首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the second half of pregnancy, ovarian testosterone (T) through its conversion to estradiol (E) promotes progesterone (P) synthesis by the ovary which maintains the pregnancy. To determine if the administration of gonadotropin-releasing hormone (GnRH) disrupts pregnancy by suppressing ovarian production of T or its conversion to E, rats were treated from Day 11 through Day 18 of pregnancy with 50 or 100 micrograms/day of GnRH or 1, 5, or 10 micrograms/day of a GnRH agonist (GnRH-Ag; WY-40972) using an osmotic minipump. Rats were bled daily from the jugular vein under light ether anesthesia and on Days 14 or 18 of pregnancy both jugular and ovarian blood samples were obtained. While the GnRH-Ag treatment at the dose of 5 or 10 micrograms/day terminated pregnancy within 48 hr as indicated by vaginal bleeding, 1 microgram/day terminated pregnancy more slowly. Neither dose of GnRH was effective in terminating pregnancy through Day 18. By Day 14, peripheral levels of plasma P in rats treated with 0, 1, 5, or 10 micrograms of GnRH-Ag were 97 +/- 9, 24 +/- 1, 13 +/- 3, and 8 +/- 1, respectively. In the same groups, levels in the ovarian vein were 3205 +/- 633, 1317 +/- 273, 360 +/- 113, and 228 +/- 73 ng/ml. By Day 18, serum P levels in the peripheral circulation and in the ovarian vein were declining even more dramatically. Daily administration of P (4 mg) and E (0.5 micrograms) simultaneously with GnRH-Ag at the dose of 5 micrograms/day from Days 11 through 14 reversed the abortifacient effect of GnRH-Ag and maintained pregnancy indicating that the GnRH-Ag effect is not directly on the uterus. Ovarian vein levels of T on Days 14 or 18 of pregnancy were either not different from controls at 1407 +/- 163 or 1476 +/- 122 pg/ml, respectively, or increased dramatically in certain groups. Ovarian vein levels of E were either not different from controls at 292 +/- 13 pg/ml on Day 14 or increased significantly in rats treated at the dose of 1 microgram/day of GnRH-Ag. However by Day 18, treatment with GnRH-Ag at all doses suppressed ovarian secretion of E. These results suggest that while the GnRH-Ag induces abortion in rats by suppressing ovarian production of P, this abortifacient effect is not due to a fall in ovarian T levels nor to its aromatization to E in the ovary.  相似文献   

2.
Our recent studies demonstrated that the continuous administration of a gonadotropin-releasing hormone agonist (GnRH-Ag: WY-40972) in early pregnancy or midpregnancy induces abortion in rats by suppressing the plasma levels of progesterone (P) within 24 h. This fall in P levels is not accompanied by a fall in ovarian vein plasma testosterone (T) or estradiol (E). To determine whether the suppression of P by GnRH-Ag at midpregnancy is due to decreased E present in the corpora lutea (CL) and/or a decrease in luteal receptors of E, rats were treated continuously on Days 11-14 of pregnancy with 5 micrograms/day of GnRH-Ag delivered by an osmotic minipump. Ovarian blood samples were obtained on Day 12; at autopsy, CL were harvested and incubated with Medium 199 for 4 h at 37 degrees C under an atmosphere of 95% O2:5% CO2. Additional rats were killed on Day 12 or 14; CL were isolated from the ovary and pooled within the group for measurement of nuclear and cytosolic E receptors. While the net synthesis of P by CL in the GnRH-Ag-treated rats decreased to 40 +/- 14 from 138 +/- 54 ng/CL in controls, T and E levels were not different from their respective controls. Steroid levels in the ovarian vein plasma reflected a similar response. Nuclear E receptors levels were 211 and 198 in controls and 62 and 61 fmoles/mg DNA in the treated group on Days 12 and 14, respectively. These results suggest that GnRH-Ag has no effect on the ability of the luteal synthesis of T and E and that the anti-pregnancy effect of GnRH-Ag may be at the level of the CL due to the direct inhibitory effect of GnRH-Ag on the luteal synthesis of P which, in turn, results in a fall in E receptors in the CL. Alternatively, GnRH-Ag treatment could suppress luteal receptors for rat placental lactogen that, in turn, lower luteal E receptors, leading to a fall in luteal synthesis and release of P.  相似文献   

