首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Mcm10 is an essential eukaryotic protein required for the initiation and elongation phases of chromosomal replication. Specifically, Mcm10 is required for the association of several replication proteins, including DNA polymerase α (pol α), with chromatin. We showed previously that the internal (ID) and C-terminal (CTD) domains of Mcm10 physically interact with both single-stranded (ss) DNA and the catalytic p180 subunit of pol α. However, the mechanism by which Mcm10 interacts with pol α on and off DNA is unclear. As a first step toward understanding the structural details for these critical intermolecular interactions, x-ray crystallography and NMR spectroscopy were used to map the binary interfaces between Mcm10-ID, ssDNA, and p180. The crystal structure of an Mcm10-ID·ssDNA complex confirmed and extended our previous evidence that ssDNA binds within the oligonucleotide/oligosaccharide binding-fold cleft of Mcm10-ID. We show using NMR chemical shift perturbation and fluorescence spectroscopy that p180 also binds to the OB-fold and that ssDNA and p180 compete for binding to this motif. In addition, we map a minimal Mcm10 binding site on p180 to a small region within the p180 N-terminal domain (residues 286–310). These findings, together with data for DNA and p180 binding to an Mcm10 construct that contains both the ID and CTD, provide the first mechanistic insight into how Mcm10 might use a handoff mechanism to load and stabilize pol α within the replication fork.To maintain their genomic integrity, cells must ensure complete and accurate DNA replication once per cell cycle. Consequently, DNA replication is a highly regulated and orchestrated series of molecular events. Multiprotein complexes assembled at origins of replication lead to assembly of additional proteins that unwind chromosomal DNA and synthesize nascent strands. The first event is the formation of a pre-replicative complex, which is composed of the origin recognition complex, Cdc6, Cdt1, and Mcm2–7 (for review, see Ref. 1). Initiation of replication at the onset of S-phase involves the activity of cyclin- and Dbf4-dependent kinases concurrent with recruitment of key factors to the origin. Among these, Mcm10 (2, 3) is recruited in early S-phase and is required for loading of Cdc45 (4). Mcm2–7, Cdc45, and the GINS complex form the replicative helicase (58). Origin unwinding is followed by loading of RPA,3 And-1/Ctf4, and pol α onto ssDNA (912). In addition, recruitment of Sld2, Sld3, and Dpb11/TopBP1 are essential for replication initiation (13, 14), and association of topoisomerase I, proliferating cellular nuclear antigen (PCNA), replication factor C, and the replicative DNA polymerases δ and ϵ completes the replisome (for review, see Ref. 15).Mcm10 is exclusive to eukaryotes and is essential to both initiation and elongation phases of chromosomal DNA replication (6, 8, 16). Mutations in Mcm10 in yeast result in stalled replication, cell cycle arrest, and cell death (2, 3, 1719). These defects can be explained by the number of genetic and physical interactions between Mcm10 and many essential replication proteins, including origin recognition complex, Mcm2–7, and PCNA (3, 12, 2024). In addition, Mcm10 has been shown to stimulate the phosphorylation of Mcm2–7 by Dbf4-dependent kinase in vitro (25). Thus, Mcm10 is an integral component of the replication machinery.Importantly, Mcm10 physically interacts with and stabilizes pol α and helps to maintain its association with chromatin (16, 26, 27). This is a critical interaction during replication