首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellulose synthase (CESA) gene family of seed plants comprises six clades that encode isoforms with conserved expression patterns and distinct functions in cellulose synthesis complex (CSC) formation and primary and secondary cell wall synthesis. In mosses, which have rosette CSCs like those of seed plants but lack lignified secondary cell walls, the CESA gene family diversified independently and includes no members of the six functionally distinct seed plant clades. There are seven CESA isoforms encoded in the genome of the moss Physcomitrella patens. However, only PpCESA5 has been characterised functionally, and little information is available on the expression of other PpCESA family members. We have profiled PpCESA expression through quantitative RT‐PCR, analysis of promoter‐reporter lines, and cluster analysis of public microarray data in an effort to identify expression and co‐expression patterns that could help reveal the functions of PpCESA isoforms in protein complex formation and development of specific tissues. In contrast to the tissue‐specific expression observed for seed plant CESAs, each of the PpCESAs was broadly expressed throughout most developing tissues. Although a few statistically significant differences in expression of PpCESAs were noted when some tissues and hormone treatments were compared, no strong co‐expression patterns were observed. Along with CESA phylogenies and lack of single PpCESA mutant phenotypes reported elsewhere, broad overlapping expression of the PpCESAs indicates a high degree of inter‐changeability and is consistent with a different pattern of functional specialisation in the evolution of the seed plant and moss CESA families.  相似文献   

2.
3.
Efficient gene targeting in the moss Physcomitrella patens   总被引:16,自引:2,他引:16  
The moss Physcomitrella patens is used as a genetic model system to study plant development, taking advantage of the fact that the haploid gametophyte dominates in its life cycle. Transformation experiments designed to target three single-copy genomic loci were performed to determine the efficiency of gene targeting in this plant. Mean transformation rates were 10-fold higher with the targeting vectors and molecular evidence for the integration of exogenous DNA into each targeted locus by homologous recombination is provided. The efficiency of gene targeting determined in these experiments is above 90%, which is in the range of that observed in yeast and several orders of magnitude higher than previous reports of gene targeting in plants. Thus, gene knock-out and allele replacement approaches are directly accessible to study plant development in the moss Physcomitrella patens . Moreover, efficient gene targeting has so far only been observed in lower eukaryotes such as protozoa, yeasts and filamentous fungi, and, as shown here the first example from the plant kingdom is a haplobiontic moss. This suggests a possible correlation between efficient gene targeting and haplo-phase in eukaryotes.  相似文献   

4.
Trogu  Silvia  Ermert  Anna Lena  Stahl  Fabian  Nogué  Fabien  Gans  Tanja  Hughes  Jon 《Plant molecular biology》2021,107(4-5):327-336
Plant Molecular Biology - We mutated all seven Physcomitrium (Physcomitrella) patens phytochrome genes using highly-efficient CRISPR-Cas9 procedures. We thereby identified phy5a as the phytochrome...  相似文献   

5.
Wang Y  Secco D  Poirier Y 《Plant physiology》2008,146(2):646-656
PHO1 was previously identified in Arabidopsis (Arabidopsis thaliana) as a protein involved in loading inorganic phosphate (Pi) into the xylem of roots and its expression was associated with the vascular cylinder. Seven genes homologous to AtPHO1 (PpPHO1;1-PpPHO1;7) have been identified in the moss Physcomitrella patens. The corresponding proteins harbor an SPX tripartite domain in the N-terminal hydrophilic portion and an EXS domain in the conserved C-terminal hydrophobic portion, both common features of the plant PHO1 family. Northern-blot analysis showed distinct expression patterns for the PpPHO1 genes, both at the tissue level and in response to phosphate deficiency. Transgenic P. patens expressing the beta-glucuronidase reporter gene under three different PpPHO1 promoters revealed distinct expression profiles in various tissues. Expression of PpPHO1;1 and PpPHO1;7 was specifically induced by Pi starvation. P. patens homologs to the Arabidopsis PHT1, DGD2, SQD1, and APS1 genes also responded to Pi deficiency by increased mRNA levels. Morphological changes associated with Pi deficiency included elongation of caulonemata with inhibition of the formation of side branches, resulting in colonies with greater diameter, but reduced mass compared to Pi-sufficient plants. Under Pi-deficient conditions, P. patens also increased the synthesis of ribonucleases and of an acid phosphatase, and increased the ratio of sulfolipids over phospholipids. These results indicate that P. patens and higher plants share some common strategies to adapt to Pi deficiency, although morphological changes are distinct, and that the PHO1 proteins are well conserved in bryophyte despite the lack of a developed vascular system.  相似文献   

