首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Loss or inactivation of BLM, a helicase of the RecQ family, causes Bloom syndrome, a genetic disorder with a strong predisposition to cancer. Although the precise function of BLM remains unknown, genetic data has implicated BLM in the process of genetic recombination and DNA repair. Previously, we demonstrated that BLM can disrupt the RAD51-single-stranded DNA filament that promotes the initial steps of homologous recombination. However, this disruption occurs only if RAD51 is present in an inactive ADP-bound form. Here, we investigate interactions of BLM with the active ATP-bound form of the RAD51-single-stranded DNA filament. Surprisingly, we found that BLM stimulates DNA strand exchange activity of RAD51. In contrast to the helicase activity of BLM, this stimulation does not require ATP hydrolysis. These data suggest a novel BLM function that is stimulation of the RAD51 DNA pairing. Our results demonstrate the important role of the RAD51 nucleoprotein filament conformation in stimulation of DNA pairing by BLM.Mutations of BLM helicase cause Bloom syndrome (BS),2 a rare autosomal disorder, which is associated with stunted growth, facial sun sensitivity, immunodeficiency, fertility defects, and a greatly elevated incidence of many types of cancer occurring at an early age (1). BLM belongs to the highly conserved family of RecQ helicases that are required for the maintenance of genome integrity in all organisms (2, 3). There are five RecQ helicases in humans; mutations in three of them, WRN, RECQ4, and BLM, have been associated with the genetic abnormalities known as Werner, Rothmund-Thomson, and Bloom syndrome, respectively (4, 5). The cells from BS patients display genomic instability; the hallmark of BS is an increase in the frequency of sister chromatid and interhomolog exchanges (1, 6). Because homologous recombination (HR) is responsible for chromosomal exchanges, it is thought that BLM helicase functions in regulating HR (79). Also, BLM helicase is required for faithful chromosome segregation (10) and repair of stalled replication forks (11, 12), the processes that are linked to HR (1315). BLM was found to interact physically with RAD51, a key protein of HR (16) that catalyzes the central steps in HR including the search for homology and the exchange of strands between homologous ssDNA and dsDNA sequences (17). In cells, BLM forms nuclear foci, a subset of which co-localize with RAD51. Interestingly, the extent of RAD51 and BLM co-localization increases in response to ionizing radiation, indicating a possible role of BLM in the repair of DNA double-strand breaks (16).Biochemical studies suggest that BLM may perform several different functions in HR. BLM was shown to promote the dissociation of HR intermediates (D-loops) (1820), branch migration of Holliday junctions (21), and dissolution of double Holliday junctions acting in a complex with TopoIIIα and BLAP75 (2224). BLM may also facilitate DNA synthesis during the repair process by unwinding the DNA template in front of the replication fork (25). In addition, BLM and its yeast homolog Sgs1 may play a role at the initial steps of DNA double-strand break repair by participating in exonucleolitic resection of the DNA ends to generate DNA molecules with the 3′-ssDNA tails, a substrate for RAD51 binding (2629).In vivo, the process of HR is tightly regulated by various mechanisms (30). Whereas some proteins promote HR (14, 31), others inhibit this process, thereby preventing its untimely initiation (32, 33). Disruption of the Rad51-ssDNA nucleoprotein filament appears to be an especially important mechanism of controlling HR. This filament disruption activity was demonstrated for the yeast Srs2 helicase (34, 35) and human RECQ5 helicase (36). Recently, we found that BLM can also catalyze disruption of the RAD51-ssDNA filament (25). This disruption only occurs if the filament is present in an inactive ADP-bound form, e.g. in the presence of Mg2+. Conversion of RAD51 into an active ATP-bound form, e.g. in the presence of Ca2+ (37), renders the filament resistant to BLM disruption (25). In this study, we analyze the interactions of BLM with an active ATP-bound RAD51-ssDNA filament. Surprisingly, we found that BLM stimulates the DNA strand exchange activity of RAD51. Thus, depending on the conformational state of the RAD51 nucleoprotein filament, BLM may either inhibit or stimulate the DNA strand exchange activity of RAD51. Our analysis demonstrated that, in contrast to several known stimulatory proteins that act by promoting formation of the RAD51-ssDNA filament, BLM stimulates the DNA strand exchange activity of RAD51 at a later stage, during synapsis. Stimulation appears to be independent of the ATPase activity of BLM. We suggest that this stimulation of RAD51 may represent a novel function of BLM in homologous recombination.  相似文献   

2.
FANCI Binds Branched DNA and Is Monoubiquitinated by UBE2T-FANCL   总被引:1,自引:0,他引:1  
FANCI is integral to the Fanconi anemia (FA) pathway of DNA damage repair. Upon the occurrence of DNA damage, FANCI becomes monoubiquitinated on Lys-523 and relocalizes to chromatin, where it functions with monoubiquitinated FANCD2 to facilitate DNA repair. We show that FANCI and its C-terminal fragment possess a DNA binding activity that prefers branched structures. We also demonstrate that FANCI can be ubiquitinated on Lys-523 by the UBE2T-FANCL pair in vitro. These findings should facilitate future efforts directed at elucidating molecular aspects of the FA pathway.Fanconi anemia (FA)4 is characterized by developmental defects, bone marrow failure, and a strong predisposition to cancer. FA cells exhibit exquisite sensitivity to DNA cross-linking agents and marked genomic instability, indicative of a failure to repair damaged DNA (13). Thirteen FA proteins have been identified, of which eight, FANC-A, -B, -C, -E, -F, -G, -L, and -M, form part of a nuclear core complex that is required to monoubiquitinate two other FA proteins, FANCD2 and FANCI. When monoubiquitinated, FANCD2 and FANCI become chromatin-associated in foci that contain various factors, including the RAD51 recombinase BRCA2 (also known as FANCD1) and PALB2 (also called FANCN), which mediate DNA repair via RAD51-catalyzed homologous recombination (4).Monoubiquitination of FANCD2 appears to be a key event for proper repair of exogenous DNA damage but also occurs during an unperturbed S phase, likely in response to stalled replication forks (47). FANCD2 monoubiquitination depends on the E3 ligase activity of FANCL (8) and on the E2 ubiquitin-conjugating enzyme, UBE2T (9). In vitro, FANCL and UBE2T can monoubiquitinate chicken FANCD2 (10).FANCI was identified recently as a target protein for the ATM/ATR kinase. FANCI is also monoubiquitinated, in a manner that is dependent on the FA core complex (11). In cells, a fraction of FANCD2 and FANCI associates in a complex. Moreover, the amount and monoubiquitination of these two FA proteins are co-dependent in human cells, i.e. the quantity and monoubiquitination of FANCD2 are diminished in FANCI-deficient cells and vice versa (1114). These observations suggest that FANCI and FANCD2 form a complex integral to cellular DNA repair capacity. Mutating the ubiquitinated target lysine of FANCI (Lys-523) renders cells sensitive to DNA damage and impairs the assembly of DNA damage-induced nuclear foci of FANCD2 and FANCI (11, 14). Herein, we document studies that reveal several biochemical attributes of FANCI, including DNA binding, and its monoubiquitination, that are relevant for understanding the biological role of this key FA protein.  相似文献   

3.