because pol α is the only enzyme in eukaryotic cells that is capable of initiating DNA synthesis de novo. Indeed, Mcm10 stimulates the polymerase activity of pol α in vitro (28), and interestingly, the fission yeast Mcm10, but not Xenopus Mcm10, has been shown to exhibit primase activity (29, 30). Mcm10 is composed of three domains, the N-terminal (NTD), internal (ID), and C-terminal (CTD) domains (29). The NTD is presumably an oligomerization domain, whereas the ID and CTD both interact with DNA and pol α (29). The CTD is not found in yeast, whereas the ID is highly conserved among all eukaryotes. The crystal structure of Mcm10-ID showed that this domain is composed of an oligonucleotide/oligosaccharide binding (OB)-fold and a zinc finger motif, which form a unified DNA binding platform (31). An Hsp10-like motif important for the interaction with pol α has been identified in the sequence of Saccharomyces cerevisiae Mcm10-ID (16, 26).DNA pol α-primase is composed of four subunits: p180, p68, p58, and p48. The p180 subunit possesses the catalytic DNA polymerase activity, and disruption of this gene is lethal (32, 33). p58 and p48 form the DNA-dependent RNA polymerase (primase) activity (34, 35), whereas the p68 subunit has no known catalytic activity but serves a regulatory role (36, 37). Pol α plays an essential role in lagging strand synthesis by first creating short (7–12 nucleotide) RNA primers followed by DNA extension. At the critical length of ∼30 nucleotides, replication factor C binds to the nascent strand to displace pol α and loads PCNA with pols δ and ϵ (for review, see Ref. 38).The interaction between Mcm10 and pol α has led to the suggestion that Mcm10 may help recruit the polymerase to the emerging replisome. However, the molecular details of this interaction and the mechanism by which Mcm10 may recruit and stabilize the pol α complex on DNA has not been investigated. Presented here is the high resolution structure of the conserved Mcm10-ID bound to ssDNA together with NMR chemical shift perturbation competition data for pol α binding in the presence of ssDNA. Collectively, these data demonstrate a shared binding site for DNA and pol α in the OB-fold cleft of Mcm10-ID, with a preference for ssDNA over pol α. In addition, we have mapped the Mcm10-ID binding site on pol α to a 24-residue segment of the N-terminal domain of p180. Based on these results, we propose Mcm10 helps to recruit pol α to origins of replication by a molecular hand-off mechanism.  相似文献   

2.
3.
4.
5.
Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.Insulin plays a central role in the regulation of vertebrate metabolism. The hormone, the post-translational product of a single-chain precursor, is a globular protein containing two chains, A (21 residues) and B (30 residues). Recent advances in human genetics have identified dominant mutations in the insulin gene causing permanent neonatal-onset DM2 (14). The mutations are predicted to block folding of the precursor in the ER of pancreatic β-cells. Although expression of the wild-type allele would in other circumstances be sufficient to maintain homeostasis, studies of a corresponding mouse model (57) suggest that the misfolded variant perturbs wild-type biosynthesis (8, 9). Impaired β-cell secretion is associated with ER stress, distorted organelle architecture, and cell death (10). These findings have renewed interest in insulin biosynthesis (1113) and the structural basis of disulfide pairing (1419). Protein evolution is constrained not only by structure and function but also by susceptibility to toxic misfolding.  相似文献   

6.
