首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitoxantrone affects topoisomerase activities in human breast cancer cells   总被引:2,自引:0,他引:2  
The effects of mitoxantrone, an antineoplastic DNA intercalator, on topoisomerase I and II were studied in two human breast cancer cell lines. A large increase of topoisomerase I activity was found when cells were exposed to various doses of mitoxantrone. Maximal effect was achieved with 20 and 40 ng/mL in T47D and MCF-7 cells respectively. The enhancement on topoisomerase I activity seemed to be reversible, to be dependent on time of exposure to the drug and to require cellular integrity. Type II topoisomerase was inhibited in T47D cells after treatment for one hour with 10 ng/mL of mitoxantrone and enzyme activity was undetectable at higher doses (40 ng/mL). This inhibitory effect did not take place in vitro unless the concentration of the intercalator was increased to 400-500 ng/mL.  相似文献   

2.
Defective DNA topoisomerase II in ataxia-telangiectasia cells   总被引:1,自引:0,他引:1  
A number of characteristics in the human genetic disorder ataxia-telangiectasia are compatible with an alteration to chromatin structure or the recognition of that structure by an enzyme or DNA binding protein. We describe here reduce activity of DNA topoisomerase type II in a number of Epstein Barr Virus-transformed ataxia-telangiectasia lymphoblastoid cell lines. Enzyme activity was reduced 10-fold or greater in 4 out of 5 cell lines compared to controls. In the remaining cell line approximately a 2-3 fold reduction was evident in partially purified extracts. DNA topoisomerase type I activity was found to be the same as controls in all the cell lines. Northern blot analysis revealed that the same level of DNA topoisomerase II mRNA was expressed in ataxia-telangiectasia and control cell lines. The size and amount of the enzyme did not differ appreciably from that observed in control cells. The reduced activity of DNA topoisomerase II in ataxia-telangiectasis cells might be explained by amino acid substitutions, small deletions in DNA or by a defect in post-translational modification in these cells.  相似文献   

3.
Leucine zipper in human DNA topoisomerase II   总被引:2,自引:0,他引:2  
Examination of the amino acid sequence of human DNA topoisomerase II revealed the presence of a leucine zipper, a novel motif found in several proteins localized to the cell nucleus. The presence of this motif in this unique protein may explain some of the normal functions of topoisomerase II as well as the disruption of those functions by antineoplastic drugs.  相似文献   

4.
Solar UV light induces a variety of DNA lesions in the genome. Enhanced cleavage of such base modifications by topoisomerase II has been demonstrated in vitro, but it is unclear what will arise from an interplay of these mechanisms in the genome of a living cell exposed to UV light. To address this question, we have subjected cells expressing biofluorescent topoisomerase IIalpha or IIbeta to DNA base modifications inflicted by a UVA laser at 364 nm through a confocal microscope in a locally confined manner. At DNA sites thus irradiated, we observed rapid, long term (>90 min) accumulation of topoisomerase IIalpha and IIbeta, which was accompanied by a decrease in mobility but not immobilization of the enzyme. The catalytic topoisomerase II inhibitor ICRF-187 prevented the effect when added to the cell culture before the UVA pulse but promoted it when added thereafter. Self-primed in situ extension with rhodamine-dUTP revealed massive DNA breakage at the UVA-exposed spot. Culturing the cells with ICRF-187 before UVA-exposure prevented such breaks. In conclusion, we show in a living cell nucleus that UVA-modified DNA is preferentially targeted and processed by topoisomerase IIalpha and IIbeta. This results in increased levels of topoisomerase II-mediated DNA breaks, but formation of immobile, stable topoisomerase II.DNA intermediates is not notably promoted. Inhibition of topoisomerase II activity by ICRF-187 greatly diminishes UVA-induced DNA breakage, implying topoisomerase IIalpha and IIbeta as endogenous co-factors modulating and possibly aggravating the impact of UVA light on the genome.  相似文献   

