首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kawano N  Ito O  Sakagami J 《Annals of botany》2009,103(2):161-169

Background and Aims

Reducing damage to rice seedlings caused by flash flooding will improve the productivity of rainfed lowland rice in West Africa. Accordingly, the morphological and physiological responses of different forms of rice to complete submergence were examined in field and pot experiments to identify primary causes of damage.

Methods

To characterize the physiological responses, seedlings from a wide genetic base including Oryza sativa, O. glaberrima and interspecific hybrids were compared using principle component analysis.

Key Results

Important factors linked to flash-flood tolerance included minimal shoot elongation underwater, increase in dry matter weight during submergence and post-submergence resistance to lodging. In particular, fast shoot elongation during submergence negatively affected plant growth after de-submergence. Also shoot-elongating cultivars showed a strong negative correlation between dry matter weight of the leaves that developed before submergence and leaves developing during submergence.

Conclusions

Enhancement of shoot elongation during submergence in water that is too deep to permit re-emergence by small seedlings represents a futile escape strategy that takes place at the expense of existing dry matter in circumstances where underwater photosynthetic carbon fixation is negligible. Consequently, it compromises survival or recovery growth once flood water levels recede and plants are re-exposed to the aerial environment. Tolerance is greater in cultivars where acceleration of elongation caused by submergence is minimal.Key words: Africa, flash floods, Oryza glaberrima, rainfed lowland, rice, shoot elongation, stress tolerance, submergence  相似文献   

2.
Kato Y  Okami M 《Annals of botany》2011,108(3):575-583

Background and Aims

Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. ‘Aerobic rice culture’ aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant–water relationships and stomatal conductance in aerobic culture.

Methods

Root system development, stomatal conductance (gs) and leaf water potential (Ψleaf) were monitored in a high-yielding rice cultivar (‘Takanari’) under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> –10 kPa) and mildly dry (> –30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; Kpa) was measured under flooded and aerobic conditions.

Key Results

Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72–85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower Kpa than plants grown under flooded conditions. Ψleaf was always significantly lower in aerobic culture than in flooded culture, while gs was unchanged when the soil moisture was at around field capacity. gs was inevitably reduced when the soil water potential at 20-cm depth reached –20 kPa.

Conclusions

Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψleaf. Ψleaf may reduce even if Kpa is not significantly changed, but the lower Ψleaf would certainly occur in case Kpa reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.  相似文献   

3.

Background and aims

Rice plants alternately experience anaerobic and aerobic conditions during their life cycle in rainfed lowlands. Each condition affects root growth differently. Our objective was to clarify the specific rice root response to aerobic conditions in rainfed lowlands.

Methods

At the Ubon Ratchathani Rice Research Center in northeastern Thailand, we obtained root samples from 17 ‘Surin1’ (Thai variety) BC3-derived lines and 7 CT9993-5-10-1-M × IR62266-42-6-2 doubled-haploid lines from flooded and non-flooded paddy fields at the reproductive stage in 2010 and 2011.

Results

In the non-flooded trial, rice was grown aerobically by draining the perched water; soil moisture at a depth of 20 cm fluctuated between ?10 and ?30 kPa. Deep rooting was likely promoted under aerobic conditions, but slightly drier soils under longer dry spells seemed to restrict root penetration, as the topsoil rapidly hardened during dry spells of only a few days. Fine-root development in the topsoil was inhibited under aerobic conditions.

Conclusions

Even without drought stress, rice roots respond significantly to the disappearance of standing water in rainfed lowlands via deep rooting and root branching. We identified one promising ‘Surin1’ BC3-derived line showing an adaptive response of deep rooting under aerobic conditions, which can be used as a breeding material for rainfed lowland rice in Thailand.  相似文献   

4.

Background

Rice is the world''s most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots.

Scope

This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars.

Conclusions

Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.  相似文献   

5.

Background and aims

In recent years, Cyperus rotundus has become a problem weed in lowland rice (Oryza sativa) grown in rotation with vegetables in the Philippines. As the growth of C. rotundus is commonly suppressed by prolonged flooding, the ability of the weed to grow vigorously in flooded as well as upland conditions suggests that adapted ecotypes occur in these rotations. Studies were conducted to elucidate the mechanisms that permit C. rotundus to tolerate flooded soil conditions.

Methods

Upland and lowland ecotypes of C. rotundus were compared in terms of growth habit, carbohydrate reserves and metabolism, and activities of enzymes involved in alcoholic fermentation – alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC).