Early onset generalized dystonia (DYT1) is an autosomal dominant neurological disorder caused by deletion of a single glutamate residue (torsinA ΔE) in the C-terminal region of the AAA+ (ATPases associated with a variety of cellular activities) protein torsinA. The pathogenic mechanism by which torsinA ΔE mutation leads to dystonia remains unknown. Here we report the identification and characterization of a 628-amino acid novel protein, printor, that interacts with torsinA. Printor co-distributes with torsinA in multiple brain regions and co-localizes with torsinA in the endoplasmic reticulum. Interestingly, printor selectively binds to the ATP-free form but not to the ATP-bound form of torsinA, supporting a role for printor as a cofactor rather than a substrate of torsinA. The interaction of printor with torsinA is completely abolished by the dystonia-associated torsinA ΔE mutation. Our findings suggest that printor is a new component of the DYT1 pathogenic pathway and provide a potential molecular target for therapeutic intervention in dystonia.Early onset generalized torsion dystonia (DYT1) is the most common and severe form of hereditary dystonia, a movement disorder characterized by involuntary movements and sustained muscle spasms (1). This autosomal dominant disease has childhood onset and its dystonic symptoms are thought to result from neuronal dysfunction rather than neurodegeneration (2, 3). Most DYT1 cases are caused by deletion of a single glutamate residue at positions 302 or 303 (torsinA ΔE) of the 332-amino acid protein torsinA (4). In addition, a different torsinA mutation that deletes amino acids Phe323–Tyr328 (torsinA Δ323–328) was identified in a single family with dystonia (5), although the pathogenic significance of this torsinA mutation is unclear because these patients contain a concomitant mutation in another dystonia-related protein, ϵ-sarcoglycan (6). Recently, genetic association studies have implicated polymorphisms in the torsinA gene as a genetic risk factor in the development of adult-onset idiopathic dystonia (7, 8).TorsinA contains an N-terminal endoplasmic reticulum (ER)3 signal sequence and a 20-amino acid hydrophobic region followed by a conserved AAA+ (ATPases associated with a variety of cellular activities) domain (9, 10). Because members of the AAA+ family are known to facilitate conformational changes in target proteins (11, 12), it has been proposed that torsinA may function as a molecular chaperone (13, 14). TorsinA is widely expressed in brain and multiple other tissues (15) and is primarily associated with the ER and nuclear envelope (NE) compartments in cells (1620). TorsinA is believed to mainly reside in the lumen of the ER and NE (1719) and has been shown to bind lamina-associated polypeptide 1 (LAP1) (21), lumenal domain-like LAP1 (LULL1) (21), and nesprins (22). In addition, recent evidence indicates that a significant pool of torsinA exhibits a topology in which the AAA+ domain faces the cytoplasm (20). In support of this topology, torsinA is found in the cytoplasm, neuronal processes, and synaptic terminals (2, 3, 15, 2326) and has been shown to bind cytosolic proteins snapin (27) and kinesin light chain 1 (20). TorsinA has been proposed to play a role in several cellular processes, including dopaminergic neurotransmission (2831), NE organization and dynamics (17, 22, 32), and protein trafficking (27, 33). However, the precise biological function of torsinA and its regulation remain unknown.To gain insights into torsinA function, we performed yeast two-hybrid screens to search for torsinA-interacting proteins in the brain. We report here the isolation and characterization of a novel protein named printor (protein interactor of torsinA) that interacts selectively with wild-type (WT) torsinA but not the dystonia-associated torsinA ΔE mutant. Our data suggest that printor may serve as a cofactor of torsinA and provide a new molecular target for understanding and treating dystonia.  相似文献   

7.
8.
