberrant splicing and the cyclin D1b intronic splice variant (2629). Cyclin D1b confers anchorage independence, is tumorogenic in vivo, and is detectable in human tumors (30), but as yet no clinical studies have confirmed an impact on outcome. On the other hand, aberrant splicing of HAS1 shows an association between aberrant splice variants and malignancy, suggesting that such variants may be potential therapeutic targets and diagnostic indicators (19, 3133). Increased HA expression has been associated with malignant progression of multiple tumor types, including breast, prostate, colon, glioma, mesothelioma, and multiple myeloma (34). The three mammalian HA synthase (HAS) isoenzymes synthesize HA and are integral transmembrane proteins with a probable porelike structural assembly (3539). Although in humans, the three HAS genes are located on different chromosomes (hCh19, hCh8, and hCh16, respectively) (40), they share a high degree of sequence homology (41, 42). HAS isoenzymes synthesize a different size range of HA molecules, which exhibit different functions (43, 44). HASs contribute to a variety of cancers (4555). Overexpression of HASs promotes growth and/or metastatic development in fibrosarcoma, prostate, and mammary carcinoma, and the removal of the HA matrix from a migratory cell membrane inhibits cell movement (45, 53). HAS2 confers anchorage independence (56). Our work has shown aberrant HAS1 splicing in multiple myeloma (5) and Waldenstrom''s macroglobulinemia (6). HAS1 is overexpressed in colon (57), ovarian (58), endometrial (59), mesothelioma (60), and bladder cancers (61). A HAS1 splice variant is detected in bladder cancer (61).Here, we characterize molecular and biochemical characteristics of HAS1 variants (HAS1-Vs) (5), generated by aberrant splicing. Using transient transfectants and tagged HAS1 family constructs, we show that HAS1-Vs differ in cellular localization, de novo HA localization, and turnover kinetics, as compared with HAS1-FL, and dominantly influence HAS1-FL when co-expressed. HAS1-Vs proteins form intra- and intermolecular associations among themselves and with HAS1-FL, including covalent interactions and multimer formation. HAS1-Vc supports vigorous cellular transformation of NIH3T3 cells in vitro, and HAS1-Vc-transformed NIH3T3 cells are tumorogenic in vivo.  相似文献   

3.
4.
Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.Pre-mRNA splicing takes place in spliceosomes, the large RNA-protein complexes containing pre-mRNA, U1, U2, U4/6, and U5 small nuclear ribonucleoprotein particles (snRNPs), and a large number of accessory protein factors (for reviews, see references 21, 22, 37, 44, and 48). It is increasingly clear that the protein factors are important for pre-mRNA splicing and that studies of these factors are essential for further understanding of molecular mechanisms of pre-mRNA splicing.Most mammalian splicing factors have been identified by biochemical fractionation and purification (3, 15, 19, 3136, 45, 6971, 73), by using antibodies recognizing splicing factors (8, 9, 16, 17, 61, 66, 67, 74), and by sequence homology (25, 52, 74).Splicing factors containing arginine-serine-rich (RS) domains have emerged as important players in pre-mRNA splicing. These include members of the SR family, both subunits of U2 auxiliary factor (U2AF), and the U1 snRNP protein U1-70K (for reviews, see references 18, 41, and 59). Drosophila alternative splicing regulators transformer (Tra), transformer 2 (Tra2), and suppressor of white apricot (SWAP) also contain RS domains (20, 40, 42). RS domains in these proteins play important roles in pre-mRNA splicing (7, 71, 75), in nuclear localization of these splicing proteins (23, 40), and in protein-RNA interactions (56, 60, 64). Previous studies by us and others have demonstrated that one mechanism whereby SR proteins function in splicing is to mediate specific protein-protein interactions among spliceosomal components and between general splicing factors and alternative splicing regulators (1, 1a, 6, 10, 27, 63, 74, 77). Such protein-protein interactions may play critical roles in splice site recognition and association (for reviews, see references 4, 18, 37, 41, 47 and 59). Specific interactions among the splicing factors also suggest that it is possible to identify new splicing factors by their interactions with known splicing factors.Here we report identification of a new splicing factor, Sip1, by its interaction with the essential splicing factor SC35. The predicted Sip1 protein sequence contains an RS domain and a region with sequence similarity to the Drosophila splicing regulator, SWAP. We have expressed and purified recombinant Sip1 protein and raised polyclonal antibodies against the recombinant Sip1 protein. The anti-Sip1 antibodies specifically recognize a protein migrating at a molecular mass of approximately 210 kDa in HeLa nuclear extract. The anti-Sip1 antibodies sufficiently deplete Sip1 protein from the nuclear extract, and the Sip1-depleted extract is inactive in pre-mRNA splicing. Addition of recombinant Sip1 protein can partially restore splicing activity to the Sip1-depleted nuclear extract, indicating an essential role of Sip1 in pre-mRNA splicing. Other RS domain-containing proteins, including SC35, ASF/SF2, and U2AF65, cannot substitute for Sip1 in reconstituting splicing activity of the Sip1-depleted nuclear extract. However, addition of U2AF65 further increases splicing activity of Sip1-reconstituted nuclear extract, suggesting that there may be a functional interaction between Sip1 and U2AF65 in nuclear extract.  相似文献   

5.