Key Results

The lowland ecotype has much larger tubers than the upland ecotype. Prior to germination, the amylase activity and total non-structural carbohydrate content in the form of soluble sugars were greater in the tubers of lowland plants than in those of upland C. rotundus. At 24 h after germination in hypoxic conditions, PDC and ADH activities in the lowland plants increased, before decreasing at 48 h following germination. In contrast, ADH and PDC activities in the upland plants increased from 24 to 48 h after germination.

Conclusions

Tolerance of lowland C. rotundus of flooding may be attributed to large carbohydrate content and amylase activity, and the ability to maintain high levels of soluble sugars in the tubers during germination and early growth. This is coupled with the modulation of ADH and PDC activities during germination, possibly to control the use of carbohydrate reserves and sustain substrate supply in order to avoid starvation and death of seedlings with prolonged flooding.Key words: Anoxia, ethanol fermentation, flooding tolerance, nutsedge, Cyperus rotundus, Pasteur effect, weed ecology  相似文献   

6.

Background and Aims

Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects.

Methods

Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied.

Key Results

The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis.

Conclusions

Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots.  相似文献   

7.
Root cortical burden influences drought tolerance in maize   总被引:1,自引:0,他引:1  

Background and Aims

Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than RCA formation or root diameter.

Methods

RCA, LCA, root respiration, root length and biomass loss in response to drought were evaluated in maize (Zea mays) recombinant inbred lines grown with adequate and suboptimal irrigation in soil mesocosms.

Key Results

Root respiration was highly correlated with LCA. LCA was a better predictor of root respiration than either RCA or root diameter. RCA reduced respiration of large-diameter roots. Since RCA and LCA varied in different parts of the root system, the effects of RCA and LCA on root length were complex. Greater crown-root LCA was associated with reduced crown-root length relative to total root length. Reduced LCA was associated with improved drought tolerance.

Conclusions

The results are consistent with the hypothesis that LCA is a driver of root metabolic costs and may therefore have adaptive significance for water acquisition in drying soil.  相似文献   

8.

Background

The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast.

Methodology

A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait.

Results

Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population.

Conclusions

This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.  相似文献   

9.
10.

Background

Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates.

Methods

The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes.

Key Results

Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series.

Conclusions

The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.  相似文献   

11.

Background and aims

Microalgae are ubiquitous in paddy soils. However, their roles in arsenic (As) accumulation and transport in rice plants remains unknown.

Methods

Two green algae and five cyanobacteria were used in pot experiments under continuously flooded conditions to ascertain whether a microalgal inoculation could influence rice growth and rice grain As accumulation in plants grown in As-contaminated soils.

Results

The microalgal inoculation greatly enhanced nutrient uptake and rice growth. The presence of representative microalga Anabaena azotica did not significantly differ the grain inorganic As concentrations but remarkably decreased the rice root and grain DMA concentrations. The translocation of As from roots to grains was also markedly decreased by rice inoculated with A. azotica. This subsequently led to a decrease in the total As concentration in rice grains.

Conclusions

The results of the study indicate that the microalgal inoculation had a strong influence on soil pH, soil As speciation, and soil nutrient bioavailability, which significantly affected the rice growth, nutrient uptake, and As accumulation and translocation in rice plants. The results suggest that algae inoculation can be an effective strategy for improving nutrient uptake and reducing As translocation from roots to grains by rice grown in As-contaminated paddy soils.
  相似文献   

12.
13.

Background and Aims

Studies on the effects of sub- and/or supraoptimal temperatures on growth and phosphorus (P) nutrition of perennial herbaceous species at growth-limiting P availability are few, and the impacts of temperature on rhizosphere carboxylate dynamics are not known for any species.

Methods

The effect of three day/night temperature regimes (low, 20/13 °C; medium, 27/20 °C; and high, 32/25 °C) on growth and P nutrition of Cullen cinereum, Kennedia nigricans and Lotus australis was determined.

Key Results

The highest temperature was optimal for growth of C. cinereum, while the lowest temperature was optimal for K. nigricans and L. australis. At optimum temperatures, the relative growth rate (RGR), root length, root length per leaf area, total P content, P productivity and water-use efficiency were higher for all species, and rhizosphere carboxylate content was higher for K. nigricans and L. australis. Cullen cinereum, with a slower RGR, had long (higher root length per leaf area) and thin roots to enhance P uptake by exploring a greater volume of soil at its optimum temperature, while K. nigricans and L. australis, with faster RGRs, had only long roots (higher root length per leaf area) as a morphological adaptation, but had a higher content of carboxylates in their rhizospheres at the optimum temperature. Irrespective of the species, the amount of P taken up by a plant was mainly determined by root length, rather than by P uptake rate per unit root surface area. Phosphorus productivity was correlated with RGR and plant biomass.