We have developed a system to reconstitute all of the proposed steps of Okazaki fragment processing using purified yeast proteins and model substrates. DNA polymerase δ was shown to extend an upstream fragment to displace a downstream fragment into a flap. In most cases, the flap was removed by flap endonuclease 1 (FEN1), in a reaction required to remove initiator RNA in vivo. The nick left after flap removal could be sealed by DNA ligase I to complete fragment joining. An alternative pathway involving FEN1 and the nuclease/helicase Dna2 has been proposed for flaps that become long enough to bind replication protein A (RPA). RPA binding can inhibit FEN1, but Dna2 can shorten RPA-bound flaps so that RPA dissociates. Recent reconstitution results indicated that Pif1 helicase, a known component of fragment processing, accelerated flap displacement, allowing the inhibitory action of RPA. In results presented here, Pif1 promoted DNA polymerase δ to displace strands that achieve a length to bind RPA, but also to be Dna2 substrates. Significantly, RPA binding to long flaps inhibited the formation of the final ligation products in the reconstituted system without Dna2. However, Dna2 reversed that inhibition to restore efficient ligation. These results suggest that the two-nuclease pathway is employed in cells to process long flap intermediates promoted by Pif1.Eukaryotic cellular DNA is replicated semi-conservatively in the 5′ to 3′ direction. A leading strand is synthesized by DNA polymerase ϵ in a continuous manner in the direction of opening of the replication fork (1, 2). A lagging strand is synthesized by DNA polymerase δ (pol δ)3 in the opposite direction in a discontinuous manner, producing segments called Okazaki fragments (3). These stretches of ∼150 nucleotides (nt) must be joined together to create the continuous daughter strand. DNA polymerase α/primase (pol α) initiates each fragment by synthesizing an RNA/DNA primer consisting of ∼1-nt of RNA and ∼10–20 nt of DNA (4). The sliding clamp proliferating cell nuclear antigen (PCNA) is loaded on the DNA by replication factor C (RFC). pol δ then complexes with PCNA and extends the primer. When pol δ reaches the 5′-end of the downstream Okazaki fragment, it displaces the end into a flap while continuing synthesis, a process known as strand displacement (5, 6). These flap intermediates are cleaved by nucleases to produce a nick for DNA ligase I (LigI) to seal, completing the DNA strand.In one proposed mechanism for flap processing, the only required nuclease is flap endonuclease 1 (FEN1). pol δ displaces relatively short flaps, which are cleaved by FEN1 as they are created, leaving a nick for LigI (79). FEN1 binds at the 5′-end of the flap and tracks down the flap cleaving only at the base (5, 10, 11). Because pol δ favors the displacement of RNA-DNA hybrids over DNA-DNA hybrids, strand displacement generally is limited to that of the initiator RNA of an Okazaki fragment (12). In addition, the tightly coordinated action of pol δ and FEN1 also tends to keep flaps short. However, biochemical reconstitution studies demonstrate that some flaps can become long (13, 14). Once these flaps reach ∼30 nt, they can be bound by the eukaryotic single strand binding protein replication protein A (RPA) (15). Binding by RPA to a flap substrate inhibits cleavage by FEN1 (16). The RPA-bound flap would then require another mechanism for proper processing.This second mechanism is proposed to utilize Dna2 (16) in addition to FEN1. Dna2 is both a 5′-3′ helicase and an endonuclease (17, 18). Like FEN1, Dna2 recognizes 5′-flap structures, binding at the 5′-end of the flap and tracking downward toward the base (19, 20). Unlike FEN1, Dna2 cleaves the flap multiple times but not all the way to the base, such that a short flap remains (20). RPA binding to a flap has been shown to stimulate Dna2 cleavage (16). Therefore, if a flap becomes long enough to bind RPA, Dna2 binds and cleaves it to a length of 5–10 nucleotides from which RPA dissociates (21). FEN1 can then enter the flap, displace the Dna2, and then cleave at the base to make the nick for ligation (16, 18, 22). The need for this mechanism may be one reason why DNA2 is an essential gene in Saccharomyces cerevisiae (23, 24). It has been proposed that, in the absence of Dna2, flaps that become long enough to bind RPA cannot be properly processed, leading to genomic instability and cell death (23).In reconstitution of Okazaki fragment processing with purified proteins, even though some flaps became long enough to bind RPA, FEN1 was very effective at cleaving essentially all of the generated flaps (13, 14). Evidently, FEN1 could engage the flaps before binding of RPA. However, these reconstitution assays