6.
Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.The successful mitosis requires the assembly of a strictly bipolar mitotic apparatus that will ensure that chromosomes equally distribute to the daughter cells. This process is controlled by the centrosomes that are required for spindle formation and function (1). Abnormalities of centrosome have been demonstrated to cause chromosomal missegregation and generation of aneuploidy, consequently leading to cell malignant transformation and tumorigenesis (2, 3). The machinery that controls centrosome stability involves multiple important cellular proteins, including p53 (4), BRCA1 (5), Gadd45 (6, 7), p21 (8), and Cdk2/cyclin E (9). The precise coordination among those regulators maintains centrosome duplication and stability. Prior to mitosis, centrosomes undergo maturation (10), which is characterized by centrosome enlargement, recruitment of γ-tubulin, and an increased microtubule nucleation activity (11, 12). Centrosome maturation is regulated by several mitotic kinases (13), such as Plk1 (Polo-like kinase 1) (14), Aurora-A (15), and Nek2, a member of NIMA (never in mitosis gene A)-related kinase (16). Recently, a Plk1-regulated ninein-like protein, termed Nlp, has been characterized as an important molecule involved in centrosome maturation (17). Nlp interacts with γ-tubulin ring complex and stimulates microtubule nucleation in the interphase. Upon the G2/M transition, Nlp is subjected to phosphorylation by Plk1 and Nek2 (17, 18) and departs from the centrosome. It is thus suggested that the delicate association of Nlp with the centrosome is required for proper centrosome maturation and spindle assembly (17).BRCA1, a breast cancer susceptibility gene that accounts for more than 70% of hereditary breast cancer cases, is a critical regulator in the control of cell cycle progression (19, 20). BRCA1 interacts with multiple important cellular proteins, including RAD51 (21), BRCA2 (22), p53 (23), c-Myc (24), and p300 proteins (25). It is speculated that the BRCA1 protein may exert its control over cellular functions by acting as a platform for these proteins to converge and interact and may, therefore, create interactive modes for regulating their respective functions. BRCA1 is linked to the control of centrosome stability (26). Mouse embryonic fibroblasts (MEFs)3 carrying targeted deletion of exon 11 of the Brca1 gene exhibit centrosome amplification and abnormalities of spindle formation (5). BRCA1 may regulate centrosome duplication, probably through its interacting proteins such as p53 (23), BRCA2 (27), Cdk2 (28), and γ-tubulin (2931), or its downstream genes such as p21 (32) and Gadd45a (33, 34). Most recently, BRCA1 was reported to be required for mitotic spindle assembly through its interaction with three spindle pole proteins, TPX2, NuMA, nuclear mitotic apparatus protein; and XRHAMM, Xenopus homolog to human RHAXX (35). These findings strongly suggest that BRCA1 is involved in the mitotic machinery. However, the importance of BRCA1 in the control of mitotic progression still remains to be further defined.In this report, we demonstrate that BRCA1 physically interacts and colocalizes with Nlp. Nlp centrosomal localization and its protein stability are likely dependent on normal cellular BRCA1 function. Suppression of Nlp using the siRNA approach disturbs the process of chromosomal segregation and results in aberrant spindle formation, failure of chromosomal segregation, and aneuploidy.  相似文献   

7.
8.
9.
In Alzheimer disease (AD) and frontotemporal dementia the microtubule-associated protein Tau becomes progressively hyperphosphorylated, eventually forming aggregates. However, how Tau dysfunction is associated with functional impairment is only partly understood, especially at early stages when Tau is mislocalized but has not yet formed aggregates. Impaired axonal transport has been proposed as a potential pathomechanism, based on cellular Tau models and Tau transgenic mice. We recently reported K369I mutant Tau transgenic K3 mice with axonal transport defects that suggested a cargo-selective impairment of kinesin-driven anterograde transport by Tau. Here, we show that kinesin motor complex formation is disturbed in the K3 mice. We show that under pathological conditions hyperphosphorylated Tau interacts with c-Jun N-terminal kinase- interacting protein 1 (JIP1), which is associated with the kinesin motor protein complex. As a result, transport of JIP1 into the axon is impaired, causing JIP1 to accumulate in the cell body. Because we found trapping of JIP1 and a pathological Tau/JIP1 interaction also in AD brain, this may have pathomechanistic implications in diseases with a Tau pathology. This is supported by JIP1 sequestration in the cell body of Tau-transfected primary neuronal cultures. The pathological Tau/JIP1 interaction requires phosphorylation of Tau, and Tau competes with the physiological binding of JIP1 to kinesin light chain. Because JIP1 is involved in regulating cargo binding to kinesin motors, our findings may, at least in part, explain how hyperphosphorylated Tau mediates impaired axonal transport in AD and frontotemporal dementia.The microtubule-associated protein Tau is predominantly found in the axonal compartment of neurons, where it binds to microtubules (1). In human brain, six isoforms of Tau are expressed, due to alternative splicing of exons 2, 3 and 10 (2). Tau consists of an amino-terminal projection domain followed by 3 or 4 microtubule binding repeats (3R or 4R), due to splicing of exon 10, and a carboxyl-terminal tail region. In the AD3 and FTD brain, Tau forms filamentous inclusions (3). They are found in nerve cell bodies and apical dendrites as neurofibrillary tangles (NFTs), in distal dendrites as neuropil threads, and in the abnormal neurites that are associated with some amyloid plaques (neuritic plaques) (3). Hyperphosphorylation of Tau is thought to be an initiating step (4), as it detaches Tau from microtubules and makes it prone to form aggregates (1, 5). Whereas in AD no mutations have been identified in the MAPT gene encoding Tau, so far 42 intronic and exonic mutations have been found in familial forms of FTD (6). Their identification assisted in the generation of transgenic mouse models that reproduce NFT formation and memory impairment (7).The models were also instrumental in testing hypotheses that had been brought forward to link Tau pathology to functional impairment (810). In particular, defects in axonal transport have been implicated in neurodegenerative disorders (11, 12). Tau binding to microtubules affects axonal transport (13), and in cell culture overexpression of