5.
DNA topoisomerase II, genotoxicity, and cancer   总被引:6,自引:0,他引:6  
Type II topoisomerases are ubiquitous enzymes that play essential roles in a number of fundamental DNA processes. They regulate DNA under- and overwinding, and resolve knots and tangles in the genetic material by passing an intact double helix through a transient double-stranded break that they generate in a separate segment of DNA. Because type II topoisomerases generate DNA strand breaks as a requisite intermediate in their catalytic cycle, they have the potential to fragment the genome every time they function. Thus, while these enzymes are essential to the survival of proliferating cells, they also have significant genotoxic effects. This latter aspect of type II topoisomerase has been exploited for the development of several classes of anticancer drugs that are widely employed for the clinical treatment of human malignancies. However, considerable evidence indicates that these enzymes also trigger specific leukemic chromosomal translocations. In light of the impact, both positive and negative, of type II topoisomerases on human cells, it is important to understand how these enzymes function and how their actions can destabilize the genome. This article discusses both aspects of human type II topoisomerases.  相似文献   

6.
The DNA ligation reaction of topoisomerase II is essential for genomic integrity. However, it has been impossible to examine many fundamental aspects of this reaction because ligation assays historically required the enzyme to cleave a DNA substrate before sealing the nucleic acid break. Recently, a cleavage-independent DNA ligation assay was developed for human topoisomerase IIalpha [Bromberg, K. D., Hendricks, C., Burgin, A. B., and Osheroff, N. (2002) J. Biol. Chem. 277, 31201-31206]. This assay overcomes the requirement for DNA cleavage by monitoring the ability of the enzyme to ligate a nicked oligonucleotide in which the 5'-terminal phosphate at the nick has been activated by covalent attachment to the tyrosine mimic, p-nitrophenol. The cleavage-independent ligation assay was used to more fully characterize the DNA ligation activity of human topoisomerase IIalpha. Results suggest that the active site tyrosine contributes little to the catalysis of DNA ligation beyond its primary role as an activating/leaving group. Although arginine 804 (the residue immediately N-terminal to the active site tyrosine) has been proposed to help anchor the 5'-DNA terminus during cleavage, conversion of this residue to alanine had only a modest effect on DNA ligation. Thus, it appears that arginine 804 does not play an essential role in DNA strand joining. In contrast, disruption of base pairing at the 5'-DNA terminus abrogated DNA ligation in the absence of a covalent enzyme-DNA bond. Therefore, it is proposed that base pairing represents a secondary mechanism for aligning the 5'-DNA termini for ligation. Finally, the human enzyme appears to ligate the two scissile bonds of a cleavage site in a nonconcerted fashion.  相似文献   

7.
Considerable evidence supports a defect at the level of chromatin structure or recognition of that structure in cells from patients with the human genetic disorder ataxia-telangiectasia. Accordingly, we have investigated the activities of enzymes that alter the topology of DNA in Epstein Barr Virus-transformed lymphoblastoid cells from patients with this syndrome. Reduced activity of DNA topoisomerase II, determined by unknotting of P4 phage DNA, was observed in partially purified extracts from 5 ataxia-telangiectasia cell lines. The levels of enzyme activity was reduced substantially in 4 of these cell lines and to a lesser extent in the other cell line compared to controls. DNA topoisomerase I, assayed by relaxation of supercoiled DNA, was found to be present at comparable levels in both cell types. Reduced activity of topoisomerase II in ataxia-telangiectasia is compatible with the molecular, cellular and clinical changes described in this syndrome.  相似文献   