Phosphorylation of simian virus 40 large tumor (T) antigen on threonine 124 is essential for viral DNA replication. A mutant T antigen (T124A), in which this threonine was replaced by alanine, has helicase activity, assembles double hexamers on viral-origin DNA, and locally distorts the origin DNA structure, but it cannot catalyze origin DNA unwinding. A class of T-antigen mutants with single-amino-acid substitutions in the DNA binding domain (class 4) has remarkably similar properties, although these proteins are phosphorylated on threonine 124, as we show here. By comparing the DNA binding properties of the T124A and class 4 mutant proteins with those of the wild type, we demonstrate that mutant double hexamers bind to viral origin DNA with reduced cooperativity. We report that T124A T-antigen subunits impair the ability of double hexamers containing the wild-type protein to unwind viral origin DNA, suggesting that interactions between hexamers are also required for unwinding. Moreover, the T124A and class 4 mutant T antigens display dominant-negative inhibition of the viral DNA replication activity of the wild-type protein. We propose that interactions between hexamers, mediated through the DNA binding domain and the N-terminal phosphorylated region of T antigen, play a role in double-hexamer assembly and origin DNA unwinding. We speculate that one surface of the DNA binding domain in each subunit of one hexamer may form a docking site that can interact with each subunit in the other hexamer, either directly with the N-terminal phosphorylated region or with another region that is regulated by phosphorylation.

The initiation of simian virus 40 (SV40) DNA replication by the viral T antigen is a complex series of events that begins when T antigen binds specifically to a palindromic arrangement of four GAGGC pentanucleotide sequences in the minimal origin of viral DNA replication (recently reviewed in references 1, 2, 3, 22, and 48). In the presence of Mg-ATP, T antigen assembles cooperatively on the two halves of the palindrome as a double hexamer (10, 11, 13, 24, 30, 38, 51, 53). The DNA conformation flanking the T-antigen binding sites is locally distorted upon hexamer assembly (reference 7 and references therein). One pair of pentanucleotides is sufficient to direct double-hexamer assembly and local distortion of the origin DNA but not to initiate DNA replication (25). ATP hydrolysis by T-antigen hexamers then catalyzes bidirectional unwinding of the parental DNA (reference 53 and references therein). A mutant origin with a single nucleotide insertion in the center of the palindromic T-antigen binding site prevents cooperative interactions between hexamers and cannot support bidirectional origin unwinding (8, 51), suggesting that both processes require interactions between T-antigen hexamers. After assembly of the two replication forks, bidirectional replication is carried out by 10 cellular proteins and T antigen, which remains at the forks as the only essential helicase (reviewed in references 3, 22, and 48).The phosphorylation state of SV40 T antigen governs its ability to initiate viral DNA replication (reviewed in references 15 to 17 and 39). T antigen contains two clusters of phosphorylation sites located at the N and C termini (40, 41). Phosphorylation of T antigen on threonine 124 in the N-terminal cluster was shown to be essential for viral DNA replication in monkey cells and in vitro (5, 14, 3236, 44). Efforts to define what step in viral DNA replication requires modification of threonine 124 revealed that Mg-ATP-induced hexamer formation of T antigen in solution and DNA helicase activity of T antigen did not require phosphorylation at this site (33, 36). Origin DNA binding of T antigen lacking the modification at residue 124 was weaker than that of the modified T antigen (33, 34, 36, 44), but the reduction in binding was modest under the conditions used for SV40 DNA replication in vitro (36). Moreover, a mutant T antigen containing alanine in place of the phosphorylated threonine (T124A) assembled as a double hexamer on the viral origin and altered the conformation of the early palindrome and AT-rich sequences flanking the T-antigen binding sites in the viral origin in the same manner as the wild-type protein, except that higher concentrations were required (36). However, even at an elevated concentration, these mutant double hexamers were unable to unwind closed circular duplex DNA containing the viral origin (33, 36), suggesting that the defect in unwinding was responsible for the inability of T124A T antigen to replicate SV40 DNA. One possible explanation for the unwinding defect of the mutant T antigen, despite its helicase activity, was that some essential interaction between the two hexamers during bidirectional unwinding depended upon phosphorylation of threonine 124. Electron micrographs of SV40 DNA unwinding intermediates, which showed two single-stranded DNA loops protruding between two hexamers of T antigen, provided support for this explanation, implying that a double hexamer pulled the parental duplex DNA into the protein complex and spooled the single-stranded DNA out (53). Furthermore, double-hexamer formation significantly enhanced the helicase activity of T antigen (47, 47a).Most of the T antigen isolated from mammalian cells is in a hyperphosphorylated form, containing multiple phosphoserines, as well as two phosphothreonines, and supports SV40 DNA replication in vitro poorly but can be stimulated by treatment with alkaline phosphatase or protein phosphatase 2A (19, 28, 37, 42, 49, 50). Hyperphosphorylated T antigen is unable to unwind duplex closed circular duplex DNA harboring the viral origin (4, 6, 51). Dephosphorylation of serines 120 and 123 restores its ability to unwind origin DNA (14, 43, 51). Studies of double-hexamer assembly on the origin indicate that phosphorylation of T antigen on serines 120 and 123 also impairs the cooperativity of double-hexamer assembly (14, 51). These results demonstrate that hyperphosphorylation of T antigen interferes with interactions between hexamers that are required for origin unwinding and raise the question of whether the phosphorylation state of threonine 124 might also affect the cooperativity of double-hexamer assembly on the viral origin.One class of T antigen mutants with single-amino-acid substitutions in the DNA binding domain (class 4) has been reported to display properties similar to those of the T124A mutant and the hyperphosphorylated form of T antigen (54). Class 4 mutant proteins are defective in viral DNA replication in vivo and in vitro, bind to the viral origin as double hexamers and alter the local DNA conformation, and have helicase activity but do not unwind closed circular duplex viral DNA. The replication and unwinding defects could be due to faulty phosphorylation patterns or to other malfunctions not dependent on phosphorylation status.The work presented here was undertaken to reevaluate the assembly of wild-type and T124A T antigen on SV40 origin DNA by using more-sensitive quantitative assays and to compare them with the class 4 mutants. We report that cooperativity of T124A T antigen in double-hexamer assembly on the viral origin is impaired. The class 4 mutant T antigens were also found to have defects in cooperativity of double-hexamer assembly. T124A T antigen inhibited the ability of the wild-type protein to unwind closed circular duplex origin DNA. Both T124A and the class 4 mutants displayed dominant-negative phenotypes in viral DNA replication in vitro. Based on these observations, we propose that the N-terminal cluster of phosphorylation sites and the DNA binding domain mediate cooperative hexamer-hexamer interactions during assembly on the viral origin and speculate that these regions of T antigen may interact during origin DNA unwinding.  相似文献   

4.
