首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl channel expressed in the apical membrane of fluid-transporting epithelia. The apical membrane density of CFTR channels is determined, in part, by endocytosis and the postendocytic sorting of CFTR for lysosomal degradation or recycling to the plasma membrane. Although previous studies suggested that ubiquitination plays a role in the postendocytic sorting of CFTR, the specific ubiquitin ligases are unknown. c-Cbl is a multifunctional molecule with ubiquitin ligase activity and a protein adaptor function. c-Cbl co-immunoprecipitated with CFTR in primary differentiated human bronchial epithelial cells and in cultured human airway cells. Small interfering RNA-mediated silencing of c-Cbl increased CFTR expression in the plasma membrane by inhibiting CFTR endocytosis and increased CFTR-mediated Cl currents. Silencing c-Cbl did not change the expression of the ubiquitinated fraction of plasma membrane CFTR. Moreover, the c-Cbl mutant with impaired ubiquitin ligase activity (FLAG-70Z-Cbl) did not affect the plasma membrane expression or the endocytosis of CFTR. In contrast, the c-Cbl mutant with the truncated C-terminal region (FLAG-Cbl-480), responsible for protein adaptor function, had a dominant interfering effect on the endocytosis and plasma membrane expression of CFTR. Moreover, CFTR and c-Cbl co-localized and co-immunoprecipitated in early endosomes, and silencing c-Cbl reduced the amount of ubiquitinated CFTR in early endosomes. In summary, our data demonstrate that in human airway epithelial cells, c-Cbl regulates CFTR by two mechanisms: first by acting as an adaptor protein and facilitating CFTR endocytosis by a ubiquitin-independent mechanism, and second by ubiquitinating CFTR in early endosomes and thereby facilitating the lysosomal degradation of CFTR.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a key membrane protein in the complex network of epithelial ion transporters regulating epithelial permeability. Syntaxins are one of the major determinants in the intracellular trafficking and membrane targeting of secretory proteins. In the present study we demonstrate the biochemical and functional association between CFTR and syntaxin 16 (STX16) that mediates vesicle transport within the early/late endosomes and trans-Golgi network. Immunoprecipitation experiments in rat colon and T84 human colonic epithelial cells indicate that STX16 associates with CFTR. Further analyses using the domain-specific pulldown assay reveal that the helix domain of STX16 directly interacts with the N-terminal region of CFTR. Immunostainings in rat colon and T84 cells show that CFTR and STX16 highly co-localize at the apical and subapical regions of epithelial cells. Interestingly, CFTR-associated chloride current was reduced by the knockdown of STX16 expression in T84 cells. Surface biotinylation and recycling assays indicate that the reduction in CFTR chloride current is due to decreased CFTR expression on the plasma membrane. These results suggest that STX16 mediates recycling of CFTR and constitutes an important component of CFTR trafficking machinery in intestinal epithelial cells.  相似文献   

3.
The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, ΔF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells.  相似文献   

4.
Cystic fibrosis, an autosomal recessive disorder caused by a mutation in a gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), remains a leading cause of childhood respiratory morbidity and mortality. The respiratory consequences of cystic fibrosis include the generation of thick, tenacious mucus that impairs lung clearance, predisposing the individual to repeated and persistent infections, progressive lung damage and shortened lifespan. Currently there is no cure for cystic fibrosis. With this in mind, we investigated the ability of human amnion epithelial cells (hAECs) to express functional CFTR. We found that hAECs formed 3-dimensional structures and expressed the CFTR gene and protein after culture in Small Airway Growth Medium (SAGM). We also observed a polarized CFTR distribution on the membrane of hAECs cultured in SAGM, similar to that observed in polarized airway cells in vivo. Further, hAECs induced to express CFTR possessed functional iodide/chloride (I−/Cl) ion channels that were inhibited by the CFTR-inhibitor CFTR-172, indicating the presence of functional CFTR ion channels. These data suggest that hAECs may be a promising source for the development of a cellular therapy for cystic fibrosis.  相似文献   