8.
The toxin gliotoxin induces apoptosis or programmed cell death in a variety of immune cells including thymocytes. Apoptosis induced by gliotoxin in thymocytes is unaffected by protein synthesis inhibitors nor is it associated with early changes in intracellular calcium levels (Beaver and Waring, 1994). This work shows that the cell lines P815 and WEHI7 and murine thymocytes when treated with gliotoxin show an early incorporation of tritiated thymidine over the concentration range which causes apoptosis. Proliferating cell nuclear antigen (PCNA), a marker for S phase, is elevated in cells following gliotoxin treatment and S phase DNA content is increased. Thymidine incorporation is inhibited by hydroxyurea, an inhibitor of replicative DNA synthesis not repair. Free radical scavangers have no effect on apoptosis induced by gliotoxin in thymocytes. Hydrogen peroxide-treated cells showed no enhanced thymidine incorporation and no apoptosis. Thus oxidative stress does not appear to be a factor in gliotoxin-induced apoptosis. Thymocytes treated with gliotoxin show increased phosphorylation of a 16.3 kDa protein, and apoptosis is inhibited by the tyrosine kinase inhibitor genistein, which also inhibited the increased thymidine incorporation in P815 cells. We conclude that one mechanism by which gliotoxin can cause apoptosis may be the induction of inappropriate entry of cells into the cell cycle followed by death.  相似文献   

9.
A defect in DNA topoisomerase II activity in ataxia-telangiectasia cells   总被引:2,自引:0,他引:2  
DNA topoisomerase type I and II activities were determined by serial dilution in nuclear extracts from control and ataxia-telangiectasia lymphoblastoid cells. Topoisomerase I activity, assayed by relaxation of supercoiled plasmid DNA, was found to be approximately the same in both cell types. In order to remove interference from topoisomerase I, the activity of topoisomerase II was measured by the unknotting of knotted P4 phage DNA in the presence of ATP. The activity of topoisomerase II was markedly reduced in two ataxia-telangiectasia cell lines, AT2ABR and AT8ABR, compared to controls. This reduction in activity was detected with increasing concentration of protein and in time course experiments at a single protein concentration. A third cell line, AT3ABR, did not have a detectably lower activity of topoisomerase II when assayed under these conditions. The difference in topoisomerase II activity in the ataxia-telangiectasia cell lines examined may reflect to some extent the heterogeneity observed in this syndrome.  相似文献   

10.
The induction by interleukin-2 of DNA topoisomerase I and DNA topoisomerase II activities in the human T cell line HuT 78 was investigated. HuT 78 cells were treated with 1000 U of interleukin-2/ml, and extracts of the HuT 78 nuclei were prepared over a 24 h period. The extracts were assayed quantitatively for the activities of DNA topoisomerase I and DNA topoisomerase II. Three concomitant, transient increases of 3- to 11-fold in the specific activities of both DNA topoisomerase I and DNA topoisomerase II were observed following treatment with IL-2 at 0.5, 4, and 10 h after treatment with interleukin-2. The specific activities of both enzymes returned to base-line values after each of these transient increases. These results reveal that the activities of DNA topoisomerase I and DNA topoisomerase II are highly regulated in HuT 78 cells upon treatment with IL-2.  相似文献   

11.
DNA adducts are mutagenic and clastogenic. Because of their harmful nature, lesions are recognized by many proteins involved in DNA repair. However, mounting evidence suggests that lesions also are recognized by proteins with no obvious role in repair processes. One such protein is topoisomerase II, an essential enzyme that removes knots and tangles from the DNA. Because topoisomerase II generates a protein-linked double-stranded DNA break during its catalytic cycle, it has the potential to fragment the genome. Previous studies indicate that abasic sites and other lesions that distort the double helix stimulate topoisomerase II-mediated DNA cleavage. Therefore, to further explore interactions between DNA lesions and the enzyme, the effects of exocyclic adducts on DNA cleavage mediated by human topoisomerase IIalpha were determined. When located within the four-base overhang of a topoisomerase II cleavage site (at the +2 or +3 position 3' relative to the scissile bond), 3,N(4)-ethenodeoxycytidine, 3,N(4)-etheno-2'-ribocytidine, 1,N(2)-ethenodeoxyguanosine, pyrimido[1,2-a]purin-10(3H)-one deoxyribose (M(1)dG), and 1,N(2)-propanodeoxyguanosine increased DNA scission approximately 5-17-fold. Enhanced cleavage did not result from an increased affinity of topoisomerase IIalpha for adducted DNA or a decreased rate of religation. Therefore, it is concluded that these exocyclic lesions act by accelerating the forward rate of enzyme-mediated DNA scission. Finally, treatment of cultured human cells with 2-chloroacetaldehyde, a reactive metabolite of vinyl chloride that generates etheno adducts, increased cellular levels of DNA cleavage by topoisomerase IIalpha. This finding suggests that type II topoisomerases interact with exocyclic DNA lesions in physiological systems.  相似文献   