Genomic stability requires a functional Fanconi anemia (FA) pathway composed of an upstream “core complex” (FA proteins A/B/C/E/F/G/L/M) that mediates monoubiquitination of the downstream targets FANCD2 and FANCI. Unique among FA core complex members, FANCM has processing activities toward replication-associated DNA structures, suggesting a vital role for FANCM during replication. Using Xenopus egg extracts, we analyzed the functions of FANCM in replication and the DNA damage response. xFANCM binds chromatin in a replication-dependent manner and is phosphorylated in response to DNA damage structures. Chromatin binding and DNA damage-induced phosphorylation of xFANCM are mediated in part by the downstream FA pathway protein FANCD2. Moreover, phosphorylation and chromatin recruitment of FANCM is regulated by two mayor players in the DNA damage response: the cell cycle checkpoint kinases ATR and ATM. Our results indicate that functions of FANCM are controlled by FA- and non-FA pathways in the DNA damage response.Fanconi anemia is a genetic disease characterized by genomic instability and cancer predisposition. Cells from FA3 patients show hypersensitivity to DNA interstrand cross-links and have highly elevated chromosomal breakage rates, indicating a role for FA proteins in the cellular DNA damage response. The FA pathway consists of an upstream FA core complex containing at least eight proteins (FANCA, -B, -C, -E, -F, -G, -L, and -M) that is required for the DNA damage-induced monoubiquitination of two downstream proteins, FANCD2 and FANCI. Although the molecular function of the FA pathway is unknown, the identification of additional FA genes FANCD1 (BRCA2), FANCN (PALB2), and the DNA helicase FANCJ (BRIP1) as breast cancer (BRCA) susceptibility genes suggests convergence of the FA/BRCA pathway with a larger network of proteins involved in DNA repair (reviewed in Ref. 1).In addition to monoubiquitination by the FA core complex, FANCD2 and FANCI are phosphorylated by the two major cell cycle checkpoint kinases, ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related),y in response to DNA damage (26). ATM-dependent phosphorylation of FANCD2 occurs following ionizing irradiation and is required for activation of the ionizing irradiation-induced intra-S phase checkpoint (4). ATR-dependent phosphorylation of FANCD2 is triggered by various types of DNA damage, including replication stress, and is required for the interstrand cross-link-induced intra-S phase checkpoint response (2, 3). Moreover, phosphorylation by ATR is required for efficient FANCD2 monoubiquitination in response to DNA damage, suggesting that the FA pathway might participate in ATR-dependent coordination of the S phase of the cell cycle (3, 7).The recent identification of a highly conserved FA core complex member, FANCM (8, 9), indicates a direct role of FA pathway proteins in repair steps at sites of DNA damage. FANCM is a homolog of the archaebacterial Hef protein (helicase-associated endonuclease for fork-structured DNA) and contains two DNA processing domains: a DEAH box helicase domain and an XPF/ERCC4-like endonuclease domain. FANCM has ATP-dependent DNA translocase activity and can dissociate DNA triple helices in vitro (8). Moreover, FANCM binds Holliday junctions and DNA replication fork structures in vitro and promotes ATP-dependent branch point migration, suggesting that FANCM might be involved in DNA processing at stalled replication forks (10, 11). In human cells, FANCM localizes to chromatin and is required for chromatin recruitment of other FA core complex proteins (8, 12). FANCM is phosphorylated during both the M and S phases and in response to DNA-damaging agents (8, 12, 13). Interestingly, DNA damage-induced phosphorylation of FANCM is independent of the FA core complex (8), suggesting that FANCM is controlled by other, as yet unknown upstream components of the DNA damage response. Here, we used cell-free Xenopus egg extracts to investigate the role of FANCM during replication and in the DNA damage response. We show that Xenopus FANCM (xFANCM) binds chromatin in a replication-dependent manner and is phosphorylated during unperturbed replication as well as in response to various DNA damage structures. Both chromatin recruitment and phosphorylation of xFANCM are partially controlled by xFANCD2, suggesting feedback signaling from xFANCD2 to the upstream xFA core complex via regulation of xFANCM. In addition, chromatin recruitment during unperturbed replication and activation of xFANCM in response to DNA damage are controlled by the xATR and xATM cell cycle kinases.  相似文献   

5.