5.
6.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) that prevent its proper folding and trafficking to the apical membrane of epithelial cells. Absence of cAMP-mediated Cl secretion in CF airways causes poorly hydrated airway surfaces in CF patients, and this condition is exacerbated by excessive Na+ absorption. The mechanistic link between missing CFTR and increased Na+ absorption in airway epithelia has remained elusive, although substantial evidence implicates hyperactivity of the epithelial Na+ channel (ENaC). ENaC is known to be activated by selective endoproteolysis of the extracellular domains of its α- and γ-subunits, and it was recently reported that ENaC and CFTR physically associate in mammalian cells. We confirmed this interaction in oocytes by co-immunoprecipitation and found that ENaC associated with wild-type CFTR was protected from proteolytic cleavage and stimulation of open probability. In contrast, ΔF508 CFTR, the most common mutant protein in CF patients, failed to protect ENaC from proteolytic cleavage and stimulation. In normal airway epithelial cells, ENaC was contained in the anti-CFTR immunoprecipitate. In CF airway epithelial cultures, the proportion of full-length to total α-ENaC protein signal was consistently reduced compared with normal cultures. Our results identify limiting proteolytic cleavage of ENaC as a mechanism by which CFTR down-regulates Na+ absorption.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the superfamily of ATP-binding cassette (ABC) transporters, also known as traffic ATPases, which are implicated in the movement of various substrates. Recent studies indicate that CFTR and other closely related ABC transporters are also implicated in the movement of cellular ATP. This is the subject of current controversy. Therefore, evidence for the movement of cellular nucleotides by expression of CFTR and related molecules, as well as the potential significance of ATP-permeable channels in cell physiology, are reviewed in this study. The hypothesis is thus forwarded for the improper delivery of cellular ATP to the extracellular milieu by a dysfunctional CFTR, to be a relevant factor in the onset of cystic fibrosis.  相似文献   

8.
9.
Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis (CF), an autosomal recessive disease that currently limits the average life expectancy of sufferers to <40 years of age. The development of novel drug molecules to restore the activity of CFTR is an important goal in the treatment CF, and the isolation of functionally active CFTR is a useful step towards achieving this goal.We describe two methods for the purification of CFTR from a eukaryotic heterologous expression system, S. cerevisiae. Like prokaryotic systems, S. cerevisiae can be rapidly grown in the lab at low cost, but can also traffic and posttranslationally modify large membrane proteins. The selection of detergents for solubilization and purification is a critical step in the purification of any membrane protein. Having screened for the solubility of CFTR in several detergents, we have chosen two contrasting detergents for use in the purification that allow the final CFTR preparation to be tailored to the subsequently planned experiments.In this method, we provide comparison of the purification of CFTR in dodecyl-β-D-maltoside (DDM) and 1-tetradecanoyl-sn-glycero-3-phospho-(1''-rac-glycerol) (LPG-14). Protein purified in DDM by this method shows ATPase activity in functional assays. Protein purified in LPG-14 shows high purity and yield, can be employed to study post-translational modifications, and can be used for structural methods such as small-angle X-ray scattering and electron microscopy. However it displays significantly lower ATPase activity.  相似文献   