did not include the 5′-3′ helicase Pif1 (25, 26). Pif1 is involved in telomeric and mitochondrial DNA maintenance (26) and was first implicated in Okazaki fragment processing from genetic studies in S. cerevisiae. Deletion of PIF1 rescued the lethality of dna2Δ, although the double mutant was still temperature-sensitive (27). The authors of this report proposed that Pif1 creates a need for Dna2 by promoting longer flaps. Further supporting this conclusion, deletion of POL32, which encodes the subunit of pol δ that interacts with PCNA, rescued the temperature sensitivity of the dna2Δpif1Δ double mutant (12, 27). Importantly, pol δ exhibited reduced strand displacement activity when POL32 was deleted (12, 28, 29). The combination of pif1Δ and pol32Δ is believed to create a situation in which virtually no long flaps are formed, eliminating the requirement for Dna2 flap cleavage (27).We recently performed reconstitution assays showing that Pif1 can assist in the creation of long flaps. Inclusion of Pif1, in the absence of RPA, increased the proportion of flaps that lengthened to ∼28–32 nt before FEN1 cleavage (14). With the addition of RPA, the appearance of these long flap cleavage products was suppressed. Evidently, Pif1 promoted such rapid flap lengthening that RPA bound some flaps before FEN1 and inhibited cleavage. The RPA-bound flaps would presumably require cleavage by Dna2 for proper processing.Only a small fraction of flaps became long with Pif1. However, there are hundreds of thousands of Okazaki fragments processed per replication cycle (30). Therefore, thousands of flaps are expected to be lengthened by Pif1 in vivo, a number significant enough that improper processing of such flaps could lead to cell death.Our goal here was to determine whether Pif1 can influence the flow of Okazaki fragments through the two proposed pathways. We first questioned whether Pif1 stimulates strand displacement synthesis by pol δ. Next, we asked whether Pif1 lengthens short flaps so that Dna2 can bind and cleave. Finally, we used a complete reconstitution system to determine whether Pif1 promotes creation of RPA-bound flaps that require cleavage by both Dna2 and FEN1 before they can be ligated. Our results suggest that Pif1 promotes the two-nuclease pathway, and reveal the mechanisms involved.  相似文献   

9.
10.
11.
12.
13.
We have previously reported that growth factor receptor-bound protein-7 (Grb7), an Src-homology 2 (SH2)-containing adaptor protein, enables interaction with focal adhesion kinase (FAK) to regulate cell migration in response to integrin activation. To further elucidate the signaling events mediated by FAK·Grb7 complexes in promoting cell migration and other cellular functions, we firstly examined the phos pho ryl a ted tyrosine site(s) of Grb7 by FAK using an in vivo mutagenesis. We found that FAK was capable of phos pho rylating at least 2 of 12 tyrosine residues within Grb7, Tyr-188 and Tyr-338. Moreover, mutations converting the identified Tyr to Phe inhibited integrin-dependent cell migration as well as impaired cell proliferation but not survival compared with the wild-type control. Interestingly, the above inhibitory effects caused by the tyrosine phos pho ryl a tion-deficient mutants are probably attributed to their down-regulation of phospho-Tyr-397 of FAK, thereby implying a mechanism by competing with wild-type Grb7 for binding to FAK. Consequently, these tyrosine phos pho ryl a tion-deficient mutants evidently altered the phospho-Tyr-118 of paxillin and phos pho ryl a tion of ERK1/2 but less on phospho-Ser-473 of AKT, implying their involvement in the FAK·Grb7-mediated cellular functions. Additionally, we also illustrated that the formation of FAK·Grb7 complexes and Grb7 phos pho ryl a tion by FAK in an integrin-dependent manner were essential for cell migration, proliferation and anchorage-independent growth in A431 epidermal carcinoma cells, indicating the importance of FAK·Grb7 complexes in tumorigenesis. Our data provide a better understanding on the signal transduction event for FAK·Grb7-mediated cellular functions as well as to shed light on a potential therapeutic in cancers.Growth factor receptor bound protein-7 (Grb7)2 is initially identified as a SH2 domain-containing adaptor protein bound to the activated EGF receptor (1). Grb7 is composed of an N-terminal proline-rich region, following a