Helicobacter pylori infection of the human stomach is associated with disease-causing inflammation that elicits DNA damage in both bacterial and host cells. Bacteria must repair their DNA to persist. The H. pylori AddAB helicase-exonuclease is required for DNA repair and efficient stomach colonization. To dissect the role of each activity in DNA repair and infectivity, we altered the AddA and AddB nuclease (NUC) domains and the AddA helicase (HEL) domain by site-directed mutagenesis. Extracts of Escherichia coli expressing H. pylori addANUCB or addABNUC mutants unwound DNA but had approximately half of the exonuclease activity of wild-type AddAB; the addANUCBNUC double mutant lacked detectable nuclease activity but retained helicase activity. Extracts with AddAHELB lacked detectable helicase and nuclease activity. H. pylori with the single nuclease domain mutations were somewhat less sensitive to the DNA-damaging agent ciprofloxacin than the corresponding deletion mutant, suggesting that residual nuclease activity promotes limited DNA repair. The addANUC and addAHEL mutants colonized the stomach less efficiently than the wild type; addBNUC showed partial attenuation. E. coli ΔrecBCD expressing H. pylori addAB was recombination-deficient unless H. pylori recA was also expressed, suggesting a species-specific interaction between AddAB and RecA and also that H. pylori AddAB participates in both DNA repair and recombination. These results support a role for both the AddAB nuclease and helicase in DNA repair and promoting infectivity.Infection of the stomach with Helicobacter pylori causes a variety of diseases including gastritis, peptic ulcers, and gastric cancer (1). A central feature of the pathology of these conditions is the establishment of a chronic inflammatory response that acts both on the host and the infecting bacteria (2). Both epithelial (3, 4) and lymphoid (5, 6) cells in the gastric mucosa of infected individuals release DNA-damaging agents that can introduce double-stranded (ds)2 breaks into the bacterial chromosome (7). The ds breaks must be repaired for the bacteria to survive and establish chronic colonization of the stomach. Homologous recombination is required for the faithful repair of DNA damage and bacterial survival. Alteration of the expression of one of a series of cell surface proteins on H. pylori occurs by an apparent gene conversion of babA, the frequency of which is reduced in repair-deficient strains (8, 9). This change in the cell surface, which may allow H. pylori to evade the host immune response, is a second means by which recombination can promote efficient colonization of the stomach by H. pylori.The initiation or presynaptic steps of recombination at dsDNA breaks in most bacteria involves the coordinated action of nuclease and helicase activities provided by one of two multisubunit enzymes, the AddAB and RecBCD enzymes (10). Escherichia coli recBCD null mutants have reduced cell viability, are hypersensitive to DNA-damaging agents, and are homologous recombination-deficient (1114). Similarly, H. pylori addA and addB null mutants are hypersensitive to DNA-damaging agents, have reduced frequencies of babA gene conversion, and colonize the stomach of mice less efficiently than wild-type strains (8).The activities of RecBCD enzyme from E. coli (1519) and AddAB from H. pylori (8) or Bacillus subtilis (2023) indicate some common general features of the presynaptic steps of DNA repair. In the case of E. coli, repair begins when the RecBCD enzyme binds to a dsDNA end and unwinds the DNA using its ATP-dependent helicase activities (17, 24). Single-stranded (ss) DNA produced during unwinding, with or without accompanying nuclease, is coated with RecA protein (16, 25). This recombinogenic substrate engages in strand exchange with a homologous intact duplex to form a joint molecule. Joint molecules are thought to be converted into intact, recombinant DNA either by replication or by cutting and ligation of exchanged strands (26).Although the AddAB and RecBCD enzymes appear to play similar roles in promoting recombination and DNA repair, they differ in several ways. RecBCD is a heterotrimer, composed of one copy of the RecB, RecC, and RecD gene products (27), whereas AddAB has two subunits, encoded by the addA and addB genes (21, 28). The enzyme subunit(s) responsible for helicase activity can be inferred from the presence of conserved protein domains or the activity of purified proteins. AddA, RecB, and RecD are superfamily I helicases with six highly conserved helicase motifs, including the conserved Walker A box found in many enzymes that bind ATP (2932). A Walker A box is defined by the consensus sequence (G/A)XXGXGKT (X is any amino acid (29). RecBCD enzymes in which the conserved Lys in this motif is changed to Gln have a reduced affinity for ATP binding (33, 34) and altered helicase activity (17, 3537).A nuclease domain with the conserved amino acid sequence LDYK is found in RecB, AddA, AddB, and many other nucleases (38). The conserved Asp plays a role in Mg2+ binding at the active site; Mg2+ is required for nuclease activity (39). The recB1080 mutation, which changes codon 1080 from the conserved Asp in this motif to Ala, eliminates nuclease activity (39).We have recently shown that addA and addB deletion mutants are hypersensitive to DNA-damaging agents and impaired in colonization of the mouse stomach compared with wild-type strains (8). To determine the roles of the individual helicase and nuclease activities of H. pylori AddAB in DNA repair and infectivity, we used site-directed mutagenesis to inactivate the conserved nuclease domains of addA and addB and the conserved ATPase (helicase) domain of AddA. Here, we report that loss of the AddAB helicase is sufficient to impair H. pylori DNA repair and infectivity and, when the genes are expressed in E. coli, homologous recombination. AddAB retains partial activity in biochemical and genetic assays when either of the two nuclease domains is inactivated but loses all detectable nuclease activity when both domains are inactivated. Remarkably, H. pylori AddAB can produce recombinants in E. coli only in the presence of H. pylori RecA, suggesting a species-specific interaction in which AddAB facilitates the production of ssDNA-coated with RecA protein. Our results show that both the helicase and nuclease activities are required for the biological roles of H. pylori AddAB.  相似文献   

6.