10.
Cystic fibrosis (CF) is the most common lethal recessive genetic disease in the Caucasian population. It is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that is normally expressed in ciliated airway epithelial cells and the submucosal glands of the lung. Since the CFTR gene was first characterized in 1989, a major goal has been to develop an effective gene therapy for CF lung disease, which has the potential to ameliorate morbidity and mortality. Respiratory syncytial virus (RSV) naturally infects the ciliated cells in the human airway epithelium. In addition, the immune response mounted against an RSV infection does not prevent subsequent infections, suggesting that an RSV-based vector might be effectively readministered. To test whether the large 4.5-kb CFTR gene could be expressed by a recombinant RSV and whether infectious virus could be used to deliver CFTR to ciliated airway epithelium derived from CF patients, we inserted the CFTR gene into four sites in a recombinant green fluorescent protein-expressing RSV (rgRSV) genome to generate virus expressing four different levels of CFTR protein. Two of these four rgRSV-CFTR vectors were capable of expressing CFTR with little effect on viral replication. rgRSV-CFTR infection of primary human airway epithelial cultures derived from CF patients resulted in expression of CFTR protein that was properly localized at the luminal surface and corrected the chloride ion channel defect in these cells.Cystic fibrosis (CF) is an autosomal recessive genetic disease that occurs with an incidence of 1 in every 3,400 live Caucasian births in the United States and is one of the most common fatal hereditary diseases in the world (47). CF is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a low-conductance ATP- and cyclic AMP (cAMP)-dependent chloride ion (Cl) channel. More than 1,500 mutations that can lead to various degrees of CF have been found in CFTR. The most common mutation found in individuals of European descent is a deletion of 3 nucleotides in the CFTR gene resulting in the loss of phenylalanine at position 508 of the CFTR protein (ΔF508). This mutation results in the translation of a protein that folds improperly, causing it to be degraded upon exit from the endoplasmic reticulum. Since 90% of the mortality caused by CF results from lung pathology, restoring functional CFTR to the airways of CF patients remains a goal of gene replacement therapeutics for the disease. In the lung, CFTR is expressed by the respiratory epithelium that lines the lumen of the airways, where it is localized to the apical membrane of ciliated cells and the submucosal gland ductal epithelium (20, 40, 48). CFTR is responsible for the movement of Cl ions across the apical membranes of the airway epithelium and, in combination with sodium ion (Na+) transport, it dictates the volume of airway surface liquid that facilitates mucus transport and mucociliary clearance. Lack of functional CFTR in the cell membrane decreases Cl ion secretion; a net increase in the intracellular Cl ion concentration is then followed by increased uptake of sodium (Na+) ions by epithelial sodium channels (ENaCs). This additional intracellular ion concentration results in a net increase in water uptake into the cell (68). In patients with CF, the fundamental consequence of CFTR dysfunction in the airway is dehydration of the airway surface liquid (ASL) and an increase in the viscosity of the mucus secretions that coat the respiratory tract. This thickened mucus leads to plugging of the airways, in addition to decreased airway clearance, resulting in an increased susceptibility to both bacterial and viral airway pathogens.Early in vitro experiments using the available recombinant adenoviruses (AdV) and adeno-associated viruses (AAV) showed some efficacy in airway cell transduction (29, 67); however, the human clinical trials were less promising due to the low efficiency of CFTR delivery to the appropriate cells and short-lived CFTR expression, primarily as a consequence of the innate and adaptive immune responses (28, 34, 39, 90). Further studies revealed that CAR, the coxsackievirus and AdV receptor, and heparan sulfate, the AAV receptor, are both expressed on the basolateral surface of the human airway, likely providing another explanation for the poor transduction efficiency of airway cells by these vectors when introduced apically (7, 62, 77, 92). More recently, AAV serotypes that transduce the airway epithelium at a much higher rate have been identified, and additional improvements have been made by mutagenesis, capsid shuffling, and directed evolution (24, 36, 52-54, 78, 89). Lentiviral vectors for the delivery of CFTR to CF patients have also been examined, and improvements have been made, but efficiency and safety concerns persist (33, 41, 57, 72, 76, 85). Here, we suggest a potential viral vector to treat CF that naturally targets the airways.In vitro studies in which CF cells and CFTR-corrected CF cells have been mixed in measured ratios have determined that CFTR expression in 6 to 10% of respiratory cells returns Cl transport to levels similar to those measured in non-CF epithelial cell cultures (2, 42). However, this low level of correction may not repair some of the other associated defects, such as sodium hyperabsorption and mucus dehydration (40). Similar studies performed by mixing airway epithelial cells from CF and non-CF patients to create mixed well-differentiated human airway epithelial cell (HAE) cultures indicated that if 20% of the cells expressed endogenous levels of CFTR, this correlated with 70% of the Cl channel response measured in cultures made with 100% non-CF cells (25). More recently, infection of HAE cultures with a recombinant parainfluenza virus type 3 (PIV3) vector engineered to express CFTR was shown to fully correct the Cl transport defect in HAE cultures. In these studies, CFTR delivery to 25% of the surface airway epithelial cells was required to restore airway surface liquid volume and mucus transport to normal non-CF levels (93). Collectively, these in vitro experiments, in relevant airway cell models, suggest that an effective vector for CFTR delivery would need to target at least 25% of the airway surface epithelial cells.Respiratory syncytial virus (RSV) is a single-stranded negative-sense RNA virus that infects the ciliated cells of the airway epithelium of the human respiratory tract (94). Most individuals become infected with RSV during the first and second years of life; however, due to incomplete immunity, individuals can be reinfected by RSV throughout their lifetimes. In most cases, infection results in only mild, self-limited, common cold-like symptoms, although a proportion of primary infections do involve lower respiratory tract disease. Serious illness, which typically involves bronchiolitis or pneumonia, is usually restricted to young infants or the frail elderly. Although RSV infects CF patients at the same frequency that it infects their age-matched siblings, CF patients tend to develop more frequent lower respiratory tract illness. It has been shown that CF patients require more frequent hospitalization due to RSV infection when they are young, but this decreases with age, as it does for healthy children (32, 87). Since RSV can infect the lungs of CF patients, it appears that it can not only navigate through the physical barriers of the normal respiratory tract, but can also make its way through the sticky and mucus-rich environment of the CF lung. In addition, RSV has other features that suggest it might have advantages as a gene therapy vector for the delivery of CFTR to the airways of CF patients. RSV has a tropism for the luminal ciliated cells of the airway, which are a relevant target for CFTR gene therapy (40, 48), and RSV has been shown to lack the overt cytopathology of other respiratory viruses, suggesting that it will not rapidly destroy the cells that it infects (94). RSV also has the ability to reinfect, implying that multiple sequential administrations of an RSV-based vector would be possible.Here, we tested the utility of RSV as a CFTR gene transfer vector. The CFTR gene was inserted into four different sites in the RSV genome to obtain a range of expression levels. The vector was then evaluated for the ability to deliver CFTR to the ciliated cells in an in vitro model of the human airway (HAE). We show that RSV delivered CFTR to ciliated cells and resulted in sufficient transduction efficiency and functional CFTR expression to fully correct the Cl transport bioelectric defect in primary HAE cultures derived from CF patients. These data support continued efforts to explore the utility of RSV-based vectors as potential gene delivery vectors for the treatment of CF lung disease.  相似文献   