6.
7.
Jiang C  Schommer CK  Kim SY  Suh DY 《Phytochemistry》2006,67(23):2531-2540
Since the early evolution of land plants from primitive green algae, flavonoids have played an important role as UV protective pigments in plants. Flavonoids occur in liverworts and mosses, and the first committed step in the flavonoid biosynthesis is catalyzed by chalcone synthase (CHS). Although higher plant CHSs have been extensively studied, little information is available on the enzymes from bryophytes. Here we report the cloning and characterization of CHS from the moss, Physcomitrella patens. Taking advantage of the available P. patens EST sequences, a CHS (PpCHS) was cloned from the gametophores of P. patens, and heterologously expressed in Escherichia coli. PpCHS exhibited similar kinetic properties and substrate preference profile to those of higher plant CHS. p-Coumaroyl-CoA was the most preferred substrate, suggesting that PpCHS is a naringenin chalcone producing CHS. Consistent with the evolutionary position of the moss, phylogenetic analysis placed PpCHS at the base of the plant CHS clade, next to the microorganism CHS-like gene products. Therefore, PpCHS likely represents a modern day version of one of the oldest CHSs that appeared on earth. Further, sequence analysis of the P. patens EST and genome databases revealed the presence of a CHS multigene family in the moss as well as the 3'-end heterogeneity of a CHS gene. Of the 19 putative CHS genes, 10 genes are expressed and have corresponding ESTs in the databases. A possibility of the functional divergence of the multiple CHS genes in the moss is discussed.  相似文献   

8.

Main conclusion

We report a novel physiological response to blue light in the moss Physcomitrella patens . Blue light regulates ent -kaurene biosynthesis and avoidance response to protonemal growth.

Abstract

Gibberellins (GAs) are a group of diterpene-type plant hormones biosynthesized from ent-kaurenoic acid via ent-kaurene. While the moss Physcomitrella patens has part of the GA biosynthetic pathway, from geranylgeranyl diphosphate to ent-kaurenoic acid, no GA is found in this species. Caulonemal differentiation in a P. patens mutant with a disrupted bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase (PpCPS/KS) gene is suppressed under red light, and is recovered by application of ent-kaurene and ent-kaurenoic acid. This indicates that derivatives of ent-kaurenoic acid, not GAs, might act as endogenous developmental regulators. Here, we found unique responses in the protonemal growth of P. patens under unilateral blue light, and these regulators were involved in the responses. When protonemata of the wild type were incubated under blue light, the chloronemal filaments grew in the opposite direction to the light source. Although this avoidance was not observed in the ent-kaurene deficient mutant, chloronemal growth toward a blue-light source in the mutant was suppressed by application of ent-kaurenoic acid, and the growth was rescued to that in the wild type. Expression analysis of the PpCPS/KS gene showed that the mRNA level under blue light was rapidly increased and was five times higher than under red light. These results suggest that regulators derived from ent-kaurenoic acid are strongly involved not only in the growth regulation of caulonemal differentiation under red light, but also in the light avoidance response of chloronemal growth under blue light. In particular, growth under blue light is regulated via the PpCPS/KS gene.  相似文献   

9.
ent-Kaurene is the key intermediate in biosynthesis of gibberellins (GAs), plant hormones. In higher plants, ent-kaurene is synthesized successively by copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) from geranylgeranyl diphosphate (GGDP). On the other hand, fungal ent-kaurene synthases are bifunctional cyclases with both CPS and KS activity in a single polypeptide. The moss Physcomitrella patens is a model organism for the study of genetics and development in an early land plant. We identified ent-kaurene synthase (PpCPS/KS) from P. patens and analyzed its function. PpCPS/KS cDNA encodes a 101-kDa polypeptide, and shows high similarity with CPSs and abietadiene synthase from higher plants. PpCPS/KS is a bifunctional cyclase and, like fungal CPS/KS, directly synthesizes the ent-kaurene skeleton from GGDP. PpCPS/KS has two aspartate-rich DVDD and DDYFD motifs observed in CPS and KS, respectively. The mutational analysis of two conserved motifs in PpCPS/KS indicated that the DVDD motif is responsible for CPS activity (GGDP to CDP) and the DDYFD motif for KS activity (CDP to ent-kaurene and ent-16alpha-hydroxykaurene).  相似文献   

