共查询到20条相似文献,搜索用时 15 毫秒
1.
Spontaneous activity of sympathetic preganglionic neurons 总被引:2,自引:0,他引:2
C Polosa 《Canadian journal of physiology and pharmacology》1968,46(6):887-896
2.
Single unit activity was recorded from the area of the substantia nigra in freely moving cats. A sub-population of these neurons had the following characteristics: long action potential durations (2–4 msec); relatively slow discharge rates (2–6 spikes/sec); firing as single spikes along with periods of bursting activity in which spike amplitude successively decreased; suppression of unit activity by systemic injection of apomorphine and increased activity after systemic injection of haloperidol. These characteristics are similar to those of identified dopamine neurons recorded in chloral hydrate anesthetized or peripherally paralyzed rats. Therefore, based upon these physiological and pharmacological similarities, this study represents the first systematic report providing evidence for recording the activity of dopaminergic neurons in freely moving cats. In addition, when these cells were studied across the sleep-waking cycle they displayed little variation in firing rates between waking, slow wave sleep and REM sleep. 相似文献
3.
J Manzanares T W Toney Y Tian M J Eaton K E Moore K J Lookingland 《Life sciences》1992,51(13):995-1001
The activities of periventricular-hypophysial dopaminergic (DA) neurons were compared in male and female rats by measuring dopamine synthesis (accumulation of 3,4-dihydroxyphenylalanine [DOPA] after inhibition of L-aromatic amino acid decarboxylase) and metabolism (concentrations of 3,4-dihydroxyphenylacetic acid [DOPAC]) in terminals of these neurons in the intermediate lobe of the pituitary. For comparison, the synthesis and metabolism of dopamine in the neural lobe of the pituitary and median eminence were also determined. The concentrations of DOPAC and accumulation of DOPA were higher in females than in males in both the intermediate lobe and median eminence, revealing a sexual difference in the basal activity of periventricular-hypophysial and tuberoinfundibular DA neurons. In contrast, there were no differences between male and female rats in activity of DA neurons terminating in the neural lobe. One week following gonadectomy, DOPA accumulation in the median eminence was decreased in females and increased in males, but remained unchanged in the intermediate lobe. These results indicate that sexual differences in the activity of periventricular-hypophysial DA neurons terminating in the intermediate lobe are not dependent upon the presence of circulating gonadal steroids, and in this respect, these neurons differ from tuberoinfundibular DA neurons. 相似文献
4.
5.
Interactions between prolactin and dopaminergic neurons 总被引:2,自引:0,他引:2
K E Moore 《Biology of reproduction》1987,36(1):47-58
The secretion of prolactin from the adenohypophysis is tonically inhibited by dopamine that is released into the hypophysial portal blood from terminals of tuberoinfundibular neurons located in the external layer of the median eminence. These tuberoinfundibular neurons are unique among other dopaminergic neurons in the brain (including the well-characterized nigrostriatal neurons) in that they are not directly regulated by dopaminergic receptor-mediated mechanisms, but instead are selectively responsive to changes in prolactin concentrations in blood and cerebrospinal fluid. In the rat, the activity of the tuberoinfundibular dopaminergic neurons is higher in the female than in the male, exhibits a characteristic cyclical pattern during the first half of pregnancy and is constantly high as a result of stimulation by placental lactogen during the last 9 days of pregnancy, and is reduced in lactating animals and acutely inhibited during suckling. 相似文献
6.
Krieglstein K 《Cell and tissue research》2004,318(1):73-80
Growth factors promoting survival of mesencephalic dopaminergic neurons are discussed in the context of their requirement during development and adulthood. The expression of growth factors should be detectable in the nigrostriatal system during critical periods of development, i.e., during the period of ontogenetic cell death and synaptogenesis and during neurite extension and neurotransmitter synthesis. Growth factors discussed include members of the family of glial-cell-line-derived neurotrophic factors (GDNF), neurotrophins, transforming growth factors beta, and low molecular compounds mimicking growth factor activities. To date, the available data support the notion that GDNF is a highly promising candidate, although GDNF-null mice lack a dopaminergic phenotype. There remains a possibility that endogenous dopaminotrophic factors remain to be discovered.The authors work is supported by grants from the Deutsche Forschungsgemeinschaft through the DFG-Research Center for Molecular Physiology of the Brain 相似文献
7.