In this study, we report that the purified wild-type FANCI (Fanconi anemia complementation group I) protein directly binds to a variety of DNA substrates. The DNA binding domain roughly encompasses residues 200–1000, as suggested by the truncation study. When co-expressed in insect cells, a small fraction of FANCI forms a stable complex with FANCD2 (Fanconi anemia complementation group D2). Intriguingly, the purified FANCI-FANCD2 complex preferentially binds to the branched DNA structures when compared with either FANCI or FANCD2 alone. Co-immunoprecipitation with purified proteins indicates that FANCI interacts with FANCD2 through its C-terminal amino acid 1001–1328 fragment. Although the C terminus of FANCI is dispensable for direct DNA binding, it seems to be involved in the regulation of DNA binding activity. This notion is further enhanced by two C-terminal point mutations, R1285Q and D1301A, which showed differentiated DNA binding activity. We also demonstrate that FANCI forms discrete nuclear foci in HeLa cells in the absence or presence of exogenous DNA damage. The FANCI foci are colocalized perfectly with FANCD2 and partially with proliferating cell nuclear antigen irrespective of mitomycin C treatment. An increased number of FANCI foci form and become resistant to Triton X extraction in response to mitomycin C treatment. Our data suggest that the FANCI-FANCD2 complex may participate in repair of damaged replication forks through its preferential recognition of branched structures.Fanconi anemia (FA)3 is a genetic disorder characterized by chromosome instability, predisposition to cancer, hypersensitivity to DNA cross-linking agents, developmental abnormalities, and bone marrow failure (19). There are at least 13 distinct FA complementation groups, each of which is associated with an identified gene (2, 9, 10). Eight of them are components of the FA core complex (FANC A, B, C, E, F, G, L, and M) that is epistatic to the monoubiquitination of both FANCI and FANCD2, a key event to initiate interstrand cross-link (ICL) repair (2, 9, 11). Downstream of or parallel to the FANCI and FANCD2 monoubiquitination are the proteins involved in double strand break repair and breast cancer susceptibility (i.e. FANCD1/BRCA2, FANCJ/BRIP1, and FANCN/PALB2) (2, 9).FANCI is the most recently identified FA gene (1113). FANCI protein is believed to form a FANCI-FANCD2 (ID) complex with FANCD2, because they co-immunoprecipitate with each other from cell lysates and their stabilities are interdependent of each other (9, 11, 13). FANCI and FANCD2 are paralogs to each other, since they share sequence homology and co-evolve in the same species (11). Both FANCI and FANCD2 can be phosphorylated by ATR/ATM (ataxia telangiectasia and Rad3-related/ataxia telangiectasia-mutated) kinases under genotoxic stress (11, 14, 15). The phosphorylation of FANCI seems to function as a molecular switch to turn on the FA repair pathway (16). The monoubiquitination of FANCD2 at lysine 561 plays a critical role in cellular resistance to DNA cross-linking agents and is required for FANCD2 to form damage-induced foci with BRCA1, BRCA2, RAD51, FANCJ, FANCN, and γ-H2AX on chromatin during S phase of the cell cycle (1725). In response to DNA damage or replication stress, FANCI is also monoubiquitinated at lysine 523 and recruited to the DNA repair nuclear foci (11, 13). The monoubiquitination of both FANCI and FANCD2 depends on the FA core complex (11, 13, 26), and the ubiquitination of FANCI relies on the FANCD2 monoubiquitination (2, 11). In an in vitro minimally reconstituted system, FANCI enhances FANCD2 monoubiquitination and increases its specificity toward the in vivo ubiquitination site (27).FANCI is a leucine-rich peptide (14.8% of leucine residues) with limited sequence information to indicate which processes it might be involved in. Besides the monoubiquitination site Lys523 and the putative nuclear localization signals (Fig. 1A), FANCI contains both ARM (armadillo) repeats and a conserved C-terminal EDGE motif as FANCD2 does (11, 28). The EDGE sequence in FANCD2 is not required for monoubiquitination but is required for mitomycin C (MMC) sensitivity (28). The ARM repeats form α-α superhelix folds and are involved in mediating protein-protein interactions (11, 29). In addition, FANCI, at its N terminus, contains a leucine zipper domain (aa 130–151) that could be involved in mediating protein-protein or protein-DNA interactions (Fig. 1A) (3033). FANCD2, the paralog of FANCI, was reported to bind to double strand DNA ends and Holliday junctions (34).Open in a separate windowFIGURE 1.Purified human FANCI binds to DNA promiscuously. A, schematic diagram of predicted FANCI motifs and mutagenesis strategy to define the DNA binding domain. The ranges of numbers indicate how FANCI was truncated (e.g. 801–1328 represents FANCI-(801–1328)). NLS, predicted nuclear localization signal (aa 779–795 and 1323–1328); K523, lysine 523, the monoubiquitination site. The leucine zipper (orange bars, aa 130–151), ARM repeats (green bars), and EDGE motif (blue bars) are indicated. Red bars with a slash indicate the point mutations shown on the left. B, SDS-PAGE of the purified proteins stained with Coomassie Brilliant Blue R-250. R1285Q and D1301A are two point mutants of FANCI. All FANCI variants are tagged by hexahistidine. FANCD2 is in its native form. Protein markers in kilodaltons are indicated. C, titration of WT-FANCI for the DNA binding activity. Diagrams of the DNA substrates are shown at the top of each set of reactions. *, 32P-labeled 5′-end. HJ, Holliday junction. Concentrations of FANCI were 0, 20, 40, 60, and 80 nm (ascending triangles). The substrate concentration was 1 nm. Protein-DNA complex is indicated by an arrow. D, supershift assay. 1 nm of ssDNA was incubated with PBS (lane 1), 80 nm FANCI alone (lane 2), and 80 nm FANCI preincubated with a specific FANCI antibody (lane 3) in the condition described under “Experimental Procedures.”In order to delineate the function of FANCI protein, we purified the recombinant FANCI from the baculovirus expression system. In this study, we report the DNA binding activity of FANCI. Unlike FANCD2, FANCI binds to different DNA structures, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), 5′-tailed, 3′-tailed, splayed arm, 5′-flap, 3′-flap, static fork, and Holliday junction with preference toward branched structures in the presence of FANCD2. Our data suggest that the dynamic DNA binding activity of FANCI and the preferential recognition of branched structures by the ID complex are likely to be the mechanisms to initiate downstream repair events.  相似文献   

7.