12.
Topoisomerase I-mediated DNA damage induced by camptothecin has been shown to induce rapid small ubiquitin-related modifier (SUMO)-1 conjugation to topoisomerase I. In the current study, we show that topoisomerase II-mediated DNA damage induced by teniposide (VM-26) results in the formation of high molecular weight conjugates of both topoisomerase IIalpha and IIbeta isozymes in HeLa cells. Immunological characterization of these conjugates suggests that both topoisomerase IIalpha and IIbeta isozymes are conjugated to SUMO-1. The involvement of SUMO-1/UBC9 in the modification of topoisomerase II isozymes is also supported by the demonstration of physical interaction between topoisomerase II and SUMO-1/UBC9. Surprisingly, ICRF-193, which does not induce topoisomerase II-mediated DNA damage but traps topoisomerase II into a circular clamp conformation, is also shown to induce similar SUMO-1 conjugation to topoisomerase II isozymes. In addition, we show that both oxidative and heat shock stresses, which can cause protein damage, rapidly increase nuclear SUMO-1 conjugates. These studies raise the question on whether SUMO-1 conjugation to topoisomerases is an indirect result of a DNA damage response or a direct result because of protein conformational changes.  相似文献   

13.
Although cobalt is an essential trace element for humans, the metal is genotoxic and mutagenic at higher concentrations. Treatment of cells with cobalt generates DNA strand breaks and covalent protein-DNA complexes. However, the basis for these effects is not well understood. Since the toxic events induced by cobalt resemble those of topoisomerase II poisons, the effect of the metal on human topoisomerase IIalpha was examined. The level of enzyme-mediated DNA scission increased 6-13-fold when cobalt(II) replaced magnesium(II) in cleavage reactions. Cobalt(II) stimulated cleavage at all DNA sites observed in the presence of magnesium(II), and the enzyme cut DNA at several "cobalt-specific" sites. The increased level of DNA cleavage in the presence of cobalt(II) was partially due to a decrease in the rate of enzyme-mediated religation. Topoisomerase IIalpha retained many of its catalytic properties in reactions that included cobalt(II), including sensitivity to the anticancer drug etoposide and the ability to relax and decatenate DNA. Finally, cobalt(II) stimulated topoisomerase IIalpha-mediated DNA cleavage in the presence of magnesium(II) in purified systems and in human MCF-7 cells. These findings demonstrate that cobalt(II) is a topoisomerase II poison in vitro and in cultured cells and suggest that at least some of the genotoxic effects of the metal are mediated through topoisomerase IIalpha.  相似文献   