11.
12.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel, that when mutated, can give rise to cystic fibrosis in humans.There is therefore considerable interest in this protein, but efforts to study its structure and activity have been hampered by the difficulty of expressing and purifying sufficient amounts of the protein1-3. Like many ''difficult'' eukaryotic membrane proteins, expression in a fast-growing organism is desirable, but challenging, and in the yeast S. cerevisiae, so far low amounts were obtained and rapid degradation of the recombinant protein was observed 4-9. Proteins involved in the processing of recombinant CFTR in yeast have been described6-9 .In this report we describe a methodology for expression of CFTR in yeast and its purification in significant amounts. The protocol describes how the earlier proteolysis problems can be overcome and how expression levels of CFTR can be greatly improved by modifying the cell growth conditions and by controlling the induction conditions, in particular the time period prior to cell harvesting. The reagants associated with this protocol (murine CFTR-expressing yeast cells or yeast plasmids) will be distributed via the US Cystic Fibrosis Foundation, which has sponsored the research. An article describing the design and synthesis of the CFTR construct employed in this report will be published separately (Urbatsch, I.; Thibodeau, P. et al., unpublished). In this article we will explain our method beginning with the transformation of the yeast cells with the CFTR construct - containing yeast plasmid (Fig. 1). The construct has a green fluorescent protein (GFP) sequence fused to CFTR at its C-terminus and follows the system developed by Drew et al. (2008)10. The GFP allows the expression and purification of CFTR to be followed relatively easily. The JoVE visualized protocol finishes after the preparation of microsomes from the yeast cells, although we include some suggestions for purification of the protein from the microsomes. Readers may wish to add their own modifications to the microsome purification procedure, dependent on the final experiments to be carried out with the protein and the local equipment available to them. The yeast-expressed CFTR protein can be partially purified using metal ion affinity chromatography, using an intrinsic polyhistidine purification tag. Subsequent size-exclusion chromatography yields a protein that appears to be >90% pure, as judged by SDS-PAGE and Coomassie-staining of the gel.  相似文献   

