首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of two phosphorylated molecular species in the culture supernatants of axenically cultivated Leishmania donovani promastigotes was demonstrated by biosynthetically labeling cultures with [32P]phosphate. One of these species was resolved into two bands with Mr's of 149,000 and 97,000 by dissociating polyacrylamide gel electrophoresis and copurified with the extracellular acid phosphatase activity produced by the promastigotes. The site of phosphorylation of the extracellular acid phosphatase is not yet known.  相似文献   

2.
Four monoclonal antibodies (McAbs) were generated against the soluble extracellular acid phosphatase (EC 3.1.3.2) (S-AcP) of Leishmania donovani. These were detected in the primary screen using an ELISA with promastigote culture supernatants as antigen. Three of the McAbs demonstrated bound S-AcP from such culture supernatants in an enzyme activity binding assay. All immunoprecipitated metabolically labeled S-AcP but none showed any binding to the promastigote surface by indirect immunofluorescence. Moreover, none reacted with Triton X-100 solubilized plasma membranes by immunoprecipitation or Western blotting. These results demonstrated that the McAbs did not recognize the surface membrane bound acid phosphatase, but were specific for the extracellular soluble enzyme. Further, none of the antibodies immunoprecipitated any of the five human acid phosphatase isozymes or reacted with them in Western blots or the enzyme activity binding assay. Therefore, they are specific for the parasite-derived enzyme. One of these was used to affinity purify sufficient L. donovani S-AcP to immunize a rabbit and generate a specific, polyvalent antiserum. This polyvalent antibody immunoprecipitated S-AcP activity but did not cross-react with the surface membrane acid phosphatase, indicating that these two parasite enzymes are separate gene products.  相似文献   

3.
Monoclonal antibodies specific for the soluble, secreted acid phosphatase (EC 3.1.3.2) of Leishmania donovani were used to investigate the localization of this enzyme in extracellular promastigotes and intracellular amastigotes. Indirect immunofluorescence showed a weak general staining in the promastigote cytoplasm, together with strong fluorescence in the flagellar reservoir. Immunofluorescence studies on U937 cells infected in vitro with L. donovani showed that the pathogenic amastigote stage also produced soluble acid phosphatase. Metabolic labeling experiments using promastigotes indicated that the intracellular enzyme was soluble prior to secretion and no evidence was found for the association of secretory acid phosphatase with cell membranes after protein synthesis. The rapid release of acid phosphatase from the flagellar reservoir was energy dependent and may be coupled to beating of the flagellum. The results demonstrated that acid phosphatase was secreted into the flagellar reservoir by Leishmania promastigotes using a conventional constitutive secretory mechanism, and subsequently released from the reservoir into the extracellular medium.  相似文献   

4.
An extracellular acid phosphatase was detected in the growth media of Leishmania donovani promastigotes. The enzyme was released at all stages of the growth cycle and in amounts which accounted for 90% of the total amount of this enzyme in the culture. The exoenzyme exhibited a pH optimum of 4.5 to 5.0 and was active with a variety of organic phosphates. The enzymatic activity was excluded from Sephacryl S-300 and was retained by ultrafilters with nominal molecular weight cutoffs of up to 300,000. The results of comparative studies indicated that the extracellular enzyme was distinct from a surface membrane-bound acid phosphatase of L. donovani promastigotes which has been previously described.  相似文献   

5.
We show that a purified preparation of the prominent tartrate-resistant acid phosphatase (E.C.3.1.3.2), isolated from the external surface of the intracellular parasite Leishmania donovani (promastigote form), inhibits toxic oxidative metabolite production of neutrophils. Preincubation of a neutrophil suspension (2.5 X 10(6) cells/ml) for 15 min at 37 C with 250 units (1 unit equals 1 nmole of 4-methylumbelliferyl phosphate cleaved per hr at pH 5.5) of the acid phosphatase in Krebs-Ringer phosphate buffer (pH 7.4) decreased O2 consumption, O2- production, and H2O2 production of N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe)-stimulated neutrophils to 15-25% of control values. The acid phosphatase also affected concanavalin A-stimulated O2-production by neutrophils, but had no effect on the rate of phorbol myristic acetate-stimulated O2- production, chemotactic peptide binding, degranulation, or membrane depolarization. Addition of an acid phosphatase inhibitor (Complex E; (NH4)6[P2Mo18O62] X 9H2O) to suspensions of opsonized promastigotes and neutrophils resulted in a threefold or greater enhancement of O2- production. These results suggest a possible pathophysiologic role for the acid phosphatase of L. donovani promastigotes.  相似文献   