10.
Silber MV  Meimberg H  Ebel J 《Phytochemistry》2008,69(13):2449-2456
Since the early evolution of land plants from primitive green algae, phenylpropanoid compounds have played an important role. In the biosynthesis of phenylpropanoids, 4-coumarate:CoA ligase (4CL; EC 6.2.1.12) has a pivotal role at the divergence point from general phenylpropanoid metabolism to several major branch pathways. Although higher plant 4CLs have been extensively studied, little information is available on the enzymes from bryophytes. In Physcomitrella patens, we have identified a 4CL gene family consisting of four members, taking advantage of the available EST sequences and a draft sequence of the P. patens genome. The encoded proteins of three of the genes display similar substrate utilization profiles with highest catalytic efficiency towards 4-coumarate. Interestingly, the efficiency with cinnamate as substrate is in the same range as with caffeate and ferulate. The deduced proteins of the four genes share sequence identities between 78% and 86%. The intron/exon structures are pair wise similar. Pp4CL2 and Pp4CL3 each consists of four exons and three introns, whereas Pp4CL1 and Pp4CL4 are characterized each by five exons and four introns. Pp4CL1, Pp4CL2 and Pp4CL3 are expressed in both gametophore and protonema tissue of P. patens, unlike Pp4CL4 whose expression could not be demonstrated under the conditions employed. Phylogenetic analysis suggests an early evolutionary divergence of Pp4CL gene family members. Using Streptomyces coelicolor cinnamate:CoA ligase (ScCCL) as an outgroup, the P. patens 4CLs are clearly separated from the spermatophyte proteins, but are intercalated between the angiosperm 4CL class I and class II. A comparison of three P. patens subspecies from diverse geographical locations shows high sequence identities for the four 4CL isoforms.  相似文献   

11.
Having diverged from the lineage that lead to flowering plants shortly after plants have established on land, mosses, which share fundamental processes with flowering plants but underwent little morphological changes by comparison with the fossil records, can be considered as an evolutionary informative place. Hence, they are especially useful for the study of developmental evolution and adaption to life on land. The transition to land exposed early plants to harsh physical conditions that resulted in key physiological and developmental changes. MicroRNAs (miRNAs) are an important class of small RNAs (sRNAs) that act as master regulators of development and stress in flowering plants. In recent years several groups have been engaged in the cloning of sRNAs from the model moss Physcomitrella patens. These studies have revealed a wealth of miRNAs, including novel and conserved ones, creating a unique opportunity to broaden our understanding of miRNA functions in land plants and their contribution to the latter??s evolution. Here we review the current knowledge of moss miRNAs and suggest approaches for their functional analysis in P. patens.  相似文献   

12.
Expansins in the bryophyte Physcomitrella patens   总被引:3,自引:0,他引:3  
Expansins are cell wall proteins which play a key function in basic processes of plant growth and differentiation. It has been proposed that expansins are likely to be present in all land plants and, to date, they have been reported in angiosperms, gymnosperms and pteridophytes. In this paper, we provide the first report and analysis of genes encoding expansin-like proteins in the bryophyte, Physcomitrella patens. Our analysis indicates that both - and -expansins are present as gene families in this plant and expression analysis indicates that these genes are subject to a complex regulation by both hormonal and environmental factors. In particular, the expression of many expansin genes in P. patens is upregulated by stress conditions, suggesting that they play a role in the specific cellular differentiation displayed by P. patens in response to such stress. Finally, we provide the first report on the generation and analysis of a series of knockout mutants for individual expansin genes. Abbreviations: IAA, indole-acetic acid; BAP, 6-benzylaminopurine; ABA, abscisic acid; npt, neomycin phospotransferase; KO, knockout  相似文献   

13.
The Physcomitrella patens genome has seven genes apparently coding for the isopentenyltransferase type of tRNA-modifying enzyme, while other organisms have one or two. The predicted sequences have parts that differ significantly from other isopentenyltransferases. Only one of the seven (PpIPT1) has earlier been shown to be expressed. We now report expression of two more, PpIPT4 and PpIPT5. The cloned genes were able to functionally complement a yeast mutant lacking tRNA isopentenyltransferase. Sequencing showed they are related to the earlier studied PpIPT1. The sequences of the three differ mainly from each other in a tRNA-binding area and the 5′-end subcellular targeting motif area. This indicates that, after arising through gene duplication, they have evolved to enable partly different functions.  相似文献   