3.
Previous studies have demonstrated that plasma progesterone levels decrease in pregnant rats treated in vivo with a gonadotropin-releasing hormone agonist (GnRH-Ag), without changes in testosterone or estradiol levels in ovarian vein plasma. The objective of this study was to determine the loci of GnRH-Ag disruption of progesterone synthesis by examining luteal mitochondria, lipid droplets, cellular composition, and P450 side-chain cleavage (P450scc) enzyme and mRNA content in the pregnant rat. On Day 7 or 11 of pregnancy, osmotic minipumps containing GnRH-Ag were implanted into 5-7 rats. Sham operations were performed on 5-6 controls at each time period. Five micrograms per day of GnRH-Ag were released for about 24 h, after which corpora lutea and jugular vein plasma were collected. The corpora lutea were prepared for microscopy or analyzed for P450scc enzyme and mRNA content. Plasma progesterone levels were measured by RIA. In those rats treated with GnRH-Ag, progesterone levels had decreased, and within the luteal cells, there was an increase in the number of lipid droplets and a decrease in the number of tubular cristae within the mitochondria. Concomitantly, P450scc enzyme and mRNA content decreased on both Day 8 and Day 12 of pregnancy. Also, GnRH-Ag treatment decreased the ratio of large to small steroidogenic luteal cells on Day 8 of pregnancy, but did not alter cellular ratios on Day 12 of pregnancy. These observations suggest that treatment with GnRH-Ag inhibits progesterone synthesis by decreasing the amount of P450scc mRNA and enzyme content, which may alter the mitochondrial cristae structure on Day 8 and Day 12 of pregnancy. The reduction in tubular cristae and P450scc enzyme in the mitochondria may account for the increase in lipid droplets, as less cholesterol is converted to pregnenolone. An additional mechanism of inhibition may be the reduction in the number of large steroidogenic luteal cells, which appear to be the major source of progesterone in the rat corpus luteum on Day 8 of pregnancy.  相似文献   

4.
I B Joseph  R Sridaran 《Life sciences》1991,48(18):1751-1756
Continuous administration of a GnRH agonist (GnRH-Ag) at a dose of 5 micrograms/day, commencing on day 7 of pregnancy resulted in the suppression of daily nocturnal surges of prolactin (PRL) on day 8, and serum progesterone (P4) levels with subsequent termination of pregnancy. Replacement with dydrogesterone, a synthetic analog of P4 at a dose of 4 mg/day s.c. restored the magnitude of nocturnal PRL surges. These data suggest that GnRH-Ag may act either at the level of the brain to suppress the nocturnal PRL surge, resulting in a fall in serum P4 levels or at the level of the corpus luteum itself or at both sites simultaneously to terminate pregnancy.  相似文献   

5.
Reproductive performance and fetal growth was determined in GnRH (4 microg synthetic GnRH agonist, Receptal) administered (i.m.) to ewes on day 12 post-mating (n = 103) compared to control ewes (n = 97) during the breeding season. Plasma progesterone and LH concentrations were analyzed. A total of 13 ewes was slaughtered on day 45 of pregnancy (six from control, seven from GnRH treated groups). GnRH administration on day 12 post-mating increased plasma progesterone concentration (4.39+/-0.25 ng/ml) compared to control group (3.43+/-0.15 ng/ml) on days 13-15 post-mating (P < 0.01). GnRH administration also increased plasma LH concentration between 1 and 4 h after GnRH administration (P < 0.01). Pregnancy rate was higher in GnRH treated group (84%) than control (66%) group (P < 0.05). The ewes in GnRH administered group had more twins (P < 0.05) than those in control group. The ovarian weights (P < 0.05) and the number of corpora lutea (CL) (P < 0.01) were greater in ewes slaughtered on day 45 of pregnancy in GnRH treated group than those in control group. GnRH administration on day 12 post-mating did not have any effect on products of conception at day 45 of pregnancy except on crown-rump length (CRL) of fetuses and cotyledon weight. CRL of fetuses and cotyledon weight in GnRH treated group was higher than those in control group (P < 0.05). In conclusion GnRH administration improved reproductive performance of ewes when administered on day 12 post-mating probably through its beneficial effect on embryo survival by enhancing luteal function, but not through stimulating fetal growth.  相似文献   