Tau was shown to lead to impaired transport of mitochondria and vesicles (14, 15). Axonal transport defects have also been reproduced in wild-type Tau transgenic mice (16) and in K369I mutant Tau K3 mice (17), whereas Tau expression failed to inhibit axonal transport in other systems (18, 19). This apparent discrepancy may depend on the type of cargos analyzed and, specifically, the experimental paradigm, e.g. using phosphorylated (16, 17, 20) versus non-phosphorylated Tau (18).To dissect Tau-mediated axonal transport defects at a molecular level, we used K3 mice that overexpress human Tau carrying the pathogenic FTD K369I mutation (17). We observed a pronounced hyperphosphorylation of transgenic Tau in many brain areas. Clinically, the mice present with an early onset motor phenotype that is, at least in part, caused by impairment of axonal transport in neurons of the substantia nigra. Interestingly, only selected aspects of anterograde axonal transport were impaired, in particular those of kinesin-I motor complex-driven vesicles and mitochondria. Our data suggest a selective impairment of axonal transport rather than a generalized, non-selective blockage of microtubules that has been established in cell culture systems, which fail to phosphorylate Tau at the high levels that are found in vivo even under physiological conditions. More importantly, in AD and FTD Tau is even more phosphorylated, i.e. hyperphosphorylated at physiological sites and de novo at pathological sites, preventing it from binding to microtubules (1).Based on our findings of an impaired kinesin-I-driven axonal transport in the K3 mice, we speculated that hyperphosphorylated Tau may impair anterograde transport by interfering directly with components of the kinesin-I motor complex rather than disrupting the binding of the kinesin heavy chain (see below) to microtubules. Axonal transport along microtubules is mediated by members of the kinesin superfamily (KIF) of motor proteins (2123). The KIFs typically consist of an ATPase domain that interacts with microtubules and drives movement and a domain that links to cargos, either directly or indirectly, as in the case of KIF5, by assembling with the kinesin light chain (KLC) to form the kinesin-I (KIF5/KLC) motor complex (24). In addition, increasing evidence suggests that scaffolding proteins mediate and regulate the binding of cargos to KIFs (21, 2527). These include the scaffold protein JNK-interacting protein (JIP) that is involved in the linkage of cargos to the kinesin-I motor complex via KLC (25, 2833).Here, by using the K3 mouse model, we identified a novel interaction of Tau and JIP in neurons that causes a trapping of JNK interacting protein 1 (JIP1) in the cell body of K3 mice, cell culture systems, and human AD brain. We found that the pathological interaction of hyperphosphorylated Tau and JIP1 competes with the physiological binding of JIP1 to KLC.  相似文献   

10.
11.
12.
The acid-sensing ion channels (ASICs) open in response to extracellular acidic pH, and individual subunits display differential sensitivity to protons and calcium. ASIC1a acts as a high affinity proton sensor, whereas ASIC2a requires substantially greater proton concentrations to activate. Using chimeras composed of ASIC1a and ASIC2a, we determined that two regions of the extracellular domain (residues 87–197 and 323–431) specify the high affinity proton response of ASIC1a. These two regions appear to undergo intersubunit interactions within the multimeric channel to specify proton sensitivity. Single amino acid mutations revealed that amino acids around Asp357 play a prominent role in determining the pH dose response of ASIC1a. Within the same region, mutation F352L abolished PcTx1 modulation of ASIC1a. Surprisingly, we determined that another area of the extracellular domain was required for calcium-dependent regulation of ASIC1a activation, and this region functioned independently of high affinity proton sensing. These results indicate that specific regions play overlapping roles in pH-dependent gating and PcTx1-dependent modulation of ASIC1a activity, whereas a distinct region determines the calcium dependence of ASIC1a activation.The acid-sensing ion channels (ASICs)3 are proton-gated ion channels expressed in neurons throughout the central and peripheral nervous system (13). ASICs are activated by extracellular acidosis, and protons act as ligands triggering channel opening (4). Disruption of the accn2 gene (which encodes ASIC1) dramatically reduces proton-gated currents in central neurons and alters a variety of behaviors, including fear, learning, and memory (5, 6). ASIC1 also contributes to neuronal damage and death during the prolonged acidosis accompanying cerebral ischemia (7). Specifically, mice with disruptions in the accn2 gene display 60% smaller lesion size compared with normal mice in models of stroke (8). Application of PcTx1, a venom peptide that prevents ASIC1a activation, is similarly neuroprotective, even when administered hours after injury (8, 9). Thus, ASIC1a represents a novel pharmacological target for the prevention of neuronal death following stroke.Mammals have four genes encoding ASICs (accn1 to -4) that encode at least six different ASIC subunits (13, 10). Like all members of the DEG/ENaC family, individual ASIC subunits have two transmembrane regions separated by a large cysteine-rich extracellular region. Three ASIC subunits associate to form homomeric or heteromeric channels with distinct biophysical characteristics (1114). Specifically, ASIC1a homomeric channels activate at pH values much closer to neutral pH compared with ASIC2a homomeric channels. The high affinity proton sensitivity of ASIC1a plays a prominent role in acidosis-induced neuronal death, and modulators that alter the pH dose response of ASIC1a affect neuronal sensitivity to prolonged acidosis (8, 9, 15). For example, the neuroprotective venom peptide PcTx1 increases the proton sensitivity of the ASIC1a channel, allowing the channel to desensitize at neutral pH and become unresponsive to subsequent acidic shifts in pH (16, 17). The large extracellular region of ASIC1a is thought to be the site of proton/modulator interaction and governs the characteristics of channel gating (10, 11, 18). However, the exact molecular mechanisms defining ASIC1a activation and the protein domains that are responsible for the apparent proton sensitivity of ASIC1a remain unclear. Here, we used chimeras containing specific regions from both ASIC1a and ASIC2a to identify the specific protein regions that confer high affinity proton sensing, PcTx1 sensitivity, and calcium modulation to ASIC1a.  相似文献   

13.