8.
Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons
Danling Wang Beisha Tang Guohua Zhao Qian Pan Kun Xia Rolf Bodmer Zhuohua Zhang 《Molecular neurodegeneration》2008,3(1):1-7
Background
Parkinson's disease (PD) is the most prevalent incurable neurodegenerative movement disorder. Mutations in LRRK2 are associated with both autosomal dominant familial and sporadic forms of PD. LRRK2 encodes a large putative serine/threonine kinase with GTPase activity. Increased LRRK2 kinase activity plays a critical role in pathogenic LRRK2 mutant-induced neurodegeneration in vitro. Little is known about the physiological function of LRRK2.Results
We have recently identified a Drosophila line with a P-element insertion in an ortholog gene of human LRRK2 (dLRRK). The insertion results in a truncated Drosophila LRRK variant with N-terminal 1290 amino acids but lacking C-terminal kinase domain. The homozygous mutant fly develops normally with normal life span as well as unchanged number and pattern of dopaminergic neurons. However, dLRRK mutant flies were selectively sensitive to hydrogen peroxide induced stress but not to paraquat, rotenone and β-mercaptoethanol induced stresses.Conclusion
Our results indicate that inactivation of dLRRK kinase activity is not essential for fly development and suggest that inhibition of LRRK activity may serve as a potential treatment of PD. However, dLRRK kinase activity likely plays a role in protecting against oxidative stress. 相似文献9.
10.
K Nakamura V P Bindokas D Kowlessur M Elas S Milstien J D Marks H J Halpern U J Kang 《The Journal of biological chemistry》2001,276(37):34402-34407
Increased oxidative stresses are implicated in the pathogenesis of Parkinson's disease, and dopaminergic neurons may be intrinsically susceptible to oxidative damage. However, the selective presence of tetrahydrobiopterin (BH(4)) makes dopaminergic neurons more resistant to oxidative stress caused by glutathione depletion. To further investigate the mechanisms of BH(4) protection, we examined the effects of BH(4) on superoxide levels in individual living mesencephalic neurons. Dopaminergic neurons have intrinsically lower levels of superoxide than nondopaminergic neurons. In addition, inhibiting BH(4) synthesis increased superoxide in dopaminergic neurons, while BH(4) supplementation decreased superoxide in nondopaminergic cells. BH(4) is also a cofactor in catecholamine and NO production. In order to exclude the possibility that the antioxidant effects of BH(4) are mediated by dopamine and NO, we used fibroblasts in which neither catecholamine nor NO production occurs. In fibroblasts, BH(4) decreased baseline reactive oxygen species, and attenuated reactive oxygen species increase by rotenone and antimycin A. Physiologic concentrations of BH(4) directly scavenged superoxide generated by potassium superoxide in vitro. We hypothesize that BH(4) protects dopaminergic neurons from ordinary oxidative stresses generated by dopamine and its metabolites and that environmental insults or genetic defects may disrupt this intrinsic capacity of dopaminergic neurons and contribute to their degeneration in Parkinson's disease. 相似文献
11.
The conditions necessary to trigger regeneration of dopaminergic neurons were investigated in the goldfish retina. Intraocular injection of 6-hydroxydopamine (6-OHDA) was used to destroy dopaminergic neurons, and neuronal regeneration was monitored by injections of the thymidine analog bromodeoxyuridine (BUdR). Regenerated dopaminergic neurons, (identified by double-labeling with anti-tyrosine hydroxylase and anti-BUdR antibodies) were found within 3 weeks after 2 injections of 0.6 mg/ml 6-OHDA (estimated intraocular concentration), but not after injection of lower doses. All retinas with regenerated dopaminergic neurons also contained other types of regenerated neurons, including cones and ganglion cells, consistent with nuclear counts which revealed non-selective cell loss (34-36%) in both the outer and inner nuclear layers after exposure to the high dose, but not lower doses of 6-OHDA. Regenerated neurons were produced by clusters of dividing neuroepithelial cells probably derived from rod precursors in the outer nuclear layer. These results demonstrate that dopaminergic neurons will not regenerate after they are selectively ablated but only as part of a developmental process that involves generation of multiple cell types. 相似文献
12.