6.
The effect of infection with Leishmania donovani on the activity and isoenzyme composition of acid phosphatase within individual murine peritoneal macrophages maintained in vitro was studied. Concentrations of acid phosphatase activity and number of intracellular parasites were quantitated using a computer-assisted cytospectrophotometry system. Changes in the isoenzyme composition of macrophages during infection with L. donovani were detected by comparing the patterns of acid phosphatase levels between macrophages treated in the absence and presence of an enzyme inhibitor. It was observed that the concentration levels of acid phosphatase activity in macrophages were decreased significantly by infection with L. donovani. An inverse relation existed between concentration of acid phosphatase activity and the number of intracellular L. donovani. Reduced concentrations of acid phosphatase activity were also observed in macrophages uninfected but exposed to L. donovani. The isoenzyme composition in macrophages did not change during the course of infection with L. donovani. These results demonstrate that L. donovani reduces the acid phosphatase activity of macrophages.  相似文献   

7.
Characterization of Leishmania donovani acid phosphatases   总被引:7,自引:0,他引:7  
A crude membrane fraction from promastigotes of Leishmania donovani grown in a liquid culture medium containing 20% fetal calf serum was prepared by freeze-thawing, centrifugation (200,000 X g, 30 min), and extraction with 2% (w/v) sodium cholate. After removal of the bile salt by chromatography on a Sephadex G-75 column, the solubilized membrane protein fraction, rich in acid phosphatase activity, was chromatographed on columns containing concanavalin A-Sepharose, QAE-Sephadex, and Sephadex G-150 and G-100. Three distinct acid phosphatases were resolved: the major phosphatase activity (70% of the total) was L-(+)-tartrate-resistant (designated ACP-P1) and corresponds to the acid phosphatase localized to the outer surface of the parasite's plasma membrane; the other two phosphatases (ACP-P2 and ACP-P3) account for the remaining 30% of the particulate acid phosphatase activity, and both of these enzymes are L-(+)-tartrate-sensitive. Using a combination of sucrose density gradient centrifugation, gel filtration chromatography, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was determined that ACP-P1 is a 128,000-dalton protein composed of two subunits of 65,000-68,000 daltons. ACP-P1 has an isoelectric point of 4.1, a pH optimum of 5.5, hydrolyzes fructose 1,6-diphosphate, but no other sugar phosphates and dephosphorylates phosphotyrosine, yeast mannan, and the phosphorylated form of rat liver pyruvate kinase. ACP-P2 (pI, 5.4) and ACP-P3 (pI, 7.1) with molecular masses of 132,000 and 108,000 daltons, respectively, are both tartrate-sensitive and are distinguished from each other on the basis of their sensitivity to inhibition by polyanionic molybdenum complexes. These two phosphatases also have their pH optima in the pH 5.0-6.0 range, but have a considerably broader substrate specificity than ACP-P1.  相似文献   

8.
Promastigotes of all pathogenic Leishmania species secrete acid phosphatase (SAcP) activity during their growth in vitro. It has been suggested that this enzyme may play a role in the survival of the parasite within its sandfly-vector host. To carry out such functions, SAcP would have to be relatively resistant to endogenous sandfly gut-proteases. Therefore, the current study was undertaken to ascertain whether L. donovani SAcP activity was affected by treatment with various proteases. Native L. donovani SAcP was treated with a variety of serine-, thiol-, metallo- and mixed-proteases and subsequently assayed for enzymatic activity. Of the eleven proteases tested, only bromelain and subtilisin treatments caused a pronounced reduction in SAcP activity. Treatment of SAcP with seven out of the remaining nine proteases, resulted in an overall enhancement in SAcP enzymatic activity ranging from approximately 10% (e.g. with trypsin) to > or = 90% (e.g. with ficin). The resistance of the Leishmania SAcP to various proteases may prolong its functional life within the sandfly gut and help to facilitate parasite infection in this host.  相似文献   

9.
Seven cloned lines of promastigotes of Leishmania donovani (UR 6) were isolated by limiting dilution. One clone, UR6-C25, failed to multiply inside the macrophages of line J774G8 and thus was labelled as avirulent. Another, UR6-C24, multiplied inside macrophages, had a virulence index as high as 93 +/- 9.8 and was thus labelled as highly virulent. The other five clones had variable degree of virulence indices ranging from 46.4 +/- 5.8 to 67.6 +/- 3.5. No significant difference in the degrees of attachment of virulent and avirulent populations of promastigotes to macrophages was observed, suggesting no difference in the ligand utilised by these populations for attachment to the macrophages. Acid phosphatase activity of cloned promastigotes correlated with the degree of virulence. These data suggest that acid phosphatase activity could be used as a marker to differentiate avirulent from virulent populations of promastigotes of L. donovani.  相似文献   