The kinetochore, which consists of centromere DNA and structural proteins, is essential for proper chromosome segregation in eukaryotes. In budding yeast, Sgt1 and Hsp90 are required for the binding of Skp1 to Ctf13 (a component of the core kinetochore complex CBF3) and therefore for the assembly of CBF3. We have previously shown that Sgt1 dimerization is important for this kinetochore assembly mechanism. In this study, we report that protein kinase CK2 phosphorylates Ser361 on Sgt1, and this phosphorylation inhibits Sgt1 dimerization.The kinetochore is a structural protein complex located in the centromeric region of the chromosome coupled to spindle microtubules (1, 2). The kinetochore generates a signal to arrest cells during mitosis when it is not properly attached to microtubules, thereby preventing chromosome missegregation, which can lead to aneuploidy (3, 4). The molecular structure of the kinetochore complex of the budding yeast Saccharomyces cerevisiae has been well characterized; it is composed of more than 70 proteins, many of which are conserved in mammals (2).The centromere DNA in the budding yeast is a 125-bp region that contains three conserved regions, CDEI, CDEII, and CDEIII (5, 6). CDEIII (25 bp) is essential for centromere function (7) and is bound to a key component of the centromere, the CBF3 complex. The CBF3 complex contains four proteins, Ndc10, Cep3, Ctf13 (815), and Skp1 (14, 15), all essential for viability. Mutations in any of the CBF3 proteins abolish the ability of CDEIII to bind to CBF3 (16, 17). All of the kinetochore proteins, except the CDEI-binding Cbf1 (1820), localize to the kinetochores in a CBF3-dependent manner (2). Thus, CBF3 is a fundamental kinetochore complex, and its mechanism of assembly is of great interest.We have previously found that Sgt1 and Skp1 activate Ctf13; thus, they are required for assembly of the CBF3 complex (21). The molecular chaperone Hsp90 is also required to form the active Ctf13-Skp1 complex (22). Sgt1 has two highly conserved motifs that are required for protein-protein interaction: the tetratricopeptide repeat (21) and the CHORD protein and Sgt1-specific motif. We and others have found that both domains are important for the interaction of Sgt1 with Hsp90 (2326), which is required for assembly of the core kinetochore complex. This interaction is an initial step in kinetochore activation (24, 26, 27), which is conserved between yeast and humans (28, 29).We have recently shown that Sgt1 dimerization is important for Sgt1-Skp1 binding and therefore for kinetochore assembly (30). In this study, we have found that protein kinase CK2 phosphorylates Sgt1 at Ser361, and this phosphorylation inhibits Sgt1 dimerization. Therefore, CK2 appears to regulate kinetochore assembly negatively in budding yeast.  相似文献   

14.