6.
The aim of this study was to determine, for goats, the effects of daily doses of GnRH antagonist on ovarian endocrine and follicular function. Ten does were given 45 mg FGA intravaginal sponges and then five were treated with daily injections of 0.5mg of the GnRH antagonist Teverelix for 11 days from 2 days after the day of sponge insertion, while five does acted as controls. Pituitary activity was monitored by measuring plasma FSH and LH daily from 2 days before the first GnRH injection to Day 12. Follicular activity was determined by ultrasonographic monitoring and by assessing plasma inhibin A levels during the same period. In treated does, the FSH levels decreased linearly (0.8 +/- 0.1 ng/ml to 0.5 +/- 0.1 ng/ml, P < 0.01) and remained lower than the mean concentration in control goats (0.8 +/- 0.1 ng/ml, P < 0.005). LH levels were also lower during the period of antagonist treatment (0.6 +/- 0.2 ng/ml versus 0.4 +/- 0.1 ng/ml, P < 0.0005). During GnRH antagonist treatment, there was a significant decrease in the number of large follicles (> or = 6 mm) from Day 3 of treatment (1.2 +/- 0.6, P < 0.0001), with no large follicles from Day 9. The number of medium follicles (4-5 mm in size) also decrease during the period of treatment (4.2 +/- 0.7 to 1.0 +/- 0.6, P < 0.0001), leading to a significant decrease in inhibin A levels when compared to the control (143.7 +/- 31.3 pg/ml versus 65.2 +/- 19.1 pg/ml, P < 0.00005). In contrast, the number of small follicles (2-3 mm) increased in treated goats from Day 4 of treatment (9.6 +/- 2.9 to 20.2 +/- 6.3, P < 0.005). Such data indicate that GnRH antagonist reduced plasma levels of FSH and LH with suppression of the growth of large dominant ovarian follicles and a two-fold increase in number of smaller follicles. The results confirm that GnRH antagonist treatment can be used in goats to control gonadotrophin secretion and ovarian follicle growth in superovulatory regimes.  相似文献   

7.
We have tested if the high number of unfertilized ova and degenerated embryos found in superovulated goats previously treated with GnRH antagonist can be related to a prolongation of gonadotrophin down-regulation and/or alterations in follicular function during the period of administration of the superovulatory treatment, around 4 days after the end of the antagonist treatment. A total of 15 does were treated with intravaginal progestagen sponges and daily injections of 0.5mg of the GnRH antagonist Antarelix for 6 days, while 5 does acted as controls receiving saline. During the antagonist treatment, the mean plasma LH concentration was lower in treated than control goats (0.5 +/- 0.2 versus 0.7 +/- 0.5 ng/ml, P < 0.0005 ); however, the FSH levels remained unaffected (0.8 +/- 0.4 versus 0.8 +/- 0.5 ng/ml). In this period, treated does also showed an increase in the number of small follicles with 2-3 mm in size ( 10.7 +/- 0.7 versus 8.4 +/- 0.6, P < 0.05), and a decrease in both the number of follicles > or =4 mm in size ( 5.0 +/- 0.3 versus 6.8 +/- 0.5, P < 0.005) and the secretion of inhibin A (120.9 +/- 10.7 versus 151.6 +/- 12.6 pg/ml, P < 0.05). After cessation of the antagonist treatment, there was an increase in LH levels in treated goats from the day after the last Antarelix injection (Day 1), so that LH levels were the same as controls on Day 3 (0.6 +/- 0.1 versus 0.6 +/- 0.2 ng/ml). However, there were even greater numbers of small follicles than during the period of antagonist injections (15.4 +/- 0.6 in treated versus 8.9 +/- 0.7 in control, P < 0.0005 ). Moreover, the number of > or =4 mm follicles and the secretion of inhibin A remained lower in treated goats (3.9 +/- 0.3 follicles and 84.4 +/- 7.0 pg/ml versus 5.4 +/- 0.5 follicles, P < 0.05 and 128.9 +/- 14.2 pg/ml, P < 0.05 ). These results indicate that pituitary secretion of gonadotrophins is restored shortly after the end of antagonist treatment, but activity of ovarian follicles is affected.  相似文献   