13.
Parkinson disease (PD) is characterized by the specific degeneration of dopaminergic (DA) neurons in substantia nigra and has been linked to a variety of environmental and genetic factors. Rotenone, an environmental PD toxin, exhibited much greater toxicity to DA neurons in midbrain neuronal cultures than to non-DA neurons. The effect was significantly decreased by the microtubule-stabilizing drug taxol and mimicked by microtubule-depolymerizing agents such as colchicine or nocodazole. Microtubule depolymerization disrupted vesicular transport along microtubules and caused the accumulation of dopamine vesicles in the soma. This led to increased oxidative stress due to oxidation of cytosolic dopamine leaked from vesicles. Inhibition of dopamine metabolism significantly reduced rotenone toxicity. Thus, our results suggest that microtubule depolymerization induced by PD toxins such as rotenone plays a key role in the selective death of dopaminergic neurons. 相似文献
14.
Dopaminergic (DA) neurons in the midbrain are critically involved in several neurological-psychiatric illnesses and are specifically lost in Parkinson's disease. The DA neurons are generated through the interactions of multiple extrinsic and intrinsic factors during the embryogenesis. The identities and mechanisms of actions of a subset of these factors have recently been elucidated. The same factors have also been successfully used to induce efficient differentiation of DA neurons in vitro from embryonic stem cells or neural progenitors. These advances have far reaching scientific and medical implications. 相似文献
15.
16.
Katsuki H Tomita M Takenaka C Shirakawa H Shimazu S Ibi M Kume T Kaneko S Akaike A 《Journal of neurochemistry》2001,76(5):1336-1345
We have previously demonstrated that dopaminergic neurons in midbrain-striatum slice co-cultures are more resistant to NMDA cytotoxicity than the same neuronal population in single midbrain slice cultures. Here, we show that dopaminergic neurons in midbrain-striatum co-cultures also exhibit resistance to the cytotoxicity of nitric oxide donors, 2,2'-(hydroxynitrosohydrazono)bis-ethanamine (NOC-18) and 3-morpholinosydnonimine (SIN-1). The cytotoxicity of NMDA (30 microM) in single cultures was significantly attenuated by the nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine (100 microM), whereas the toxicity in co-cultures was not. The levels of tyrosine residue nitration of tyrosine hydroxylase, a hallmark of the occurence of peroxynitrite anion in dopaminergic neurons, were lower in co-cultures than those in single cultures. Single cultures and co-cultures did not show appreciable differences in the number or distribution of NOS-containing neurons as assessed by NADPH diaphorase histochemistry. On the other hand, midbrain slices cultured with striatal slices showed higher levels of superoxide dismutase (SOD) activity as well as increased protein levels of Cu,Zn-SOD, than midbrain slices cultured alone. These results suggested that the generation of NO is involved in NMDA cytotoxicity on dopaminergic neurons, and that increased activity of SOD in co-cultures renders dopaminergic neurons resistant to NMDA cytotoxicity by preventing the formation of peroxynitrite. 相似文献
17.
Qiuyue Liu Oliver Z. Pedersen Jun Peng Larry A. Couture Mahendra S. Rao Xianmin Zeng 《Cytotherapy》2013,15(8):999-1010
Background aimsWe have previously described a xeno-free scalable system to generate transplantable dopaminergic neurons from human pluripotent stem cells. However, several important questions remain to be answered about our cell therapy efforts. These include determining the exact time at which cells should be transplanted and whether cells at this stage can be frozen, shipped, thawed and injected without compromising their ability to mature and survive the transplantation procedure. We also needed to determine whether further optimization of the culture process could shorten the development time and reduce variability and whether a current Good Manufacture Practice (CGMP) facility could manufacture cells with fidelity.MethodsWe developed an optimized protocol that included modulating the sonic hedgehog homolog gradient with bone morphogenetic proteins (BMP2) and addition of activin to the culture medium, which shortened the time to generate Lmx1A and FoxA2 immunoreactive cells by 4–6 days.ResultsWe showed that cells at this stage could be safely frozen and thawed while retaining an excellent ability to continue to mature in vitro and survive transplant in vivo. Importantly, we successfully adapted this process to a CGMP facility and manufactured two lots of transplant-ready dopaminergic neurons (>250 vials) under CGMP-compatible conditions. In vitro characterization, including viability/recovery on thawing, whole genome expression as well as expression of midbrain/dopaminergic markers, showed that the cells manufactured under GMP-compatible conditions were similar to cells produced at lab scale.ConclusionsOur results suggest that this optimized protocol can be used to generate dopaminergic neurons for Investigational New Drug enabling studies. 相似文献
18.
Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons 总被引:11,自引:0,他引:11
van den Munckhof P Luk KC Ste-Marie L Montgomery J Blanchet PJ Sadikot AF Drouin J 《Development (Cambridge, England)》2003,130(11):2535-2542
Mesencephalic dopaminergic (MesDA) neurons play crucial roles in motor and behavioral processes; their loss in Parkinson's disease (PD) results in striatal dopamine (DA) deficiency and hypokinetic movement disorder. The Pitx3 homeobox gene is expressed in the MesDA system. We now show that only a subset of MesDA neurons express Pitx3 and that in Pitx3-deficient aphakia mice, this subset is progressively lost by apoptosis during fetal (substantia nigra, SN) and postnatal (ventral tegmental area) development, resulting in very low striatal DA and akinesia. Similar to human PD, dorsal SN neurons (which are Pitx3 negative) are spared in mutant mice. Thus, Pitx3 defines a pathway for survival of neurons that are implicated in PD and that are required for spontaneous locomotor activity. 相似文献
19.
S E Lindley J W Gunnet K J Lookingland K E Moore 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1988,188(3):282-286
Administration of gamma-butyrolactone (GBL), an anesthetic which reduces dopaminergic neuronal activity, decreased the concentration of the dopamine (DA) metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the intermediate lobe of the pituitary gland, and increased alpha-melanocyte stimulating hormone (alpha MSH) concentrations in the serum of male rats. Bilateral electrical stimulation of the rostral arcuate nucleus, which contains perikarya of tuberohypophysial DA neurons, increased DOPAC concentrations in the intermediate lobe and decreased alpha MSH concentrations in the serum of GBL-anesthetized rats. Administration of the DA antagonist haloperidol prevented the decline in serum alpha MSH levels following arcuate nucleus stimulation, but had no effect on serum alpha MSH concentrations in sham-stimulated GBL-treated rats. These results indicate that GBL-induced decreases or stimulation-induced increases in the activity of tuberohypophysial DA neurons are accompanied by corresponding changes in the metabolism of DA in the intermediate lobe of the rat pituitary gland, and by reciprocal changes in the secretion of alpha MSH. 相似文献
20.
Neurotensin (NT) injected intracerebroventricularly in rat increases dopamine (DA) turnover in the corpus striatum and nucleus accumbens. Significant increases in 3,4-dihydroxyphenylacetic acid (DOPAC) levels occurred within 15 minutes after injection with peak levels at 60 minutes. The effect on NT on DOPAC and homovanillic acid (HVA) accumulation was dose-dependent at 3–100 μg. NT, like haloperidol, stimulated 3,4-dihydroxyphenylalanine (DOPA) accumulation in striatal neurons, in the presence of DOPA decarboxylase inhibitor, after injection of gamma-butyrolactone (GBL). NT had a similar stimulatory effect on DOPA levels in the accumbens while haloperidol (0.25 mg·kg?1) had no significant effect in this brain region. NT did not block the inhibitory effect of apomorphine on DOPA accumulation in both the striatum and accumbens, while haloperidol inhibited apomorphine effect in both regions. NT also failed to displace 3H-spiperone from DA receptors and the presence of NT in the binding assay did not alter the ability of DA to displace 3H-spiperone in either brain region. These experiments demonstrate that NT increases DA turnover in both the nigrostriatal and mesolimbic pathways. 相似文献