14.
Type II DNA topoisomerases are ATP-dependent enzymes that catalyze alterations in DNA topology. These enzymes are important targets of a variety of anti-bacterial and anti-cancer agents. We identified a mutation in human topoisomerase II alpha, changing aspartic acid 48 to asparagine, that has the unique property of failing to transform yeast cells deficient in recombinational repair. In repair-proficient yeast strains, the Asp-48 --> Asn mutant can be expressed and complements a temperature-sensitive top2 mutation. Purified Asp-48 --> Asn Top2alpha has relaxation and decatenation activity similar to the wild type enzyme, but the purified protein exhibits several biochemical alterations compared with the wild type enzyme. The mutant enzyme binds both covalently closed and linear DNA with greater avidity than the wild type enzyme. hTop2alpha(Asp-48 --> Asn) also exhibited elevated levels of drug-independent cleavage compared with the wild type enzyme. The enzyme did not show altered sensitivity to bisdioxopiperazines nor did it form stable closed clamps in the absence of ATP, although the enzyme did form elevated levels of closed clamps in the presence of a non-hydrolyzable ATP analog compared with the wild type enzyme. We suggest that the lethality exhibited by the mutant is likely because of its enhanced drug-independent cleavage, and we propose that alterations in the ATP binding domain of the enzyme are capable of altering the interactions of the enzyme with DNA. This mutant enzyme also serves as a new model for understanding the action of drugs targeting topoisomerase II.  相似文献   

15.
D J Fernandes  M K Danks  W T Beck 《Biochemistry》1990,29(17):4235-4241
CEM leukemia cells selected for resistance to VM-26 (CEM/VM-1) are cross-resistant to various other DNA topoisomerase II inhibitors but not to Vinca alkaloids. Since DNA topoisomerase II is a major protein of the nuclear matrix, we asked if alterations in nuclear matrix topoisomerase II might be important in this form of multidrug resistance. Pretreatment of drug-sensitive CEM cells for 2 h with either 5 microM VM-26 or 3 microM m-AMSA reduced the specific activity of newly replicated DNA on the nuclear matrix by 75 and 50%, respectively, relative to that of the bulk DNA. However, neither VM-26 nor m-AMSA affected the relative specific activity of nascent DNA isolated from the nuclear matrices of drug-resistant CEM/VM-1 cells. The decatenating and unknotting activities of DNA topoisomerase II were 6- and 7-fold lower, respectively, in the nuclear matrix preparations from the CEM/VM-1 cells compared to parental CEM cells. Western blot analysis revealed that the amount of immunoreactive topoisomerase II in the nuclear matrices of the CEM/VM-1 cells was decreased 3.2-fold relative to that in CEM cells, but there was no significant difference in the amount of enzyme present in the nonmatrix (1.5 M salt soluble) fractions of nuclei from these cell lines. Increasing the NaCl concentration used in the matrix isolation procedure from 0.2 to 1.8 M resulted in a progressive decrease in the specific activity of topoisomerase II in matrices of CEM/VM-1 but not CEM cells, which suggested that the association of the enzyme with the matrix is altered in the resistant cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Human breast cancer cells in tissue culture (MCF-7) were pretreated with the antiestrogen nafoxidine to arrest cellular proliferation and then were given estradiol to release this block and stimulate DNA synthesis and cell division. During this period of growth stimulation intracellular proteins, labeled by a double isotope method, were analyzed on SDS-polyacrylamide gel electrophoresis. Estradiol directly increases the rates of synthesis of specific proteins which migrate on SDS-gels at molecular weights of 24,000 and 36,000. Nafoxidine-pretreatment alone does not induce these same proteins, and no changes in the rates of specific protein synthesis occur in cells grown on control medium for the same length of time as on estradiol. Induced synthesis of these proteins is observed only during the period of estrogen stimulation of cell proliferation following pretreatment with nafoxidine. We do not detect induction when cells are incubated with estradiol without antiestrogen-pretreatment. Since rescue of antiestrogen growth inhibition is also the only condition under which MCF-7 cell division can be reproducibly stimulated by estrogen, these proteins may be related to estrogen effects on cellular proliferation.  相似文献   