Many biological processes involve the mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Thus, the challenge of deciphering mTORC1-mediated functions during normal and pathological states in the central nervous system is challenging. Because mTORC1 is at the core of translation, we have investigated mTORC1 function in global and regional protein expression. Activation of mTORC1 has been generally regarded to promote translation. Few but recent works have shown that suppression of mTORC1 can also promote local protein synthesis. Moreover, excessive mTORC1 activation during diseased states represses basal and activity-induced protein synthesis. To determine the role of mTORC1 activation in protein expression, we have used an unbiased, large-scale proteomic approach. We provide evidence that a brief repression of mTORC1 activity in vivo by rapamycin has little effect globally, yet leads to a significant remodeling of synaptic proteins, in particular those proteins that reside in the postsynaptic density. We have also found that curtailing the activity of mTORC1 bidirectionally alters the expression of proteins associated with epilepsy, Alzheimer''s disease, and autism spectrum disorder—neurological disorders that exhibit elevated mTORC1 activity. Through a protein–protein interaction network analysis, we have identified common proteins shared among these mTORC1-related diseases. One such protein is Parkinson protein 7, which has been implicated in Parkinson''s disease, yet not associated with epilepsy, Alzheimers disease, or autism spectrum disorder. To verify our finding, we provide evidence that the protein expression of Parkinson protein 7, including new protein synthesis, is sensitive to mTORC1 inhibition. Using a mouse model of tuberous sclerosis complex, a disease that displays both epilepsy and autism spectrum disorder phenotypes and has overactive mTORC1 signaling, we show that Parkinson protein 7 protein is elevated in the dendrites and colocalizes with the postsynaptic marker postsynaptic density-95. Our work offers a comprehensive view of mTORC1 and its role in regulating regional protein expression in normal and diseased states.The mechanistic/mammalian target of rapamycin complex 1 (mTORC1)1 is a serine/threonine protein kinase that is highly expressed in many cell types (1). In the brain, mTORC1 tightly coordinates different synaptic plasticities — long-term potentiation (LTP) and long-term depression (LTD) — the molecular correlates of learning and memory (25). Because mTORC1 is at the core of many synaptic signaling pathways downstream of glutamate and neurotrophin receptors, many hypothesize that dysregulated mTORC1 signaling underlies cognitive deficits observed in several neurodegenerative diseases (3, 617). For example, mTORC1 and its downstream targets are hyperactive in human brains diagnosed with Alzheimer''s disease (AD) (1820). Additionally in animal models of autism spectrum disorder (ASD), altered mTORC1 signaling contributes to the observed synaptic dysfunction and aberrant network connectivity (13, 15, 2127). Furthermore, epilepsy, which is common in AD and ASD, has enhanced mTORC1 activity (2832).Phosphorylation of mTORC1, considered the active form, is generally regarded to promote protein synthesis (33). Thus, many theorize that diseases with overactive mTORC1 arise from excessive protein synthesis (14). Emerging data, however, show that suppressing mTORC1 activation can trigger local translation in neurons (34, 35). Pharmacological antagonism of N-methyl-d-aspartate (NMDA) receptors, a subtype of glutamate receptors that lies upstream of mTOR activation, promotes the synthesis of the voltage-gated potassium channel, Kv1.1, in dendrites (34, 35). Consistent with these results, in models of temporal lobe epilepsy there is a reduction in the expression of voltage-gated ion channels including Kv1.1 (30, 31, 36). Interestingly in a model of focal neocortical epilepsy, overexpression of Kv1.1 blocked seizure activity (37). Because both active and inactive mTORC1 permit protein synthesis, we sought to determine the proteins whose expression is altered when mTORC1 phosphorylation is reduced in vivo.Rapamycin is an FDA-approved, immunosuppressive drug that inhibits mTORC1 activity (38). We capitalized on the ability of rapamycin to reduce mTORC1 activity in vivo and the unbiased approach of mass spectrometry to identify changes in protein expression. Herein, we provide evidence that mTORC1 activation bidirectionally regulates protein expression, especially in the PSD where roughly an equal distribution of proteins dynamically appear and disappear. Remarkably, using protein–protein interaction networks facilitated the novel discovery that PARK7, a protein thus far only implicated in Parkinson''s disease, (1) is up-regulated by increased mTORC1 activity, (2) resides in the PSD only when mTORC1 is active, and (3) is aberrantly expressed in a rodent model of TSC, an mTORC1-related disease that has symptoms of epilepsy and autism. Collectively, these data provide the first comprehensive list of proteins whose abundance or subcellular distributions are altered with acute changes in mTORC1 activity in vivo.  相似文献   

15.