10.
The enzyme adenine phosphoribosyltransferase (APRT) functions to salvage adenine by converting it to adenosine-5-monophosphate (AMP). APRT deficiency in humans is a well characterized inborn error of metabolism, and APRT may contribute to the indispensable nutritional role of purine salvage in protozoan parasites, all of which lack de novo purine biosynthesis. We determined crystal structures for APRT from Leishmania donovani in complex with the substrate adenine, the product AMP, and sulfate and citrate ions that appear to mimic the binding of phosphate moieties. Overall, these structures are very similar to each other, although the adenine and AMP complexes show different patterns of hydrogen-bonding to the base, and the active site pocket opens slightly to accommodate the larger AMP ligand. Whereas AMP adopts a single conformation, adenine binds in two mutually exclusive orientations: one orientation providing adenine-specific hydrogen bonds and the other apparently positioning adenine for the enzymatic reaction. The core of APRT is similar to that of other phosphoribosyltransferases, although the adenine-binding domain is quite different. A C-terminal extension, unique to Leishmania APRTs, extends an extensive dimer interface by wrapping around the partner molecule. The active site involves residues from both subunits of the dimer, indicating that dimerization is essential for catalysis.  相似文献   

11.
M Wiese  T Ilg  F Lottspeich    P Overath 《The EMBO journal》1995,14(6):1067-1074
The insect stage of the protozoan parasite Leishmania mexicana secretes a phosphomonoesterase in the form of a filamentous complex. The polypeptide subunits of this polymer are modified by phosphoglycans and/or oligomannosyl residues linked to phosphoserine. Based on peptide sequence data of a predominant 100 kDa protein of the filamentous complex, two tandemly arranged, single copy genes, lmsap1 and lmsap2, were cloned and sequenced. lmsap1 predicts a protein with features characteristic of acid phosphatases and a remarkable serine- and threonine-rich region of 32 amino acids close to the C-terminus. In the otherwise identical lmsap2 product, this region is extended to 383 amino acids and is composed of short Ser/Thr-rich repeats. Deletion analysis demonstrates that lmsap1 encodes the major 100 kDa protein of the complex while a minor 200 kDa component is derived from the lmsap2 gene. Null mutants of either gene retain the ability to secrete acid phosphatase filaments, while a deletion of both genes results in Leishmania defective in enzyme formation. The Ser/Thr-rich domains are the targets for phosphoglycan modifications as shown by the expression of secreted fusion proteins composed of these C-terminal regions and the N-terminal domain of a lysosomal acid phosphatase.  相似文献   

12.
The methionine adenosyltransferase (MAT; EC 2.5.1.6) mediated synthesis of S-adenosylmethionine (AdoMet) is a two-step process, consisting of the formation of AdoMet and the subsequent cleavage of the tripolyphosphate (PPPi) molecule, a reaction induced, in turn, by AdoMet. The fact that the two activities--AdoMet synthesis and tripolyphosphate hydrolysis--can be measured separately is particularly useful when the site-directed mutagenesis approach is used to determine the functional role of the amino acid residues involved in each. This report describes the mutational analysis of the amino acids involved in both the ATP and L-methionine binding sites of Leishmania donovani MAT (GenBank accession number AF179714) the aetiological agent of visceral leishmaniasis. Site-directed mutagenesis was used to substitute neutral residues for the basic amino acid (Lys168, Lys256, Lys276, Lys280 and His17), acidic residues (Asp19, Asp121, Asp166, Asp249, Asp277 and Asp288) and Phe241 involved in AdoMet synthesis and PPPi hydrolysis. With the exception of D116N, none of these mutants was able to synthesize AdoMet at a significant rate, although H17A, H17N, K256A, K280A, D19N, D121N, D166N, D249N and D282N showed measurable tripolyphosphatase activity. Finally, the C-terminus domain of L. donovani MAT was truncated at three points (F382Stop, D375Stop, F368Stop), deleting a 3(10) one-turn helix motif in all three cases. Whilst none of the truncated proteins conserved MAT activity, they were able to hydrolyse PPPi, albeit at a lower rate than the wild-type enzyme. A fourth protein with an internal deletion (E376DeltaF382) in the C-terminal domain conserved high tripolyphosphatase activity, which was not, however, induced by 50 microM AdoMet.  相似文献   