Although PTIP is implicated in the DNA damage response, through interactions with 53BP1, the function of PTIP in the DNA damage response remain elusive. Here, we show that RNF8 controls DNA damage-induced nuclear foci formation of PTIP, which in turn regulates 53BP1 localization to the DNA damage sites. In addition, SMC1, a substrate of ATM, could not be phosphorylated at the DNA damage sites in the absence of PTIP. The PTIP-dependent pathway is important for DNA double strand breaks repair and DNA damage-induced intra-S phase checkpoint activation. Taken together, these results suggest that the role of PTIP in the DNA damage response is downstream of RNF8 and upstream of 53BP1. Thus, PTIP regulates 53BP1-dependent signaling pathway following DNA damage.The DNA damage response pathways are signal transduction pathways with DNA damage sensors, mediators, and effectors, which are essential for maintaining genomic stability (13). Following DNA double strand breaks, histone H2AX at the DNA damage sites is rapidly phosphorylated by ATM/ATR/DNAPK (410), a family homologous to phosphoinositide 3-kinases (11, 12). Subsequently, phospho-H2AX (γH2AX) provides the platform for accumulation of a larger group of DNA damage response factors, such as MDC1, BRCA1, 53BP1, and the MRE11·RAD50·NBS1 complex (13, 14), at the DNA damage sites. Translocalization of these proteins to the DNA double strand breaks (DSBs)3 facilitates DNA damage checkpoint activation and enhances the efficiency of DNA damage repair (14, 15).Recently, PTIP (Pax2 transactivation domain-interacting protein, or Paxip) has been identified as a DNA damage response protein and is required for cell survival when exposed to ionizing radiation (IR) (1, 1618). PTIP is a 1069-amino acid nuclear protein and has been originally identified in a yeast two-hybrid screening as a partner of Pax2 (19). Genetic deletion of the PTIP gene in mice leads to early embryonic lethality at embryonic day 8.5, suggesting that PTIP is essential for early embryonic development (20). Structurally, PTIP contains six tandem BRCT (BRCA1 carboxyl-terminal) domains (1618, 21). The BRCT domain is a phospho-group binding domain that mediates protein-protein interactions (17, 22, 23). Interestingly, the BRCT domain has been found in a large number of proteins involved in the cellular response to DNA damages, such as BRCA1, MDC1, and 53BP1 (7, 2429). Like other BRCT domain-containing proteins, upon exposure to IR, PTIP forms nuclear foci at the DSBs, which is dependent on its BRCT domains (1618). By protein affinity purification, PTIP has been found in two large complexes. One includes the histone H3K4 methyltransferase ALR and its associated cofactors, the other contains DNA damage response proteins, including 53BP1 and SMC1 (30, 31). Further experiments have revealed that DNA damage enhances the interaction between PTIP and 53BP1 (18, 31).To elucidate the DNA damage response pathways, we have examined the upstream and downstream partners of PTIP. Here, we report that PTIP is downstream of RNF8 and upstream of 53BP1 in response to DNA damage. Moreover, PTIP and 53BP1 are required for the phospho-ATM association with the chromatin, which phosphorylates SMC1 at the DSBs. This PTIP-dependent pathway is involved in DSBs repair.  相似文献   

8.
9.
10.
11.
With the use of a high-throughput biochemical DNA helicase assay as a screen, T157602, a 2-amino thiazole compound, was identified as a specific inhibitor of herpes simplex virus (HSV) DNA replication. T157602 inhibited reversibly the helicase activity of the HSV UL5-UL8-UL52 (UL5/8/52) helicase-primase complex with an IC50 (concentration of compound that yields 50% inhibition) of 5 μM. T157602 inhibited specifically the UL5/8/52 helicase and not several other helicases. The primase activity of the UL5/8/52 complex was also inhibited by T157602 (IC50 = 20 μM). T157602 inhibited HSV growth in a one-step viral growth assay (IC90 = 3 μM), and plaque formation was completely prevented at concentrations of 25 to 50 μM T157602. Vero, human foreskin fibroblast (HFF), and Jurkat cells could be propagated in the presence of T157602 at concentrations exceeding 100 μM with no obvious cytotoxic effects, indicating that the window between antiviral activity and cellular toxicity is at least 33-fold. Seven independently derived T157602-resistant mutant viruses (four HSV type 2 and three HSV type 1) carried single base pair mutations in the UL5 that resulted in single amino acid changes in the UL5 protein. Marker rescue experiments demonstrated that the UL5 gene from T157602-resistant viruses conferred resistance to T157602-sensitive wild-type viruses. Recombinant UL5/8/52 helicase-primase complex purified from baculoviruses expressing mutant UL5 protein showed complete resistance to T157602 in the in vitro helicase assay. T157602 and its analogs represent a novel class of specific and reversible anti-HSV agents eliciting their inhibitory effects on HSV replication by interacting with the UL5 helicase.Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) each comprise at least 77 genes whose expression is tightly regulated (42). These genes are assigned to four kinetic classes, designated as α, β, γ1, and γ2 on the basis of the timing of and requirements for their expression (46). The five α genes, α0, α4, α22, α27, and α47, are expressed first in the absence of viral protein synthesis and are responsible for the regulated expression of the other viral genes. The β genes require functional α gene products for their expression and encode proteins and enzymes that are directly involved in DNA synthesis and nucleotide metabolism. The γ genes form the last set of viral genes to be expressed, with the γ2 class having viral DNA replication as a strict requirement for their expression.The HSV genome contains three origins of replication (44, 45, 47, 48, 50, 54) and encodes seven viral proteins that are essential for DNA replication (34, 59). These include an origin binding protein (OBP) encoded by open reading frame (ORF) UL9 (14, 15, 17, 35), a DNA binding protein encoded by UL29 (40, 53, 54), a DNA polymerase encoded by ORF UL30 and its accessory factor encoded by UL42 (1, 4, 8, 18, 19, 21, 24, 37), and a heterotrimeric complex consisting of proteins encoded by ORFs UL5, UL8, and UL52, which include both 5′-to-3′ helicase activity and primase activity (1012). Although extensively studied, the roles of the individual subunits of the helicase-primase complex and their specific interactions with each other have not been completely defined. However, several lines of evidence suggest that the UL5 gene encodes the helicase activity of the complex. Examination of the amino acid sequence of the UL5 protein revealed that it contains six conserved motifs that are found in many DNA and RNA helicases, two of these