8.
In this paper we present evidence that a single low dose of the natural synthetic gonadotropin-releasing hormone (GnRH), inhibits ovulation induced by LH in proestrous-hypophysectomized rats. Rats hypophysectomized by the parapharyngeal route in the morning of proestrus received an intravenous injection of 100 or 300 ng GnRH at 1400 h immediately followed by 1.0 microgram LH per 100 g bw. In control groups, either one or both hormones were replaced with 0.9% NaCl. Ovulation was assessed the following morning by counting the ova present in oviductal flushings. All the rats treated with LH alone ovulated, and the addition of GnRH reduced significantly the number of ovulating rats and the number of ova per ovulating rat. In other groups of rats hypophysectomized in the morning of proestrus and treated in the same way, ovarian or adrenal secretory rates of estradiol and/or progesterone were measured after cannulation of the corresponding vein, in the afternoon of proestrus. In these animals, GnRH failed to inhibit either the ovarian progesterone surge observed 2 h after LH administration, or the adrenal progesterone secretion. All hypophysectomized rats showed lower ovarian secretory rate of estradiol than intact rats; this rate was not affected by treatment with LH or LH plus GnRH. The systemic estradiol levels in plasma of hypophysectomized rats were distributed within a range of 20 pg/ml to 50 pg/ml. The number of rats whose levels were above 21 pg/ml on estrus day was significantly higher in rats receiving 300 ng GnRH as compared to those receiving 100 ng GnRH, reaching values that surpassed the concentration found in intact, untreated animals at the same time of estrus. This effect did not depend on LH administration.  相似文献   

9.
Our recent observations (1) that there is a difference in circadian patterns of plasma cortisol levels between male and female macaques and (2) that after gonadectomy these differences in the patterns and in the levels of cortisol were reduced prompted us to investigate how 17 beta-estradiol (E2) and progesterone affect cortisol secretion in orchidectomized male rhesus macaques. Five male macaques, castrated as adults, were implanted subcutaneously with segments of silastic tubing filled with E2 and with progesterone in a manner such that the levels and the sequence of these hormones mimicked those that occur during the menstrual cycle of intact female macaques. Since previous studies had shown that the difference in cortisol patterns was due to higher levels in females during the day, these studies were conducted from 0800 to 2000 hours. Blood samples were collected in an adjacent room at 15-minute intervals. Separate trials were conducted 2 weeks after E2 was implanted and levels were 110 +/- 14 pg/ml and again 2 weeks later after progesterone was implanted and E2 levels were 59 +/- 15 pg/ml; progesterone levels averaged 4.0 +/- 0.65 ng/ml. Mean plasma concentrations of cortisol (microgram/100 ml) for the 12-hour period were three-fold higher in orchidectomized males treated with E2 (17.2) and with E2 + progesterone (18.0) than in intact males (4.9). Levels in males treated with ovarian steroids were double that (8.5 micrograms/100 ml) observed for intact females.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Two experiments were conducted to compare pregnancy rates when GnRH or estradiol were given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based estrus synchronization program. Crossbred beef cattle were fed melengestrol acetate (MGA, 0.5 mg per day) for 7 days (designated days 0-6, without regard to stage of the estrous cycle) and given cloprostenol (PGF; 500 microg intramuscular (im)) on day 7. In Experiment 1, lactating beef cows (n=140) and pubertal heifers (n=40) were randomly allocated to three groups to receive 100 microg gonadorelin (GnRH), 5 mg estradiol-17beta and 100 mg progesterone (E+P) in canola oil or no treatment (control) on day 0. All cattle were observed for estrus every 12 h from 36 to 96 h after PGF. Cattle in the GnRH group that were detected in estrus 36 or 48 h after PGF were inseminated 12 h later; the remainder were given 100 microg GnRH im 72 h after PGF and concurrently inseminated. Cattle in the E+P group were randomly assigned to receive either 0.5 or 1.0 mg estradiol benzoate (EB) in 2 ml canola oil im 24 h after PGF and were inseminated 30 h later. Cattle in the control group were inseminated 12 h after the first detection of estrus; if not in estrus by 72 h after PGF, they were given 100 microg GnRH im and concurrently inseminated. In the absence of significant differences, all data for heifers and for cows were combined and the 0.5 and 1.0 mg EB groups were combined into a single estradiol group. Estrus rates were 57.6, 57.4 and 60.0% for the GnRH, E+P and control groups, respectively (P=0.95). The mean (+/-S.D.) interval from PGF treatment to estrus was shorter (P<0.001) and less variable (P<0.001) in the E+P group (49.0+/-6.1 h) than in either the GnRH (64.2+/-15.9 h) or control (66.3+/-13.3 h) groups. Overall pregnancy rates were higher (P<0.005) in the GnRH (57.6%) and E+P (55.7%) groups than in the control group (30.0%) as were pregnancy rates to fixed-time AI (47.5, 55.7 and 28.3%, respectively). In Experiment 2, 122 crossbred beef heifers were given either 100 microg GnRH or 2 mg EB and 50 mg progesterone in oil on day 0 and subsequently received either 100 microg GnRH 36 h after PGF and inseminated 14 h later or 1 mg EB im 24 h after PGF and inseminated 28 h later in a 2 x 2 factorial design. Pregnancy rates were not significantly different among groups (41.9, 32.2, 33.3 and 36.7% in GnRH/GnRH, GnRH/EB, EB/GnRH and EB/EB groups, respectively). In conclusion, GnRH or estradiol given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based synchronization regimen resulted in acceptable pregnancy rates to fixed-time insemination.  相似文献   