During mitosis, establishment of structurally and functionally sound bipolar spindles is necessary for maintaining the fidelity of chromosome segregation. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a mitotic spindle-associated protein whose level is frequently up-regulated in various malignancies. Previous reports have suggested that TMAP is a potential regulator of mitotic spindle assembly and dynamics and that it is required for chromosome segregation to occur properly. So far, there have been no reports on how its mitosis-related functions are regulated. Here, we report that TMAP is hyper-phosphorylated at the C terminus specifically during mitosis. At least four different residues (Thr-578, Thr-596, Thr-622, and Ser-627) were responsible for the mitosis-specific phosphorylation of TMAP. Among these, Thr-622 was specifically phosphorylated by Cdk1-cyclin B1 both in vitro and in vivo. Interestingly, compared with the wild type, a phosphorylation-deficient mutant form of TMAP, in which Thr-622 had been replaced with an alanine (T622A), induced a significant increase in the frequency of metaphase cells with abnormal bipolar spindles, which often displayed disorganized, asymmetrical, or narrow and elongated morphologies. Formation of these abnormal bipolar spindles subsequently resulted in misalignment of metaphase chromosomes and ultimately caused a delay in the entry into anaphase. Moreover, such defects resulting from the T622A mutation were associated with a decrease in the rate of protein turnover at spindle microtubules. These findings suggest that Cdk1-cyclin B1-mediated phosphorylation of TMAP is important for and contributes to proper regulation of microtubule dynamics and establishment of functional bipolar spindles during mitosis.Tumor-associated microtubule-associated protein (TMAP),3 also known as cytoskeleton-associated protein 2 (CKAP2), LB-1, and se20-10, is frequently up-regulated in various malignancies, including gastric adenocarcinoma, diffuse B-cell lymphoma, and cutaneous T-cell lymphoma (13), and detected in various cancer cell lines (1, 4). Knockdown of TMAP significantly reduces the rate of cell growth (5, 6), indicating that it is essential for normal cell growth. However, the cellular functions of TMAP remain largely unknown. Recent findings indicate that TMAP plays an essential role in mitosis. Expression of TMAP changes in a cell cycle-dependent manner; its expression is relatively low during G1, starts to incline during G1/S transition, and peaks at G2/M phases of the cell cycle (5, 7). TMAP primarily localizes at mitotic spindle and spindle poles during mitosis (1, 4, 8, 9). During late stages of mitosis, however, TMAP localizes near the chromatin region and to the midbody microtubules (8). TMAP has microtubule-stabilizing properties (4, 8, 9), and its overexpression induces mitotic spindle defects, including monopolar spindle formation, and arrests cells at mitosis as a result (8). Similar to other mitotic regulators, TMAP is a substrate of the anaphase-promoting complex (8). TMAP is degraded during mitotic exit by the anaphase-promoting complex-Cdh1 in a KEN box-dependent manner. Results of the experiments using a nondegradable mutant of TMAP suggested that proper regulation of the TMAP protein level is functionally important for establishment of bipolar spindles and completion of cytokinesis. Recently, we also have shown that siRNA-mediated depletion of TMAP in mammalian cells results in chromosome missegregation, characterized by chromatin bridge formation and malformation of interphase nuclei, and such phenotype was associated with a reduction in the spindle assembly checkpoint activity (6). These findings suggest that TMAP is a potential regulator of mitotic spindle function and dynamics and that proper regulation of its protein level and functions is necessary for establishment of bipolar spindles as well as for maintaining the fidelity of the chromosome segregation process.At the onset of mitosis, the microtubule network undergoes extensive rearrangements to form a unique bipolar structure, called the mitotic spindle. Multiple factors have been shown to associate with the mitotic spindle and regulate its function by influencing its assembly and dynamics (10, 11). Establishment of a functional bipolar mitotic spindle is critical for faithful segregation of sister chromatids and maintenance of genomic stability. In support of this notion, disruption or depletion of factors involved in regulation of the spindle microtubule dynamics or establishment of spindle bipolarity have been shown to induce spindle dysfunction and ultimately chromosome missegregation (1214).The cyclin-dependent kinase 1 (Cdk1) in complex with cyclin B1 (Cdk1-cyclin B1) is one of the key mitotic kinases. The kinase activity of Cdk1-cyclin B1 governs the entry into mitosis from G2 phase of the cell cycle (15, 16). Through mediating phosphorylation of a variety of substrates, Cdk1-cyclin B1 also plays an important role in multiple processes during mitosis, including chromosome condensation, nuclear envelope breakdown, centrosome separation, regulation of spindle microtubule dynamics, and metaphase to anaphase transition (1720). In particular, a number of regulators of microtubules are among Cdk1-cyclin B1 substrates (21). For instance, phosphorylation of a kinesin-related motor protein, Eg5, by Cdk1-cyclin B1 is necessary for its centrosomal localization and ultimately for the centrosome separation process to occur properly (18). Also, Cdk1-cyclin B1-mediated phosphorylation of some of the effectors of microtubule dynamics has been shown to regulate their microtubule-stabilizing or -destabilizing activities during mitosis (22, 23). These suggest that the assembly and maintenance of bipolar spindles during mitosis are under regulation of Cdk1-cyclin B1.We have recently reported that TMAP is phosphorylated specifically during mitosis (24), which led us to hypothesize that the mitotic functions of TMAP are regulated by timely phosphorylation. In the present study, we identified multiple, mitosis-specific phosphorylation sites on TMAP, one of which is phosphorylated by Cdk1-cyclin B1, and investigated the functional importance of Cdk1-cyclin B1-mediated phosphorylation of TMAP during mitosis.  相似文献   

16.
17.
18.
19.