motifs defining an ATP binding site (20, 25, 32, 52, 61). Site-specific mutagenesis of amino acids within each of the six motifs revealed that all six are critical for the function of the UL5 protein as a helicase in transient replication assays (60, 61).The observation that recombinant UL5, UL52, and UL8 proteins could be purified from baculovirus-infected insect cells as a complex that displays DNA-dependent ATPase, helicase, and primase activities that are identical to those produced during a herpesvirus infection allowed functional and biochemical analyses of the individual components of the complex (10, 13, 38). Although the UL5 protein alone contained the defining helicase amino acid sequence motifs, the UL5 protein does not display helicase activity in vitro in the absence of the UL52 protein. Purified UL5 protein has less than 1% of the ATPase activity of the complex UL5-UL8-UL52 (UL5/8/52) complex (2, 43). In addition, studies with recombinant herpesviruses carrying mutations in the UL5 gene that abolish helicase activity revealed that the UL5 protein could still form specific interactions with UL8 and UL52 proteins (60). These results indicate that the functional domains of UL5 protein required for helicase activity are separate from those involved in protein-protein interactions and that UL5 and UL52 must interact to yield efficient helicase activity. Further mutagenesis studies with the UL52 protein identified mutations that abolish the primase activity of the complex, while the helicase and ATPase activities are unaffected, suggesting that the UL52 protein is responsible for the primase activity of the complex (27). The third component of the helicase-primase complex, the UL8 protein, interacts with other viral replication proteins, including the OBP, the single-stranded DNA binding protein, and the viral DNA polymerase (30, 33). It has been postulated that the interaction of the UL8 protein with the OBP (encoded by the UL9 gene) may function to recruit helicase-primase complexes to initiation complexes at viral origins (30). The UL8 protein is also required for stimulation of primer synthesis by the UL52 protein and for stimulation of the helicase activity of the helicase-primase complex which is crucial to allow efficient unwinding of long stretches of duplex DNA (16, 43, 49). Additionally, UL8 appears to be required for efficient nuclear entry of the helicase-primase complex (1, 3, 31).As the UL5, UL8, and UL52 gene products are essential for HSV replication and have not been exploited previously for antiviral drug discovery, they represent attractive targets for the development of novel anti-HSV agents. Current anti-HSV drugs include vidarabine (adenine arabinoside; Ara-A), foscarnet (phosphonoformic acid; PFA), and a wide variety of nucleoside analogs, the most clinically successful being acyclovir (ACV) and its analogs valacyclovir and famciclovir. ACV is phosphorylated by viral thymidine kinase (TK) to its monophosphate form, an event that occurs to a much lesser extent in uninfected cells. Subsequent phosphorylation events by cellular enzymes convert the ACV monophosphate to its triphosphate form. The ACV triphosphate derivative directly inhibits the DNA polymerase by competing as a substrate with dGTP. Because the ACV triphosphate lacks the 3′ hydroxyl group required to elongate the DNA chain, DNA replication is terminated. The triphosphorylated form of ACV is a much better substrate for the viral DNA polymerase than it is for the cellular DNA polymerase; thus, very little ACV triphosphate is incorporated into cellular DNA. Although ACV has proven to be safe and successful at reducing the duration, severity, and in some cases recurrence of HSV infections, eradication of the infection symptoms is far from complete and latent virus can reactivate frequently (5558). In addition, primarily as a result of poor patient compliance with inconvenient ACV dosage regimens, virulent HSV strains resistant to ACV that contain mutations in either the viral TK or DNA polymerase gene have arisen (6, 7, 9, 26, 39). More potent and efficacious drugs that target other essential components of the virus replicative cycle would be invaluable as therapeutic agents to treat HSV and ACV-resistant HSV infections.To identify novel inhibitors of the HSV helicase-primase enzyme, we developed a high-throughput in vitro helicase assay and screened >190,000 samples. Using this biochemical approach, we identified T157602, a 2-amino thiazole, as a specific inhibitor of HSV replication. By generating and analyzing T157602-resistant viruses, we further demonstrate genetically that the molecular target of T157602 is the UL5 component of the HSV helicase-primase complex.  相似文献   

12.
13.
14.
15.
16.
Single-stranded DNA-binding protein (gp2.5), encoded by gene 2.5 of bacteriophage T7, plays an essential role in DNA replication. Not only does it remove impediments of secondary structure in the DNA, it also modulates the activities of the other replication proteins. The acidic C-terminal tail of gp2.5, bearing a C-terminal phenylalanine, physically and functionally interacts with the helicase and DNA polymerase. Deletion of the phenylalanine or substitution with a nonaromatic amino acid gives rise to a dominant lethal phenotype, and the altered gp2.5 has reduced affinity for T7 DNA polymerase. Suppressors of the dominant lethal phenotype have led to the identification of mutations in gene 5 that encodes the T7 DNA polymerase. The altered residues in the polymerase are solvent-exposed and lie in regions that are adjacent to the bound DNA. gp2.5 lacking the C-terminal phenylalanine has a lower affinity for gp5-thioredoxin relative to the wild-type gp2.5, and this affinity is partially restored by the suppressor mutations in DNA polymerase. gp2.5 enables T7 DNA polymerase to catalyze strand displacement DNA synthesis at a nick in DNA. The resulting 5′-single-stranded DNA tail provides a loading site for T7 DNA helicase. gp2.5 lacking the C-terminal phenylalanine does not support this event with wild-type DNA polymerase but does to a limited extent with T7 DNA polymerase harboring the suppressor mutations.Single-stranded DNA (ssDNA)3-binding proteins have been assigned the role of removing secondary structure in DNA and protecting ssDNA from hydrolysis by nucleases (1). However, in addition to these mundane roles, ssDNA-binding proteins are now recognized as a key component of the replisome where they physically and functionally interact with other replication proteins and with the primer-template (24). ssDNA-binding proteins are also engaged in DNA recombination and repair (5). In view of these multiple roles, it has been difficult to identify the specific defect in genetically altered ssDNA-binding proteins that leads to an observed phenotype.The crystal structures