11.
The effect of age and melatonin on the activity of the neuroendocrine reproductive system was studied in young cyclic (3-5 months-old), and old acyclic (23-25 month-old) female rats. Pituitary responsiveness to a bolus of GnRH (50 ng per 100 g body weight) was assessed at both reproductive stages in control and melatonin-treated (150 micrograms melatonin per 100 g body weight each day for 1 month) groups. After this experiment, female rats were treated for another month to study the influence of ageing and melatonin on the reproductive axis. Plasma LH, FSH, prolactin, oestradiol and progesterone were measured. A positive LH response to GnRH was observed in both control groups (cyclic and acyclic). However, a response of greater magnitude was observed in old acyclic rats. Melatonin treatment reduced this increased response in acyclic rats and produced a pituitary responsiveness similar to that of young cyclic rats. FSH secretion was independent of GnRH administration in all groups, indicating desynchronization between LH and FSH secretion in response to GnRH in young animals and during senescence. No effect on prolactin was observed. Significantly higher LH (3009.11 +/- 1275.08 pg ml(-1); P < 0.05) and FSH concentrations (5879.28 +/- 1631.68 pg ml(-1); P < 0.01) were seen in acyclic control rats. After melatonin treatment, LH (811.11 +/- 89.71 pg ml(-1)) and FSH concentrations (2070 +/- 301.62 pg ml(-1)) decreased to amounts similar to those observed in young cyclic rats. However, plasma concentrations of oestradiol and progesterone were not reduced. In conclusion, the results of the present study indicate that, during ageing, the effect of melatonin is exerted primarily at the hypothalamo-pituitary axis rather than on the ovary. Melatonin restored the basal concentrations of pituitary hormones and pituitary responsiveness to similar values to those observed in young rats.  相似文献   

12.
The luteinizing hormone releasing hormone analog D-Trp6-Pro9-Net-LHRH (LHRHa) inhibits rat ovarian estradiol secretion. To determine whether LHRHa decreases serum estradiol concentrations solely by inhibiting gonadotropin secretion or, in addition, by influencing directly ovarian estradiol biosynthesis, we examined the effects of LHRHa on the activities of 5 key ovarian steroidogenic enzymes. Fifty hypophysectomized, gonadotropin-treated rats were given either LHRHa (1 microgram/day) or saline sc during 7 days. The LHRHa treated animals exhibited a significant decrease in serum estradiol when compared with the control group (461 +/- 30 vs 31 +/- 5 pg/ml, mean +/- SE, P less than 0.001). The changes in estradiol concentration were associated with decreases in ovarian weight (372 +/- 19 vs 185 +/- 11 mg, P less than 0.001) and in the microsomal enzyme activities of 3 beta-hydroxysteroid dehydrogenase (156 +/- 5 vs 53 +/- 4 nmol/mg prot/min, P less than 0.001), 17 hydroxylase (4.7 +/- 0.8 vs 3.7 +/- 0.7 nmol/mg prot/min, P less than 0.002), 17,20 desmolase (279 +/- 14 vs 50 +/- 7 pmol/mg prot/min, P less than 0.001), 17 keto-steroid reductase (132 +/- 11 vs 6 +/- 1 nmol/mg prot/min, P less than 0.001), and aromatase (19 +/- 1.5 vs 0.9 +/- 0.1 nmol/mg prot/min, P less than 0.001) in LHRHa treated animals. These findings indicate that LHRHa can inhibit directly rat ovarian estradiol biosynthesis.  相似文献   