17.
Abstract. The effect of a cAMP derivative (N6, 02-dibutyryl cyclic adenosine 3'3'-monophosphate: dBcAMP) on the cell cycle and on the synthesis of typical extracellular matrix (ECM) components, i.e. collagen and glycosaminoglycans (GAG), was studied in two hormone-responsive human breast cancer cell lines VHB-1 and MCF-7. The data showed that dBcAMP induced a decrease in the proportion of cells in S + G2+ M phases due to an increase of the non-cycling (Go phase) cell number as revealed by the Ki-67 antigen immunocytochemical study. The collagen synthesis, estimated by [3H] proline incorporation into the cellular proteins followed by an enzymatic digestion with highly purified bacterial collagenase, was not modified by dBcAMP. In contrast, the GAG synthesis, analysed by [3H] glucosamine incorporation, was increased two-fold in the dBcAMP treated cells. As a comparison we also tested 4-hydroxy-Tamoxifen (4-OH-Tam) since it induces similar cell cycle perturbations as dBcAMP. However, we did not observe a stimulation of the GAG synthesis following 4-OH-Tam treatment. These data demonstrated that the increased GAG synthesis is due to cAMP and is not a consequence of perturbations in the cell cycle. We can therefore assume that the ECM modifications induced by dBcAMP may contribute to the growth inhibition of the hormone-responsive human breast cancer cells.  相似文献   

18.
Mutations in mitochondrial DNA (mtDNA) might contribute to expression of the tumor phenotypes, such as metastatic potential, as well as to aging phenotypes and to clinical phenotypes of mitochondrial diseases by induction of mitochondrial respiration defects and the resultant overproduction of reactive oxygen species (ROS). To test whether mtDNA mutations mediate metastatic pathways in highly metastatic human tumor cells, we used human breast carcinoma MDA-MB-231 cells, which simultaneously expressed a highly metastatic potential, mitochondrial respiration defects, and ROS overproduction. Since mitochondrial respiratory function is controlled by both mtDNA and nuclear DNA, it is possible that nuclear DNA mutations contribute to the mitochondrial respiration defects and the highly metastatic potential found in MDA-MB-231 cells. To examine this possibility, we carried out mtDNA replacement of MDA-MB-231 cells by normal human mtDNA. For the complete mtDNA replacement, first we isolated mtDNA-less (ρ(0)) MDA-MB-231 cells, and then introduced normal human mtDNA into the ρ(0) MDA-MB-231 cells, and isolated trans-mitochondrial cells (cybrids) carrying nuclear DNA from MDA-MB-231 cells and mtDNA from a normal subject. The normal mtDNA transfer simultaneously induced restoration of mitochondrial respiratory function and suppression of the highly metastatic potential expressed in MDA-MB-231 cells, but did not suppress ROS overproduction. These observations suggest that mitochondrial respiration defects observed in MDA-MB-231 cells are caused by mutations in mtDNA but not in nuclear DNA, and are responsible for expression of the high metastatic potential without using ROS-mediated pathways. Thus, human tumor cells possess an mtDNA-mediated metastatic pathway that is required for expression of the highly metastatic potential in the absence of ROS production.  相似文献   

19.
D Suciu 《Mutation research》1990,243(3):213-218
In this study, some DNA topoisomerase II and gyrase inhibitors have been identified as inhibitors of polymerization of deoxyribonucleotides [novobiocin (NVB), nalidixic acid (NDA), oxolinic acid (OXA)], or inhibitors of replicon initiation and DNA-chain elongation [etoposide (VP-16), teniposide (VM-26), 4'-(9-acridinylamino)methansulfon-m-anisidine (m-AMSA), ellipticine (ELT)]. The inhibitors of deoxyribonucleotide polymerization produced a significant (greater than 85%) suppression of [3H]thymidine incorporation into V79 cells within 20 min of treatment, followed by a rapid recovery of DNA synthesis, and reduced cell killing. In contrast, the inhibitors of replicon initiation and DNA-chain elongation needed about 60 min to induce a partial, but irreversible inhibition of DNA replication, associated with extensive cell killing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号