13.
Leishmaniasis is one of the most neglected diseases with high morbidity and mortality rate. Severe side effects with existing drug and lack of proper vaccine encouraged us to design alternative models to combat the disease. We showed that PP1 of Leishmania donovani mediates immunomodulation in host macrophages needed for parasite survival. Therefore, it is of interest to report the molecular docking analysis of 512 isoflavone derivatives with the phosphatase 1 protein from Leishmania donovani to highlight compound 362 (5-hydroxy-5-{9-[2-methoxy-2-(2-methylfuran-3-yl) ethyl]-1H, 3H, 4H, 10bH-pyrano[4,3-c]chromen-3-yl}pentanoic acid) having good binding features and acceptable ADMET properties for further consideration.  相似文献   

14.
The vast majority of surface molecules in such kinetoplastid protozoa as members of the genus Leishmania contain inositol and are either glycosyl inositol phospholipids or glycoproteins that are tethered to the external surface of the plasma membrane by glycosylphosphatidylinositol anchors. We have shown that the biosynthetic precursor for these abundant glycolipids, myo-inositol, is translocated across the parasite plasma membrane by a specific transporter that is structurally related to mammalian facilitative glucose transporters. This myo-inositol transporter has been expressed and characterized in Xenopus laevis oocytes. Two-electrode voltage clamp experiments demonstrate that this protein is a sodium-independent electrogenic symporter that appears to utilize a proton gradient to concentrate myo-inositol within the cell. Immunolocalization experiments with a transporter-specific polyclonal antibody reveal the presence of this protein in the parasite plasma membrane.  相似文献   

15.
Metabolism of tryptophan by promastigotes of Leishmania donovani donovani was investigated in cells suspended in a simple buffer solution supplemented with glucose. Metabolites from supernatant and lysed cell pellets were analyzed by capillary gas liquid chromatography and 13C nuclear magnetic resonance spectroscopy, with structural confirmation by gas liquid chromatography-mass spectrometry. Tryptophan does not appear to serve as a carbon energy source for L. d. donovani promastigotes since parasites could survive for only short periods in buffer containing tryptophan without glucose, levels of tricarboxylic acid cycle intermediates remained unchanged in the presence of added tryptophan and label from [13C]tryptophan was not detected in any of the intermediates. Leishmania d. donovani catabolized L-tryptophan via aminotransferase and aromatic lactate dehydrogenase reactions to form one major end product, indole-3-lactic acid. The activity of aromatic lactate dehydrogenase required manganese and was NADH-dependent in these organisms that lack lactate dehydrogenase. Promastigotes taken from the mid-log stage of growth produced higher concentrations of indole-3-lactic acid than those from the stationary stage. Conservation of a similar tryptophan catabolic pathway among four Leishmania species suggests the pathway is physiologically important to the parasites themselves.  相似文献   

16.
The metabolism of leucine by Leishmania donovani was investigated. Washed promastigotes were incubated with [1-14C]- or [U-14C]leucine or [1-14C]alpha-ketoisocaproate (KIC) and 14CO2 release was measured. The amount of KIC-derived acetyl-CoA oxidized in the citric acid cycle was computed. Promastigotes from mid-stationary phase cultures oxidized each of these labeled substrates less rapidly than cells from late log phase cultures, and significantly less acetyl-CoA derived from KIC oxidation was oxidized in the citric acid cycle. Glucose was a stronger inhibitor than was acetate of CO2 formation in the citric acid cycle in log phase promastigotes, but the reverse was observed in cells from mid-stationary phase. Alanine also inhibited leucine catabolism, but glutamate had little effect. Acute hypo-osmotic stress did not affect leucine catabolism, but hyper-osmotic stress caused appreciable inhibition of leucine oxidation. Cells grown under hypo- or hyper-osmotic conditions showed no changes in the effects of hypo- or hyper-osmotic stress on leucine catabolism, i.e. L. donovani is not an osmoconformer with respect to leucine metabolism. Leucine utilization in L. donovani was insensitive to a number of drugs that affect leucine metabolism in mammalian cells, indicating that the leucine pathway in L. donovani is not regulated in the same manner as in mammalian cells.  相似文献   