13.
To determine the effect of estrogen and progesterone on plasma volume (PV) and extracellular fluid volume (ECFV), we suppressed endogenous estrogen and progesterone by using the gonadotropin-releasing hormone (GnRH) antagonist ganirelix acetate in seven healthy women (22 +/- 1 yr). Subjects were administered GnRH antagonist for 16 days. Beginning on day 5 of GnRH antagonist administration, subjects were administered estrogen (E(2)) for 11 days, and beginning on day 12 of GnRH antagonist administration, subjects added progesterone (E(2)-P(4)) for 4 days. On days 2, 9, and 16 of GnRH antagonist administration, we estimated ECFV (inulin washout), transcapillary escape rate of albumin (TER(alb)), and PV (Evans blue dye). Plasma E(2) concentration increased from 17.9 +/- 4.5 (GnRH antagonist) to 195.9 +/- 60.1 (E(2), P < 0.05) to 245.6 +/- 62.9 pg/ml (E(2)-P(4), P < 0.05). Compared with GnRH antagonist (1.3 +/- 0.5 ng/ml), plasma P(4) concentration was unchanged during E(2) (0.9 +/- 0.3 ng/ml) and increased to 9.4 +/- 3.1 ng/ml during E(2)-P(4) (P < 0.05). Both E(2) (44.1 +/- 3.1 ml/kg) and E(2)-P(4) (47.7 +/- 2.8 ml/kg) increased PV compared with GnRH antagonist (42.8 +/- 1.3 ml/kg, P < 0.05). Within-subjects TER(alb) was a strong negative predictor of PV (mean r = 0.92 +/- 0.03, P < 0.05), and TER(alb) was lowest during E(2)-P(4) (5.7 +/- 0.5, 4.1.0 +/- 1.1, and 2.8 +/- 0.9%/h, P < 0.05, for GnRH antagonist, E(2), and E(2)-P(4), respectively). ECFV was reduced during E(2) (227 +/- 31 ml/kg, P < 0.05) compared with both GnRH antagonist (291 +/- 37 ml/kg) and E(2)-P(4) (283 +/- 19 ml/kg). Thus the percentage of extracellular fluid in the plasma compartment increased to 21.0% (P < 0.05) during E(2) compared with GnRH antagonist (16.1%) and E(2)-P(4) (17.2%) administration. Thus E(2) increased PV via actions on the capillary endothelium to lower TER(alb) and favor intravascular water retention, whereas during E(2)-P(4) PV increased via the combined responses of ECFV expansion and lower TER(alb).  相似文献   

14.
The effect of treatment with a GnRH agonist, hCG or progesterone (P(4)) on corpus luteum function and embryonic mortality was investigated in buffaloes inseminated during mid-winter. Italian Mediterranean buffaloes (n=309) were synchronized using the Ovsynch with timed-AI program and mated by AI at 16 h (Day 0) and 40 h after the second injection of GnRH. On Day 5, buffaloes were randomly assigned to four groups: Control (no treatment, n=69), GnRH agonist (buserelin acetate, 12.6 microg, n=73), hCG (1500 IU, n=75) and P(4) (PRID without E(2) for 10 days, n=77). Progesterone (pg/ml) was determined in milk whey on Days 5, 10, 15 and 20 and pregnancy diagnosis was undertaken on Day 26 by ultrasound and Day 40 by rectal palpation. Treatment with buserelin and hCG increased (p<0.05) P(4) on Day 15 compared with controls (456+/-27, 451+/-24 and 346+/-28 pg/ml, respectively). Buffaloes treated with a PRID had intermediate P(4) concentrations (380+/-23 pg/ml). Embryonic mortality between Days 26 and 40 (22.9%) and pregnancies at Day 40 (48.9%) did not differ between treatments. A higher (p<0.01) P(4) concentration was found on Day 20 in pregnant animals compared with non-pregnant and embryonic mortality buffaloes, which did not differ. In summary, buserelin and hCG increased P(4) concentrations on Day 15 but this was not associated with a reduced incidence of embryonic mortality in buffaloes during mid-winter.  相似文献   