Conclusions

All three species exhibited adaptive shoot and root traits to enhance growth at their optimum temperatures at growth-limiting P supply. The species with a slower RGR (i.e. C. cinereum) showed only morphological root adaptations, while K. nigricans and L. australis, with faster RGRs, had both morphological and physiological (i.e. root carboxylate dynamics) root adaptations.  相似文献   

14.

Background and Aims

Flooding slows seed germination, imposes fatalities and delays seedling establishment in direct-seeded rice. This study describes responses of contrasting rice genotypes subjected to flooding or low oxygen stress during germination and discusses the basis of tolerance shown by certain cultivars.

Methods

In one set of experiments, dry seeds were sown in soil and either watered normally or flooded with 10 cm of water. Seedling survival and shoot and root growth were assessed and seed portions of germinating seedlings were assayed for soluble sugars and starch concentrations. The whole germinating seedlings were assayed for amylase and peroxidase activities and for ethylene production. Activities of enzymes associated with anaerobic respiration were examined and gene expression was analysed separately with seeds germinating under different amounts of dissolved oxygen in dilute agar.

Key Results

Flooding during germination reduced survival but to a lesser extent in tolerant genotypes. Starch concentration in germinating seeds decreased while sugar concentration increased under flooding, but more so in tolerant genotypes. Amylase activity correlated positively with elongation (r = 0·85 for shoot and 0·83 for root length) and with plant survival (r = 0·92). Tolerant genotypes had higher amylase activity and higher RAmy3D gene expression. Ethylene was not detected in seeds within 2 d after sowing, but increased thereafter, with a greater increase in tolerant genotypes starting 3 d after sowing. Peroxidase activity was higher in germinating seeds of sensitive genotypes and correlated negatively with survival.

Conclusions

Under low oxygen stress, tolerant genotypes germinate, grow faster and more seedlings survive. They maintain their ability to use stored starch reserves through higher amylase activity and anaerobic respiration, have higher rates of ethylene production and lower peroxidase activity as germinating seeds and as seedlings. Relevance of these traits to tolerance of flooding during germination and early growth is discussed.Key words: Amylase, anoxia, crop establishment, direct-seeded rice, ethylene, flooding, germination, hypoxia, Oryza sativa  相似文献   

15.

Background and Aims

An updated version of a mechanistic structural–functional model was developed to predict nitrogen (N) uptake throughout the growth cycle by a crop of winter oilseed rape, Brassica napus, grown under field conditions.

Methods

The functional component of the model derives from a revisited conceptual framework that combines the thermodynamic Flow–Force interpretation of nitrate uptake isotherms and environmental and in planta effects on nitrate influx. Estimation of the root biomass (structural component) is based upon a combination of root mapping along the soil depth profile in the field and a relationship between the specific root length and external nitrate concentration. The root biomass contributing actively to N uptake was determined by introduction of an integrated root system age that allows assignment of a root absorption capacity at a specific age of the root.

Key Results

Simulations were well matched to measured data of N taken up under field conditions for three levels of N fertilization. The model outputs indicated that the two topsoil layers (0–30 and 30–60 cm) contained 75–88 % of the total root length and biomass, and accounted for 90–95 % of N taken up at harvest.

Conclusions

This conceptual framework provides a model of nitrate uptake that is able to respond to external nitrate fluctuations at both functional and structural levels.  相似文献   

16.

Background and Aims

Phosphorus commonly limits crop yield and is frequently applied as fertilizer; however, supplies of quality rock phosphate for fertilizer production are diminishing. Plants have evolved many mechanisms to increase their P-fertilizer use efficiency, and an understanding of these traits could result in improved long-term sustainability of agriculture. Here a mutant population is utilized to assess the impact of root hair length on P acquisition and yield under P-deficient conditions alone or when combined with drought.

Methods

Mutants with various root hair phenotypes were grown in the glasshouse in pots filled with soil representing sufficient and deficient P treatments and, in one experiment, a range of water availability was also imposed. Plants were variously harvested at 7 d, 8 weeks and 14 weeks, and variables including root hair length, rhizosheath weight, biomass, P accumulation and yield were measured.