Upon DNA replication stress, stalled DNA replication forks serve as a platform to recruit many signaling proteins, leading to the activation of the DNA replication checkpoint. Activation of Rad53, a key effector kinase in the budding yeast Saccharomyces cerevisiae, is essential for stabilizing DNA replication forks during replication stress. Using an activity-based assay for Rad53, we found that Mrc1, a replication fork-associated protein, cooperates with Mec1 to activate Rad53 directly. Reconstitution of Rad53 activation using purified Mec1 and Mrc1 showed that the addition of Mrc1 stimulated a more than 70-fold increase in the ability of Mec1 to activate Rad53. Instead of increasing the catalytic activity of Mec1, Mrc1 was found to facilitate the phosphorylation of Rad53 by Mec1 via promotion of a stronger enzyme-substrate interaction between them. Further, the conserved C-terminal domain of Mrc1 was found to be required for Rad53 activation. These results thus provide insights into the role of the adaptor protein Mrc1 in activating Rad53 in the DNA replication checkpoint.Faithful replication of the genome is important for the survival of all organisms. During DNA replication, replication stress can arise from a variety of situations, including intrinsic errors made by DNA polymerases, difficulties in replicating repeated DNA sequences, and failures to repair damaged DNA caused by either endogenous oxidative agents or exogenous mutagens such as UV light and DNA-damaging chemicals (13). In eukaryotes, there is an evolutionarily conserved DNA replication checkpoint that becomes activated in response to DNA replication stress. It helps to stabilize DNA replication forks, block late replication origin firing, and delay mitosis and ultimately helps recovery from stalled replication forks after DNA repair (47). Defects in the DNA replication checkpoint could result in elevated genomic instabilities, cancer development, or cell death (8, 9).Aside from replicating the genome, the DNA replication forks also provide a platform to assemble many signaling proteins that function in the DNA replication checkpoint. In the budding yeast Saccharomyces cerevisiae, Mec1, an ortholog of human ATR,2 is a phosphoinositide 3-kinase-like kinase (PIKK) involved in sensing stalled DNA replication forks. Mec1 forms a protein complex with Ddc2 (ortholog of human ATRIP). The Mec1-Ddc2 complex is recruited to stalled replication forks through replication protein A (RPA)-coated single-stranded DNA (10, 11). The Mec3-Rad17-Ddc1 complex, a proliferating cell nuclear antigen (PCNA)-like checkpoint clamp and ortholog of the human 9-1-1 complex, was shown to be loaded onto the single- and double-stranded DNA junction of the stalled replication forks by the clamp loader Rad24-RFC complex (12). Once loaded, the Mec3-Rad17-Ddc1 complex stimulates Mec1 kinase activity (13). Dbp11 and its homolog TopBP1 in vertebrates are known components of the replication machinery (14). In addition to regulating the initiation of DNA replication, they were found to play a role in the DNA replication checkpoint (1517). They interact with the 9-1-1 complex and directly stimulate Mec1/ATR activity in vitro (1820). Thus, the assembly of multiple protein complexes at stalled DNA replication forks appears to facilitate activation of the DNA replication checkpoint (13, 18).Mrc1 (for mediator of replication checkpoint) was originally identified to be important for cells to respond to hydroxyurea in S. cerevisiae and Schizosaccharomyces pombe (21, 22). Mrc1 is a component of the DNA replisome and travels with the replication forks along chromosome during DNA synthesis (2325). Deletion of MRC1 causes defects in DNA replication, indicating its role in the normal progression of DNA replication (23). Interestingly, when DNA replication is blocked by hydroxyurea, Mrc1 undergoes Mec1- and Rad3 (S. pombe ortholog of Mec1)-dependent phosphorylation (21, 22). In S. cerevisiae, mutations of Mrc1 at the (S/T)Q sites, which are consensus phosphorylation sites of the Mec1/ATR family kinases, abolishes hydroxyurea-induced Mrc1 phosphorylation in vivo, suggesting a direct phosphorylation of Mrc1 by Mec1 (21, 22).Rad53 and Cds1, homologs of human Chk2, are the major effector kinases in the DNA replication checkpoints in S. cerevisiae and S. pombe, respectively. Activation of Rad53 is a hallmark of DNA replication checkpoint activation and is important for the maintenance of DNA replication forks in response to DNA replication stress (5, 6). Thus, it is important to understand how Rad53 activity is controlled. Interestingly, mutation of all the (S/T)Q sites of Mrc1 not only abolishes the phosphorylation of Mrc1 by Mec1 but also compromises hydroxyurea-induced Rad53 activation in S. cerevisiae (21). Similarly, mutation of the TQ sites of Mrc1 in S. pombe was shown to abolish the binding between Cds1 and Mrc1 as well as Cds1 activation (22). Further, mutation of specific TQ sites of Mrc1 in S. pombe abolishes its binding to Cds1 in vitro and the activation of Cds1 in vivo (26). Thus, Mec1/Rad3-dependent phosphorylation of Mrc1 is responsible for Mrc1 binding to Rad53/Cds1, which is essential for Rad53/Cds1 activation.An intriguing property of the Chk2 family kinases is their ability to undergo autophosphorylation and activation in the absence of other proteins in vitro (27, 28). First, autophosphorylation of a conserved threonine residue in the activation loop of Chk2 family kinase was found to be an essential part of their activation processes (26, 2931). Second, a direct and trans-phosphorylation of the N-terminal TQ sites of the Chk2 family kinases by the Mec1/ATR family kinases is also important for their activation in vivo. Analogous to the requirement of N-terminal TQ site phosphorylation of Chk2 by ATR in human (32), the activation of Rad53/Cds1 in vivo requires phosphorylation of TQ sites in their N termini by Mec1/Rad3 (33, 34).Considering that Mec1, Mrc1, and many other proteins are recruited at stalled DNA replication forks and have been shown to be involved in DNA replication checkpoint activation, a key question remains unresolved: what is the minimal system that is capable of activating Rad53 directly? Given the direct physical interaction between Mrc1 and Rad53 and the requirement of Mrc1 and Mec1 in vivo, it is likely that they both play a role in Rad53 activation. Furthermore, what is the molecular mechanism of Rad53 activation by its upstream activators? To address these questions, a faithful reconstitution of the activation of Rad53 using purified proteins is necessary. In this study, we developed an activity-based assay consisting of the Dun1 kinase, a downstream substrate of Rad53, and Sml1, as a substrate of Dun1, to quantitatively measure the activity of Rad53. Using this coupled kinase assay from Rad53 to Dun1 and then to Sml1, we screened for Mrc1 and its associated factors to see whether they could directly activate Rad53 in vitro. Our results showed that Mec1 and Mrc1 collaborate to constitute a minimal system in direct activation of Rad53.  相似文献   

20.