15.
Luteal function was studied in the absence of non-ovulatory ovarian follicles to determine if these follicles are involved in luteal regression in cattle. After at least one estrous cycle, cows were assigned randomly to treatment (n=5) or control (n=5). All cows were laparotomized on day 10 postestrus (Estrus = day 0). During laparotomy of treated cows, all visible follicles on both ovaries were destroyed by electrocautery, and follicular growth was prevented by ovarian x-irradiation. In controls, laparotomy and ovarian manipulation were as in treated cows but follicles were not destroyed and ovaries were not irradiated. On day 22 postestrus, ovaries of 4 treated cows contained no visible follicles and concentrations of estradiol-17beta in jugular plasma (0.4 +/- 0.1 pg/ml) were less (P<0.05) than in controls (3.2 +/- 0.4 pg/ml). Daily mean concentrations of LH from surgery to day 22 postestrus in treated cows did not differ from controls. On day 22 postestrus, progesterone in jugular plasma and weights of corpora lutea in treated cows were greater (P<0.05) than in controls. Between days 12 and 18 postestrus, concentrations of estradiol-17beta and PGF(2)alpha in utero-ovarian venous plasma of controls increased prior to detectable declines in concentrations of progesterone. Therefore, non-ovulatory ovarian follicles present during mid to late diestrus are necessary for luteal regression in non-pregnant cattle.  相似文献   

16.
The interactions between immune-endocrine and reproductive systems are heightened during pregnancy as an adaptive mechanism, and are regulated by a complex array of hormones and cytokines that control the survival of a semiallogeneic conceptus. GnRH can exert direct effects on the immune system via its receptor (GnRH-R) on lymphoid cells. In the present study, we employed in vitro, ex vivo, and in vivo approaches to investigate the role of GnRH in the modulation of T helper cytokines in pregnant rats undergoing termination of pregnancy. Day 8 pregnant rats were infused with a GnRH agonist (GnRH-Ag) for 24 h using an osmotic minipump. Sham control rats were infused with the vehicle, saline. Lymphocytes were isolated from sham and treated rats and polyclonally stimulated with immobilized anti-CD3 antibody. The levels of the signature T helper 1 (Th-1) cytokines (interferon-gamma [IFN-gamma] and interleukin-2 [IL-2]) and Th-2 cytokines (IL-4 and IL-10) were measured in culture supernatants. Using immunoflourescence confocal microscopy, we demonstrated for the first time the spatial localization of GnRH-R protein on the surface of lymphocytes. We observed a marked increase in IFN-gamma and inhibition of IL-4 production from lymphocytes of pregnant rats treated in vitro with different doses of GnRH-Ag. Further, the responsiveness of lymphocytes to produce IFN-gamma was markedly increased in cells cultured ex vivo from GnRH-Ag infused rats, whereas the capacity of lymphocytes to produce IL-4 was significantly inhibited. In addition, GnRH-Ag infusion in pregnant rats induced a shift toward Th-1 cytokines in the serum. We did not observe any significant difference in IL-2 and IL-10 production in response to GnRH-Ag. Our results suggest an additional function for GnRH as a Th-1 inducer and Th-2 inhibitor. GnRH can thus skew the cytokine balance to predominantly Th-1 type in pregnancy, leading to the termination of pregnancy in rats.  相似文献   

17.
Thirty-two postpartum (PP) cows were used to investigate the effect of suckling on secretion of luteinizing hormone (LH). Calves remained with their dams (suckled; S), or they were removed within 24 h of birth (nonsuckled; NS). To evaluate the relationship between suckling and negative feedback regulation of LH, cows were ovariectomized on Day 5 PP, then injected intravenously with estradiol-17 beta (E) or vehicle (V) on Day 10 PP. To investigate the influence of suckling on the gonadotropin-releasing hormone (GnRH)-induced release of LH, cows were injected with 80 micrograms of GnRH on a single day varying from 18 to 85 days PP. Suckling inhibited the postcastration rise in LH, as LH concentrations increased at a faster rate in NS compared with S cows [0.031 +/- 0.02 ng/(ml X day) LH: P less than 0.05]; this was not influenced by basal amounts of E since amounts did not differ between S and NS cows at ovariectomy (5.37 +/- 0.36 vs. 5.34 +/- 0.48 pg/ml E; P greater than 0.05). Serum concentrations of LH were negatively related to total follicular E only in S cows (r = -0.71; P less than 0.01). Estradiol-17 beta caused a decrease not only in the level but also the variability in LH concentrations in both S and NS cows: LH in S cows was less variable after E than in NS cows (P less than 0.001), but the magnitude of LH suppression was not influenced by suckling (P greater than 0.25). The regression of LH response on days PP was essentially the same over time for both S (P greater than 0.25) and NS (P greater than 0.25) cows, indicating that LH response to a GnRH injection was not influenced by suckling or days PP. Suckled cows had a tendency to release more LH relative to their baseline in response to GnRH as time PP increased (P less than 0.10), but NS cows did not. These results indicate that even though ovarian secretions inhibit LH release from the pituitary, other inhibitory influences may have a major effect in S cows. Concentrations of LH were lower in S cows than NS cows on Day 10 PP, following removal of the ovaries on Day 5, suggesting that suckling had a direct effect on the hypothalamic-pituitary axis.  相似文献   