14.
Mapping of the Physcomitrella patens proteome   总被引:2,自引:0,他引:2  
The moss Physcomitrella patens is unique among land plants due to the high rate of homologous recombination in its nuclear DNA. The feasibility of gene targeting makes Physcomitrella an unrivalled model organism in the field of plant functional genomics. To further extend the potentialities of this seed-less plant we aimed at exploring the P. patens proteome. Experimental conditions had to be adopted to meet the special requirements connected to the investigations of this moss. Here we describe the identification of 306 proteins from the protonema of Physcomitrella. Proteins were separated by two dimensional electrophoresis, excised form the gel and analysed by means of mass spectrometry. This reference map will lay the basis for further profound studies in the field of Physcomitrella proteomics.  相似文献   

15.
In the moss Physcomitrella patens, transforming DNA containing homologous sequences integrates predominantly by homologous recombination with its genomic target. A systematic investigation of the parameters that determine gene targeting efficiency shows a direct relationship between homology length and targeting frequency for replacement vectors (a selectable marker flanked by homologous DNA). Overall homology of only 1 kb is sufficient to achieve a 50% yield of targeted transformants. Targeting may occur through homologous recombination in one arm, accompanied by non-homologous end-joining by the other arm of the vector, or by allele replacement following two homologous recombination events. Allele replacement frequency depends on the symmetry of the targeting vector, being proportional to the length of the shorter arm. Allele replacement may involve insertion of multiple copies of the transforming DNA, accompanied by ectopic insertions at non-homologous sites. Single-copy and single insertions at targeted loci (targeted gene replacements, ‘TGR’) occur with a frequency of 7–20% of all transformants when the minimum requirements for allele replacement are met. Homologous recombination in Physcomitrella is substantially more efficient than in any multicellular eukaryote, recommending it as the outstanding model for the study of homologous recombination in plants.  相似文献   

16.
RNA interference in the moss Physcomitrella patens   总被引:8,自引:0,他引:8       下载免费PDF全文
The moss Physcomitrella patens performs efficient homologous recombination, which allows for the study of individual gene function by generating gene disruptions. Yet, if the gene of study is essential, gene disruptions cannot be isolated in the predominantly haploid P. patens. Additionally, disruption of a gene does not always generate observable phenotypes due to redundant functions from related genes. However, RNA interference (RNAi) can provide mutants for both of these situations. We show that RNAi disrupts gene expression in P. patens, adding a significant tool for the study of plant gene function. To assay for RNAi in moss, we constructed a line (NLS-4) expressing a nuclearly localized green fluorescent protein (GFP):beta-glucuronidase (GUS) fusion reporter protein. We targeted the reporter protein with two RNAi constructs, GUS-RNAi and GFP-RNAi, expressed transiently by particle bombardment. Transformed protonemal cells are marked by cobombardment with dsRed2, which diffuses between the nucleus and cytoplasm. Cells transformed with control constructs have nuclear/cytoplasmic red fluorescence and nuclear green fluorescence. In cells transformed with GUS-RNAi or GFP-RNAi constructs, the nuclear green fluorescence was reduced on average 9-fold as soon as 48 h after transformation. Moreover, isolated lines of NLS-4 stably transformed with GUS-RNAi construct have silenced nuclear GFP, indicating that RNAi is propagated stably. Thus, RNAi adds a powerful tool for functional analysis of plant genes in moss.  相似文献   

17.
18.
Stable transformation of the moss Physcomitrella patens   总被引:9,自引:0,他引:9  
Summary We report the stable transformation of Physcomitrella patens to either G418 or hygromycin B resistance following polyethylene glycol-mediated direct DNA uptake by protoplasts. The method described in this paper was used successfully in independent experiments carried out in our two laboratories. Transformation was assessed by the following criteria: selection of antibiotic-resistant plants, mitotic and meiotic stability of phenotypes after removal of selective pressure and stable transmission of the character to the offspring; Southern hybridisation analysis of genomic DNA to show integration of the plasmid DNA; segregation of the resistance gene following crosses with antibiotic-sensitive strains; and finally Southern hybridisation analysis of both resistant and sensitive progeny. In addition to stable transformants, a heterogeneous class of unstable transformants was obtained.  相似文献   

19.
介绍了基因打靶技术在新型模式植物小立碗藓(Physcomitrella patens)中的应用.  相似文献   

20.
Three cytokinin-over-producing mutants of the moss, Physcomitrella patens, have been shown to convert [8-14C]adenine to N6-[14C](Δ2-isopentenyl)adenine, the presence of which was confirmed by thin layer chromatography, high performance liquid chromatography, and recrystallization to constant specific radioactivity. The labeled cytokinin was detected in the culture medium within 6 hours and the tissue itself appears to contain both labeled N6-(Δ2-isopentenyl)adenine and N6-(Δ2-isopentenyl)adenosine monophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号