putative RA (Ras-associating) domain and a central PH (pleckstrin homology) domain and a BPS motif (between PH and SH2 domains), and a C-terminal SH2 domain (26). Despite the lack of enzymatic activity, the presence of multiple protein-protein interaction domains allows Grb7 family adaptor proteins to participate in versatile signal transduction pathways and, therefore, to regulate many cellular functions (46). A number of signaling molecules has been reported to interact with these featured domains, although most of the identified Grb7 binding partners are mediated through its SH2 domain. For example, the SH2 domain of Grb7 has been demonstrated to be capable of binding to the phospho-tyrosine sites of EGF receptor (1), ErbB2 (7), ErbB3 and ErbB4 (8), Ret (9), platelet-derived growth factor receptor (10), insulin receptor (11), SHPTP2 (12), Tek/Tie2 (13), caveolin (14), c-Kit (15), EphB1 (16), G6f immunoreceptor protein (17), Rnd1 (18), Shc (7), FAK (19), and so on. The proceeding α-helix of the PH domain of Grb7 is the calmodulin-binding domain responsible for recruiting Grb7 to plasma membrane in a Ca2+-dependent manner (20), and the association between the PH domain of Grb7 and phosphoinositides is required for the phosphorylation by FAK (21). Two additional proteins, NIK (nuclear factor κB-inducing kinase) and FHL2 (four and half lim domains isoform 2), in association with the GM region (Grb and Mig homology region) of Grb7 are also reported, although the physiological functions for these interactions remain unknown (22, 23). Recently, other novel roles in translational controls and stress responses through the N terminus of Grb7 are implicated for the findings of Grb7 interacting with the 5′-untranslated region of capped targeted KOR (kappa opioid receptor) mRNA and the Hu antigen R of stress granules in an FAK-mediated phosphorylation manner (24, 25).Unlike its member proteins Grb10 and Grb14, the role of Grb7 in cell migration is unambiguous and well documented. This is supported by a series of studies. Firstly, Grb7 family members share a significantly conserved molecular architecture with the Caenorhabditis elegans Mig-10 protein, which is involved in neuronal cell migration during embryonic development (4, 5, 26), suggesting that Grb7 may play a role in cell migration. Moreover, Grb7 is often co-amplified with Her2/ErbB2 in certain human cancers and tumor cell lines (7, 27, 28), and its overexpression resulted in invasive and metastatic consequences of various cancers and tumor cells (23, 2933). On the contrary, knocking down Grb7 by RNA interference conferred to an inhibitory outcome of the breast cancer motility (34). Furthermore, interaction of Grb7 with autophosphorylated FAK at Tyr-397 could promote integrin-mediated cell migration in NIH 3T3 and CHO cells, whereas overexpression of its SH2 domain, an dominant negative mutant of Grb7, inhibited cell migration (19, 35). Recruitment and phosphorylation of Grb7 by EphB1 receptors enhanced cell migration in an ephrin-dependent manner (16). Recently, G7–18NATE, a selective Grb7-SH2 domain affinity cyclic peptide, was demonstrated to efficiently block cell migration of tumor cells (32, 36). In addition to cell migration, Grb7 has been shown to play a role in a variety of physiological and pathological events, for instance, kidney development (37), tumorigenesis (7, 14, 3841), angiogenic activity (20), proliferation (34, 42, 43), anti-apoptosis (44), gene expression regulation (24), Silver-Russell syndrome (45), rheumatoid arthritis (46), atopic dermatitis (47), and T-cell activation (17, 48). Nevertheless, it remains largely unknown regarding the downstream signaling events of Grb7-mediated various functions. In particular, given the role of Grb7 as an adaptor molecule and its SH2 domain mainly interacting with upstream regulators, it will be interesting to identify potential downstream effectors through interacting with the functional GM region or N-terminal proline-rich region.In this report, we identified two tyrosine phosphorylated sites of Grb7 by FAK and deciphered the signaling targets downstream through these phosphorylated tyrosine sites to regulate various cellular functions such as cell migration, proliferation, and survival. In addition, our study sheds light on tyrosine phosphorylation of Grb7 by FAK involved in tumorigenesis.  相似文献   

14.