17.
Bashor C  Denu JM  Brennan RG  Ullman B 《Biochemistry》2002,41(12):4020-4031
Adenine phosphoribosyltransferase (APRT, EC 2.4.2.7) catalyzes the reversible phosphoribosylation of adenine from alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) to form AMP and PP(i). Three-dimensional structures of the dimeric APRT enzyme from Leishmania donovani (LdAPRT) bear many similarities to other members of the type 1 phosphoribosyltransferase family but do not reveal the structural basis for catalysis (Phillips, C. L., Ullman, B., Brennan, R. G., and Hill, C. P. (1999) EMBO J. 18, 3533-3545). To address this issue, a steady state and transient kinetic analysis of the enzyme was performed in order to determine the catalytic mechanism. Initial velocity and product inhibition studies indicated that LdAPRT follows an ordered sequential mechanism in which PRPP is the first substrate to bind and AMP is the last product to leave. This mechanistic model was substantiated by equilibrium isotope exchange and fluorescence binding studies, which provided dissociation constants for the LdAPRT-PRPP and LdAPRT-AMP binary complexes. Pre-steady-state kinetic analysis of the forward reaction revealed a burst in product formation indicating that phosphoribosyl transfer proceeds rapidly relative to some rate-limiting product release event. Transient fluorescence competition experiments enabled measurement of rates of binary complex dissociation that implicated AMP release as rate-limiting for the forward reaction. Kinetics of product ternary complex formation were evaluated using the fluorophore formycin AMP and established rate constants for pyrophosphate binding to the LdAPRT-formycin AMP complex. Taken together, these data enabled the complete formulation of an ordered bi-bi kinetic mechanism for LdAPRT in which all of the rate constants were either measured or calculated.  相似文献   

18.
A Ghosh  T Ghosh  S Ghosh  S Das    S Adhya 《Nucleic acids research》1994,22(9):1663-1669
Using synthetic antisense RNA from the 5'-untranslated region of the beta-tubulin gene as probe in gel retardation assays, a heat stable RNA-binding factor was identified in promastigotes of the kinetoplastid protozoan Leishmania donovani. The same or similar factors interact with several small ribosomal RNA (srRNA) species and, more weakly, with tRNA, as shown by binding and competition experiments. Deletion analysis indicated involvement of repeated purine-rich motifs on the antisense RNA, in the reaction. Related, conserved motifs occur on at least two of the srRNAs. By a modified Western blot assay, the RNA-binding species was identified as a single, small polypeptide. The activity is apparently specific for the promastigote stage of the parasite, being undetectable in amastigotes. The properties of this RNA-binding factor suggest that it is a novel, previously uncharacterized protein.  相似文献   

19.
Leishmania donovani promastigotes were grown to late log phase, washed and resuspended in iso-osmotic buffer containing L-arginine, and the rate of urea formation was then measured under various conditions. Addition of glucose or mannose activated urea formation, whereas 2-deoxyglucose inhibited and 6-deoxyglucose had no effect. Addition of alanine or of alpha-aminoisobutyrate inhibited urea formation, alanine causing a greater inhibition than alpha-aminoisobutyrate. Addition of leucine, proline, glycine, or lysine had no effect on urea formation. The presence of glutamate also increased the rate of urea formation from arginine, but to a lesser extent than did glucose. The presence of both glucose and alanine caused no net change in urea formation, whereas the inhibitory effect of alanine exceeded the activating effect of glutamate, so that a small inhibition in the rate of urea formation occurred in the presence of both alanine and glutamate. Cells grown to 3-day stationary phase had a markedly reduced rate of arginine catabolism to urea, but the activating effect of glucose and the inhibitory effect of alanine were qualitatively similar to their effects on late log phase cells. Addition of water to cells suspended in buffer also inhibited urea formation, but this appeared to be due primarily to the release of alanine caused by the hypo-osmotic stress. Addition of mannitol to cells suspended in buffer caused a small inhibition of arginine catabolism. Addition of dibutyrylcyclic AMP, 3',5'-cyclic GMP, phorbol myristic acid, or A23187 had no effect on the rate of urea formation from arginine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
An enzyme from Leishmania donovani that catenates monomeric pBR322 into huge catenanes has been isolated and characterized. The enzyme also decatenates kinetoplast DNA networks into covalently closed monomeric circles and relaxes supercoiled pBR322. The catenation, decatenation and relaxation reactions do not require ATP. The formation of topological isomers of unique linking numbers suggest that the enzyme is a type II DNA topoisomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号