13.
Permeation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels by halide ions was studied in stably transfected Chinese hamster ovary cells by using the patch clamp technique. In cell-attached patches with a high Cl pipette solution, the CFTR channel displayed outwardly rectifying currents and had a conductance near the membrane potential of 6.0 pS at 22°C or 8.7 pS at 37°C. The current–voltage relationship became linear when patches were excised into symmetrical, N-tris(hydroxymethyl)methyl-2-aminomethane sulfonate (TES)-buffered solutions. Under these conditions, conductance increased from 7.0 pS at 22°C to 10.9 pS at 37°C. The conductance at 22°C was ∼1.0 pS higher when TES and HEPES were omitted from the solution, suggesting weak, voltage-independent block by pH buffers. The relationship between conductance and Cl activity was hyperbolic and well fitted by a Michaelis-Menten–type function having a K m of ∼38 mM and maximum conductance of 10 pS at 22°C. Dilution potentials measured with NaCl gradients indicated high anion selectivity (PNa/PCl = 0.003–0.028). Biionic reversal potentials measured immediately after exposure of the cytoplasmic side to various test anions indicated PI (1.8) > PBr (1.3) > PCl (1.0) > PF (0.17), consistent with a “weak field strength” selectivity site. The same sequence was obtained for external halides, although inward F flow was not observed. Iodide currents were protocol dependent and became blocked after 1–2 min. This coincided with a large shift in the (extrapolated) reversal potential to values indicating a greatly reduced I/Cl permeability ratio (PI/PCl < 0.4). The switch to low I permeability was enhanced at potentials that favored Cl entry into the pore and was not observed in the R347D mutant, which is thought to lack an anion binding site involved in multi-ion pore behavior. Interactions between Cl and I ions may influence I permeation and be responsible for the wide range of PI/PCl ratios that have been reported for the CFTR channel. The low PI/PCl ratio usually reported for CFTR only occurred after entry into an altered permeability state and thus may not be comparable with permeability ratios for other anions, which are obtained in the absence of iodide. We propose that CFTR displays a “weak field strength” anion selectivity sequence.  相似文献   

14.
The PDZ domain–containing protein CAL mediates lysosomal trafficking and degradation of CFTR. Here we demonstrate the involvement of a CAL-binding SNARE protein syntaxin 6 (STX6) in this process. Overexpression of STX6, which colocalizes and coimmunoprecipitates with CAL, dramatically reduces the steady-state level and stability of CFTR. Conversely, overexpression of a STX6 dominant-negative mutant increases CFTR. Silencing endogenous STX6 increases CFTR but has no effect on ΔTRL-CFTR, which cannot bind to CAL. Silencing CAL eliminates the effect of STX6 on CFTR. Both results suggest a dependence of CAL on STX6 function. Consistent with its Golgi localization, STX6 does not bind to ER-localized ΔF508-CFTR. Silencing STX6 has no effect on ΔF508-CFTR expression. However, overexpression of STX6 coimmunoprecipitates with and reduces temperature-rescued ΔF508-CFTR that escapes ER degradation. Conversely, silencing STX6 enhances the effect of low temperature in rescuing ΔF508-CFTR. Finally, in human bronchial epithelial cells, silencing endogenous STX6 leads to increases in protein levels and Cl currents of both wild-type and temperature-rescued CFTR. We have identified STX6 as a new component of the CAL complex that regulates the abundance and function of CFTR at the post-ER level. Our results suggest a therapeutic role of STX6 in enhancing rescued ΔF508-CFTR.  相似文献   

15.
In cystic fibrosis (CF), the absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) translates into chronic bacterial infection, excessive inflammation, tissue damage, impaired lung function and eventual death. Understanding the mechanisms underlying this vicious circle of inflammation is important to design better therapies for CF. We found in CF lung biopsies increased immunoreactivity for p38 MAPK activity markers. Moreover, when compared with their non-CF counterpart, airway epithelial cells expressing the most common mutation in CF (CFTRΔF508) were more potent at inducing neutrophil chemotaxis through increased interleukin (IL)-6 synthesis when challenged with Pseudomonas aeruginosa diffusible material. We then discovered that in CFTRΔF508 cells, the p38 and ERK MAPKs are hyperactivated in response to P. aeruginosa diffusible material, leading to increased IL-6 mRNA expression and stability. Moreover, although TLR5 contributes to p38 MAPK activation upon P. aeruginosa challenge, it only played a weak role in IL-6 synthesis. Instead, we found that the production of reactive oxygen species is essential for IL-6 synthesis in response to P. aeruginosa diffusible material. Finally, we uncovered that in CFTRΔF508 cells, the extracellular glutathione levels are decreased, leading to a greater sensitivity to reactive oxygen species, providing an explanation for the hyperactivation of the p38 and ERK MAPKs and increased IL-6 synthesis. Taken together, our study has characterized a mechanism whereby the CFTRΔF508 mutation in airway epithelial cells contributes to increase inflammation of the airways.  相似文献   