The ATP-activated P2X7 receptor channel is involved in immune function and inflammatory pain and represents an important drug target. Here we describe a new P2X7 splice variant (P2X7(k)), containing an alternative intracellular N terminus and first transmembrane domain encoded by a novel exon 1 in the rodent P2rx7 gene. Whole cell patch clamp recordings of the rat isoform expressed in HEK293 cells revealed an 8-fold higher sensitivity to the agonist Bz-ATP and much slower deactivation kinetics when compared with the P2X7(a) receptor. Permeability measurements in Xenopus oocytes show a high permeability for N-methyl-d-glucamine immediately upon activation, suggesting that the P2X7(k) channel is constitutively dilated upon opening. The rates of agonist-induced dye uptake and membrane blebbing in HEK cells were also increased. PCR analyses and biochemical analysis by SDS-PAGE and BN-PAGE indicate that the P2X7(k) variant escapes gene deletion in one of the available P2X7−/− mice strains and is strongly expressed in the spleen. Taken together, we describe a novel P2X7 isoform with distinct functional properties that contributes to the diversity of P2X7 receptor signaling. Its presence in one of the P2X7−/− strains has important implications for our understanding of the role of this receptor in health and disease.P2X receptors (P2XRs)3 are ATP-gated cation channels. They consist of three subunits (1, 2) each containing two transmembrane domains (TMDs) linked by an extracellular ligand-binding domain (3). The P2X7 receptor is distinguished from other P2X receptors by its long intracellular C terminus, a low ATP sensitivity (EC50: 100 μm to 1 mm), and its ability to induce “cell permeabilization,” meaning that upon prolonged ATP application the opening of a permeation pathway for large molecules is induced. This process eventually leads to apoptosis, requires the C terminus (36), and may be mediated by interaction with pannexin hemichannels (7). In addition, “pore dilation,” which allows the passage of the large cation NMDG, is observed if extracellular sodium is replaced by NMDG (8), a property also displayed by the P2X2 (9) and P2X4 (10) receptors. This pore dilation is assumed to represent an intrinsic property of these P2X receptors (11, 12), although it can be influenced by interaction with intracellular proteins (13). However, both processes are still poorly understood.P2X7 receptors are found on cells of the hematopoietic lineage, in epithelia, and endothelia. Several studies report its expression and/or function in neurons, although its presence here is under debate (14, 15). So far, nine splice variants (P2X7(b) through P2X7(j)) have been described, only one of which was shown to be, at least partially, functional (16, 17). In addition, numerous single nucleotide polymorphisms have been identified in the human P2X7 receptor. Some of these have been found to cause either gain or loss of function and have been associated with chronic lymphocytic leukemia, bone fracture risk, and impaired immune functions (1820). Recent genetic studies indicate an association between the Gln-460 → Arg polymorphism and familial depressive disorders (21).Two P2X7-deficient mouse lines have been described. In the mouse line generated by Glaxo, the P2rx7 gene was knocked out by insertion of a lacZ transgene into exon 1 (22). In the mouse line generated by Pfizer (23) a neomycin cassette was inserted into exon 13, replacing a region that encodes Cys-506–Pro-532 of the intracellular C terminus of the receptor. The Pfizer P2X7 KO mice demonstrated the involvement of this receptor in bone formation (24), cytokine production, and inflammation (23, 25) while the Glaxo−/− mice established its role in inflammatory and neuropathic pain (26). All these findings and multiple subsequent studies based on these mouse models defined the P2X7R as a promising target for the development of innovative therapeutic strategies, and selective P2X7 inhibitors are already in clinical trials for the treatment of rheumatoid arthritis (27).Here, we describe a novel P2X7 isoform with an alternative N terminus and TMD 1. Compared with the originally identified P2X7(a) variant, it has increased agonist sensitivity and a higher propensity to form NMDG-permeable pores and permit dye uptake. Due to a novel alternative exon 1 and translation start, this splice variant escapes inactivation in the Glaxo P2X7−/− mice and thus could account for possible inconsistencies between results obtained with different P2X7−/− mouse lines (28).  相似文献   

15.