Human FGF1 (fibroblast growth factor 1) is a powerful signaling molecule with a short half-life in vivo and a denaturation temperature close to physiological. Binding to heparin increases the stability of FGF1 and is believed to be important in the formation of FGF1·fibroblast growth factor receptor (FGFR) active complex. In order to reveal the function of heparin in FGF1·FGFR complex formation and signaling, we constructed several FGF1 variants with reduced affinity for heparin and with diverse stability. We determined their biophysical properties and biological activities as well as their ability to translocate across cellular membranes. Our study showed that increased thermodynamic stability of FGF1 nicely compensates for decreased binding of heparin in FGFR activation, induction of DNA synthesis, and cell proliferation. By stepwise introduction of stabilizing mutations into the K118E (K132E) FGF1 variant that shows reduced affinity for heparin and is inactive in stimulation of DNA synthesis, we were able to restore the full mitogenic activity of this mutant. Our results indicate that the main role of heparin in FGF-induced signaling is to protect this naturally unstable protein against heat and/or proteolytic degradation and that heparin is not essential for a direct FGF1-FGFR interaction and receptor activation.FGF1 (fibroblast growth factor 1) belongs to a family of polypeptide growth factors comprising in humans 22 structurally related proteins (1, 2). The signaling induced by the growth factor leads to a wide range of cellular responses during development as well as in adult life, such as growth regulation, differentiation, survival, stress response, migration, and proliferation of different cell types (3). The biological activity of FGF1 is exerted through binding to four high affinity cell surface receptors (FGFR1–4), resulting in receptor dimerization and transphosphorylation in its tyrosine kinase domain (4, 5). The activated FGFR3 induces cellular response by initiating several signaling cascades, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/Akt, and phospholipase C-γ (PLC-γ) pathways (6).In addition to FGFRs, FGF1 binds to heparan sulfates (HS) associated with proteoglycans at the cell surface and in the extracellular matrix (7). Among the physiological sugars, the highest affinity for FGF1 is shown by heparin, a widely used linear, highly sulfated polysaccharide composed of 2-O-sulfated iduronic acid and 6-O-sulfated, N-sulfated glucosamine units (8).Despite many years of research, there is still controversy regarding the molecular role of heparin/HS in FGF1- and FGF2-induced signaling. Thus, the question of whether or not the linkage of two molecules of the growth factor by heparin/HS is an absolute prerequisite for induction of FGFR dimerization is still open. Numerous studies have concluded that the presence of heparin/HS is obligatory for FGF signaling. It is widely believed that heparin/HS is directly involved in receptor dimerization and is critical for mitogenic response stimulated by the growth factor (4, 6, 810).On the other hand, several authors working on FGF1 and FGF2 have suggested that there is no mandatory requirement for heparin for the assembly and activation of the FGF·FGFR complex. They imply that heparin only plays a role in association of two molecules of the growth factor and therefore facilitates their binding to FGFR (11). It has been reported that FGF1 and FGF2 can interact with the FGFR and trigger phosphorylation of p42/44 MAPK and activation of other signaling pathways even in the absence of HS (1216).The accepted role of heparin/HS in FGF1 signaling is to prevent the degradation of the growth factor (17). The interaction with heparin or HS protects FGF1 against heat, acidic pH, and proteases (18, 19). HS also seems to regulate the activity of different FGFs by creating their local reservoir and generating a concentration gradient of the growth factor (6, 17).The binding of FGF1 to heparin/HS is mediated by specific residues forming a positively charged patch on the protein surface (20, 21). The major contribution is made by Lys118 (Lys132 in the full-length numbering system), which was identified by Harper and Lobb (22), and Lys112 and Arg122 (23, 24). Additional residues of FGF1 involved in the interaction with heparin are the positively charged Lys113, Arg119, and Lys128 and the polar Asn18, Asn114, and Gln127 (20, 21). Site-directed mutagenesis and other studies have revealed the importance of Lys118 not only in heparin binding but also for the biological function of FGF1 (22, 25, 26). It was shown that the K118E (K132E) mutant is inactive in stimulation of DNA synthesis, although its affinity for FGFR and the ability to activate signaling cascades is not reduced (27, 28). Despite extensive research, the reason for the lack of mitogenic potential of K118E FGF1 is still not clear.In this paper, we verified the function of heparin in FGF1·FGFR complex formation and signaling by constructing several FGF1 mutants with reduced affinity for heparin. To recover the stability of these variants, which could no longer be stabilized by heparin, we supplemented them stepwise with stabilizing mutations (29). We analyzed thoroughly their biological activity and their ability to translocate across cellular membranes (3034). Interestingly, the full mitogenic activity of the K118E FGF1 variant was restored by the introduced stabilizing mutations.Our results indicate that the main role of heparin in FGF-induced signaling is to protect this naturally unstable protein against heat denaturation and proteolytic degradation and that the increased stability of the growth factor can compensate for reduced heparin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号