16.
Mutations of the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) that impair its apical localization and function cause cystic fibrosis. A previous report has shown that filamin A (FLNa), an actin-cross-linking and -scaffolding protein, interacts directly with the cytoplasmic N terminus of CFTR and that this interaction is necessary for stability and confinement of the channel to apical membranes. Here, we report that the CFTR N terminus has sequence similarity to known FLNa-binding partner-binding sites. FLNa has 24 Ig (IgFLNa) repeats, and a CFTR peptide pulled down repeats 9, 12, 17, 19, 21, and 23, which share sequence similarity yet differ from the other FLNa Ig domains. Using known structures of IgFLNa·partner complexes as templates, we generated in silico models of IgFLNa·CFTR peptide complexes. Point and deletion mutants of IgFLNa and CFTR informed by the models, including disease-causing mutations L15P and W19C, disrupted the binding interaction. The model predicted that a P5L CFTR mutation should not affect binding, but a synthetic P5L mutant peptide had reduced solubility, suggesting a different disease-causing mechanism. Taken together with the fact that FLNa dimers are elongated (∼160 nm) strands, whereas CFTR is compact (6∼8 nm), we propose that a single FLNa molecule can scaffold multiple CFTR partners. Unlike previously defined dimeric FLNa·partner complexes, the FLNa-monomeric CFTR interaction is relatively weak, presumptively facilitating dynamic clustering of CFTR at cell membranes. Finally, we show that deletion of all CFTR interacting domains from FLNa suppresses the surface expression of CFTR on baby hamster kidney cells.  相似文献   

17.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations reducing the activity of CFTR result in the genetic disease cystic fibrosis. Two of the most common mutations causing a severe phenotype are G551D and ΔF508. Previously we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) potentiates the activity of G551D by ∼7-fold. Here we show that 2′-deoxy-ATP (dATP), but not 3′-deoxy-ATP, increases the activity of G551D-CFTR by ∼8-fold. We custom synthesized N6-(2-phenylethyl)-2′-deoxy-ATP (P-dATP), an analog combining the chemical modifications in dATP and P-ATP. This new analog enhances G551D current by 36.2 ± 5.4-fold suggesting an independent but energetically additive action of these two different chemical modifications. We show that P-dATP binds to ABP1 to potentiate the activity of G551D, and mutations in both sides of ABP1 (W401G and S1347G) decrease its potentiation effect, suggesting that the action of P-dATP takes place at the interface of both NBDs. Interestingly, P-dATP completely rectified the gating abnormality of ΔF508-CFTR by increasing its activity by 19.5 ± 3.8-fold through binding to both ABPs. This result highlights the severity of the gating defect associated with ΔF508, the most prevalent disease-associated mutation. The new analog P-dATP can be not only an invaluable tool to study CFTR gating, but it can also serve as a proof-of-principle that, by combining elements that potentiate the channel activity independently, the increase in chloride transport necessary to reach a therapeutic target is attainable.  相似文献   

18.
19.

Introduction

In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF). CFTR mutations (F508del is the most common) lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age.

Methods

Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure.

Results

Patients were classified by two different criteria: 1) presence/absence of F508del mutation; 2) disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme) were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum) were reduced.

Conclusions

This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a ‘systemic disease’, linking the lung and the gut in a joined axis.  相似文献   

20.
Cystic fibrosis (CF) is a frequent and lethal autosomal recessive disease. It results from different possible mutations in the CFTR gene, which encodes the CFTR chloride channel. We have previously studied the differential expression of genes in CF and CF corrected cell lines, and found a reduced expression of MTND4 in CF cells. MTND4 is a mitochondrial gene encoding the MTND4 subunit of the mitochondrial Complex I (mCx-I). Since this subunit is essential for the assembly and activity of mCx-I, we have now studied whether the activity of this complex was also affected in CF cells. By using Blue Native-PAGE, the in-gel activity (IGA) of the mCx-I was found reduced in CFDE and IB3-1 cells (CF cell lines) compared with CFDE/6RepCFTR and S9 cells, respectively (CFDE and IB3-1 cells ectopically expressing wild-type CFTR). Moreover, colon carcinoma T84 and Caco-2 cells, which express wt-CFTR, either treated with CFTR inhibitors (glibenclamide, CFTR(inh)-172 or GlyH101) or transfected with a CFTR-specific shRNAi, showed a significant reduction on the IGA of mCx-I. The reduction of the mCx-I activity caused by CFTR inhibition under physiological or pathological conditions may have a profound impact on mitochondrial functions of CF and non-CF cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号