Non muscle myosin II (NMII) is a major motor protein present in all cell types. The three known vertebrate NMII isoforms share high sequence homology but play different cellular roles. The main difference in sequence resides in the C-terminal non-helical tailpiece (tailpiece). In this study we demonstrate that the tailpiece is crucial for proper filament size, overcoming the intrinsic properties of the coiled-coil rod. Furthermore, we show that the tailpiece by itself determines the NMII filament structure in an isoform-specific manner, thus providing a possible mechanism by which each NMII isoform carries out its unique cellular functions. We further show that the tailpiece determines the cellular localization of NMII-A and NMII-B and is important for NMII-C role in focal adhesion complexes. We mapped NMII-C sites phosphorylated by protein kinase C and casein kinase II and showed that these phosphorylations affect its solubility properties and cellular localization. Thus phosphorylation fine-tunes the tailpiece effects on the coiled-coil rod, enabling dynamic regulation of NMII-C assembly. We thus show that the small tailpiece of NMII is a distinct domain playing a role in isoform-specific filament assembly and cellular functions.Non muscle myosin II (NMII)2 is a major motor protein present in all cell types participating in crucial processes, including cytokinesis, surface attachment, and cell movement (13). NMII units are hexamers of two long heavy chains with two pairs of light chains attached. NMII heavy chain is composed of a globular head containing the actin binding and force generating ATPase domains, followed by a large coiled-coil rod that terminates with a short non-helical tailpiece (tailpiece). To carry out its cellular functions, NMII assembles into dimers and higher order filaments by interactions of the coiled-coil rod (4). The assembly process is governed by electrostatic interactions between adjacent coiled-coil rods containing alternating charged regions with specific periodicity (59) and is enhanced by activation of the motor domain through regulatory light chain phosphorylation (1012). The charge periodicity also determines the register and orientation of each NMII hexamer in the filament. Additionally the C-terminal region of the coiled-coil rod contains a distinctive positively charged region and the assembly-competence domains that are crucial for proper filament assembly (59, 13).Three isoforms of NMII (termed NMII-A, NMII-B, and NMII-C) have been identified in mammals (1416). Although NMII isoforms share somewhat overlapping roles, each isoform has distinctive tissue distribution and specific functions. NMII-A is important for neural growth cone retraction (17, 18) and is distributed to the front of migrating endothelial cells (19). While NMII-B participates in growth cone advancement (20) and was detected in the retracting tails of migrating endothelial cells (19). Furthermore NMII-A and NMII-B have an opposing effect on motility, since depletion of NMII-A leads to increased motility while NMII-B depletion hinders motility (21, 22). NMII-C plays a role in cytokinesis (23) and has distinct distribution in neuronal cells (24). Furthermore one NMII isoform only partly rescue cells in which siRNA was used to reduce the expression of another isoform (23, 25). This functional diversity is achieved despite a significant amino acid sequence identity between the isoforms (overall 64–80%), and the origin of these differential distributions and functions is not completely understood.Recent studies suggest that the C-terminal portion of NMII-A and NMII-B, particularly the last ∼170 amino acids, is responsible for the differential distribution of these NMII isoforms (26, 27). It was shown that swapping this region between NMII-A and NMII-B resulted in chimeric proteins, which adopted cellular localization according to the C-terminal part (26). This C-terminal ∼170 amino acid coiled-coil region contains the assembly-competence domains and other regions that are critical for filament assembly (59, 13) as well as the non-helical tailpiece. As the small tailpiece is also an important regulator of NMII filament assembly (27, 28) capable of changing NMII filament assembly properties; and phosphorylation of NMII tailpiece was shown to interfere with filament assembly (2933) the tailpiece may be important for allowing NMII to perform its dynamic tasks. Because the coiled-coil regions are highly conserved between NMII isoforms, while the tailpiece is the most divergent, it is therefore a good candidate for mediating NMII isoform-specific functions. However, the exact mechanism by which the tailpiece affects NMII function is not fully understood. Here we show that the tailpiece serves as an isoform-specific control mechanism modulating filament order, assembly, and cellular function.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号