Key Results

The results confirmed the robustness of the root hair phenotypes in soils and their relationship to rhizosheath production. The data demonstrated that root hair length is important for shoot P accumulation and biomass, while only the presence of root hairs is critical for yield. Root hair presence was also critical for tolerance to extreme combined P deficit and drought stress, with genotypes with no root hairs suffering extreme growth retardation in comparison with those with root hairs.

Conclusions

The results suggest that although root hair length is not important for maintaining yield, the presence of root hairs is implicit to sustainable yield of barley under P-deficient conditions and when combined with extreme drought. Root hairs are a trait that should be maintained in future germplasm.  相似文献   

17.
Postma JA  Lynch JP 《Annals of botany》2012,110(2):521-534

Background and Aims

During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures.

Methods

A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils.

Key Results

Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production.

Conclusions

We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production potential.  相似文献   

18.

Background and Aims

Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator.

Methods

Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1·0 g cm−3 to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (–20 kPa matric potential).

Key Results

Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0·2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65·7 % of the variation in the elongation rates.

Conclusions

Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.  相似文献   

19.
Bo Xu  Shen Yu 《Annals of botany》2013,111(6):1189-1195

Background and Aims

Anoxic conditions are seldom considered in root iron plaque induction of wetland plants in hydroponic experiments, but such conditions are essential for root iron plaque formation in the field. Although ferrous ion availability and root radial oxygen loss capacity are generally taken into account, neglect of anoxic conditions in root iron plaque formation might lead to an under- or over-estimate of their functional effects, such as blocking toxic metal uptake. This study hypothesized that anoxic conditions would influence root iron plaque formation characteristics and translocation of Zn and Cd by rice seedlings.

Methods

A hydroponic culture was used to grow rice seedlings and a non-disruptive approach for blocking air exchange between the atmosphere and the induction solution matrix was applied for root iron plaque formation, namely flushing the headspace of the induction solution with N2 during root iron plaque induction. Zn and Cd were spiked into the solution after root iron plaque formation, and translocation of both metals was determined.

Key Results

Blocking air exchange between the atmosphere and the nutrient solution by N2 flushing increased root plaque Fe content by between 11 and 77 % (average 31 %). The N2 flushing treatment generated root iron plaques with a smoother surface than the non-N2 flushing treatment, as observed by scanning electron microscopy, but Fe oxyhydroxides coating the rice seedling roots were amorphous. The root iron plaques sequestrated Zn and Cd and the N2 flushing enhanced this effect by approx. 17 % for Zn and 71 % for Cd, calculated by both single and combined additions of Zn and Cd.

Conclusions

Blocking of oxygen intrusion into the nutrient solution via N2 flushing enhanced root iron plaque formation and increased Cd and Zn sequestration in the iron plaques of rice seedlings. This study suggests that hydroponic studies that do not consider redox potential in the induction matrices might lead to an under-estimate of metal sequestration by root iron plaques of wetland plants.  相似文献   

20.

Background

It is known that the soil near roots, the so-called rhizosphere, has physical and chemical properties different from those of the bulk soil. Rhizosphere properties are the result of several processes: root and soil shrinking/swelling during drying/wetting cycles, soil compaction by root growth, mucilage exuded by root caps, interaction of mucilage with soil particles, mucilage shrinking/swelling and mucilage biodegradation. These processes may lead to variable rhizosphere properties, i.e. the presence of air-filled gaps between soil and roots; water repellence in the rhizosphere caused by drying of mucilage around the soil particles; or water accumulation in the rhizosphere due to the high water-holding capacity of mucilage. The resulting properties are not constant in time but they change as a function of soil condition, root growth rate and mucilage age.

Scope

We consider such a variability as an expression of rhizosphere plasticity, which may be a strategy for plants to control which part of the root system will have a facilitated access to water and which roots will be disconnected from the soil, for instance by air-filled gaps or by rhizosphere hydrophobicity. To describe such a dualism, we suggest classifying rhizosphere into two categories: class A refers to a rhizosphere covered with hydrated mucilage that optimally connects roots to soil and facilitates water uptake from dry soils. Class B refers to the case of air-filled gaps and/or hydrophobic rhizosphere, which isolate roots from the soil and may limit water uptake from the soil as well water loss to the soil. The main function of roots covered by class B will be long-distance transport of water.

Outlook

This concept has implications for soil and plant water relations at the plant scale. Root water uptake in dry conditions is expected to shift to regions covered with rhizosphere class A. On the other hand, hydraulic lift may be limited in regions covered with rhizosphere class B. New experimental methods need to be developed and applied to different plant species and soil types, in order to understand whether such dualism in rhizosphere properties is an important mechanism for efficient utilization of scarce resources and drought tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号