of several prokaryotic ssDNA-binding proteins have been determined (68). These proteins have a conserved oligosaccharide-oligonucleotide binding fold (OB-fold) that is thought to bind the ssDNA by means of stacking and electrostatic interactions (6). Prokaryotic ssDNA-binding proteins also have an acidic C-terminal tail that is essential for bacterial and phage growth (913).The ssDNA-binding protein of bacteriophage T7 is encoded by gene 2.5 (14). The gene 2.5 protein (gp2.5) is a homodimer in solution, a structure that is stabilized by its C-terminal tail (9, 15). The C-terminal tail of one monomer of gp2.5 binds in a trans mode to the ssDNA-binding cleft of the other subunit, thus stabilizing the dimer interface observed in the crystal structure (6). The current model proposes that the positively charged DNA-binding cleft is shielded by the electrostatic charges of the C-terminal tail in the absence of ssDNA, thus facilitating oligomerization of gp2.5. Upon binding ssDNA, the dimer dissociates to allow the C-terminal tail to interact with other replication proteins (16). The tail modulates the affinity for ssDNA and protein-protein interactions by functioning as a two-way switch (6, 17). This mode of function is applicable to other prokaryotic ssDNA-binding proteins, namely Escherichia coli SSB protein and T4 gp32 (10, 13, 15, 1822).gp2.5 is one of four proteins that include the T7 replisome. The other three proteins are the T7 gene 5 DNA polymerase (gp5), its processivity factor, E. coli thioredoxin (trx), and the multifunctional gene 4 helicase-primase (gp4). gp5 and trx bind with high affinity (KD of 5 nm), and the two proteins are normally found in complex (gp5/trx) at a stoichiometry of one to one (23). The acidic C-terminal tail of gp2.5 is critical for the interactions of the protein with gp5/trx and gp4 (9, 24). The C-terminal tail binds to a positively charged segment located in the thumb subdomain of the gp5 (25). This fragment, designated the trx binding domain (TBD), is also the site of binding of the processivity factor, E. coli trx, and the C terminus of gp4. The multiple interactions of the C terminus of gp2.5 could thus function to coordinate the dynamic reactions occurring at the replication fork. gp2.5 is known to be critical for establishing coordination during leading and lagging strand DNA synthesis (26, 27).This C-terminal tail of gp2.5 is an acidic 26-amino acid segment with an aromatic phenylalanine as the C-terminal residue. The C-terminal tail is not seen in the crystal structure because gp2.5Δ26, lacking the tail, was used for crystallization; the wild-type protein did not yield crystals that diffracted (6). gp2.5ΔF designates a genetically modified gp2.5 lacking the C-terminal phenylalanine. gp2.5ΔF does not support the growth of T7Δ2.5 phage lacking gene 2.5 (28). Interestingly, T7 gene 4 protein also has an acidic C-terminal tail with a C-terminal phenylalanine (29). Again, the phenylalanine is critical for the interaction of gp4 with gp5/trx (29). Further evidence for overlapping binding sites of the C termini of these two proteins comes from studies with chimeric proteins (28, 29). The C-terminal tails of gp2.5 and gp4 can be exchanged, and the chimeric proteins support the growth of T7 phage lacking the corresponding wild-type protein.We recently designed a screen for suppressors of dominant lethal mutations of gp2.5 (30). The screen identified mutations in gene 5, the structural gene for T7 DNA polymerase (Fig. 1), which suppresses the lethal phenotype of gp2.5 mutant in which the C-terminal phenylalanine was moved to the penultimate position (gp2.5ΔF232InsF231). One of the altered suppressor genes (gp5, gp5-sup1) encodes a gp5 in which where glycine at position 371 is replaced by lysine (G371K). Whereas the other (gp5-sup2) encodes a protein in which threonine 258 and alanine 411 are replaced by methionine and threonine, respectively (T258M and A411T). The suppressor mutations in gp5 are necessary and sufficient to suppress the lethal phenotype of gp2.5ΔF232InsF231. The affected residues map in proximity to aromatic residues and to residues in close proximity to DNA as seen in the crystal structure of gp5/trx in complex with DNA (31). Throughout this study, gp2.5ΔF232InsF231 mutant will be referred to as gp2.5-FD because it effectively switches the positions of the C-terminal phenylalanine and the adjacent aspartic acid. E. coli SSB protein also has a C-terminal phenylalanine, and recent studies have shown that this residue inserts into a hydrophobic region consisting of exonuclease I of E. coli (45, 46).Open in a separate windowFIGURE 1.Amino acid changes in gp5 suppressor mutant polymerase(s). The amino acid changes in gp5 arising from the suppressor mutations in gene 5 are identified in the crystal structure of gp5/trx in complex with a primer-template and a nucleoside triphosphate (31). gp5 (light gray), trx (dark gray), and primer/template (red) are depicted. The suppressor mutation G371K (gp5-sup1) is shown in yellow and T258M and A411T (gp5-sup2) in orange.In this study, we have purified the two suppressor DNA polymerases and characterized them individually and in interaction with the other T7 replication proteins. Whereas wild-type gp5 binds with low affinity to gp2.5-FD, the DNA polymerases harboring the suppressor mutations bind with a higher affinity. An interesting finding is that whereas wild-type gp2.5 enables gp5/trx to catalyze strand displacement synthesis at a nick in DNA, gp2.5-FD does not support this reaction. Strand displacement synthesis is necessary for the initiation of leading strand DNA synthesis at a nick because it creates a 5′-single-stranded DNA tail for loading of the T7 helicase (32).  相似文献   

17.
18.
A decoding algorithm is tested that mechanistically models the progressive alignments that arise as the mRNA moves past the rRNA tail during translation elongation. Each of these alignments provides an opportunity for hybridization between the single-stranded, -terminal nucleotides of the 16S rRNA and the spatially accessible window of mRNA sequence, from which a free energy value can be calculated. Using this algorithm we show that a periodic, energetic pattern of frequency 1/3 is revealed. This periodic signal exists in the majority of coding regions of eubacterial genes, but not in the non-coding regions encoding the 16S and 23S rRNAs. Signal analysis reveals that the population of coding regions of each bacterial species has a mean phase that is correlated in a statistically significant way with species () content. These results suggest that the periodic signal could function as a synchronization signal for the maintenance of reading frame and that codon usage provides a mechanism for manipulation of signal phase.[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号