18.
To determine the threshold of prostaglandin F2 alpha (PGF2 alpha)-stimulated oxytocin secretion from the ovine corpus luteum, low levels of PGF2 alpha (5-100 pg/min) were infused into the ovarian arterial blood supply of sheep with ovarian autotransplants. PGF2 alpha was infused for six sequential 10-min periods at hourly intervals, 6, 12, or 24 days after estrus (n = 3 for each day). Each cycle day was studied during a separate cycle. Oxytocin and progesterone in ovarian venous and carotid arterial plasma was measured by radioimmunoassay, and secretion rates were determined (venous-arterial concentration x plasma flow). In animals treated on Day 6, 5 pg/min PGF2 alpha caused a significant release of oxytocin (p less than 0.01), whereas in animals treated on Day 12, this threshold was 40 pg/min (p less than 0.05). In animals treated on Day 24, the threshold for oxytocin release was greater than 100 pg/min. PGF2 alpha did not significantly change ovarian blood flow or progesterone secretion rate on any day (p greater than 0.05). To determine residual luteal oxytocin after each threshold experiment, 5 mg PGF2 alpha was given i.m. to all animals. Significantly more oxytocin was released by Day 6 than by Day 12 and Day 24 corpora lutea, and by Day 12 than by Day 24 corpora lutea (1.2 micrograms, 0.7 microgram, and 0.3 microgram, respectively; p less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The aim of the study was to investigate the effect of the GnRH agonist Buserelin given on day 10 after ovulation on pregnancy rate and concentrations of progesterone and LH. Altogether 191 warmblood mares were used for two trials. Fresh or frozen/thawed semen from 27 stallions was used for A.I. In trial A 171 mares received either Buserelin (Receptal, Hoechst, Germany, 40 microg/animal) or 10 ml 0.9% NaCl (placebo). On day 16 after A.I. pregnancy diagnosis was performed by ultrasound scanning of the uterus. For statistical analysis, data were analyzed by a mixed model, with four fixed factors (treatment, type of spermatozoa, A.I. number, reproductive status of the mare) and a random factor (stallion). Least Square Means (LSM) for pregnancy rate were 46.0% in GnRH agonist treated mares and 36.4% in the control group (P=0.22). In trial B 20 lactating and cycling mares were used for endocrine studies. Blood samples were recovered for analyses of progesterone and LH from days 0 to 11. The mean progesterone concentrations increased continuously from days 0 to 8 after ovulation in both groups (GnRH group: from 0.81+/-0.48 to 5.47+/-0.48 ng/ml, control group: from 0.63+/-0.68 to 5.83+/-0.68 ng/ml). Moreover, the progesterone concentrations from days 9 to 11 were not different between the GnRH and the control group. In contrast to this LH concentrations were markedly influenced by the GnRH agonist. On day 10 LH concentrations were significantly higher in GnRH agonist treated than in placebo treated animals. From the data obtained from individual animals it can be concluded that GnRH agonist, given during luteal phase may have different effect on luteal function.  相似文献   

20.
The effect of GnRH was studied on progesterone (P4), oestradiol-17 beta (E2) and testosterone (T) secretion by porcine luteal cells from the 13th day of the oestrous cycle and the 18th day of pregnancy. Trypsin-dispersed luteal cells (5 X 10(4) cells/ml) were incubated in medium 199 with 10% calf serum with or without GnRH in doses of 0.1, 1, 10 and 100 mg/ml and with 1 microgram LH and 50 U/ml hCG. The concentration of P4, E2 and T in the medium was estimated by radioimmunological method after 6 hours of incubation. The results showed that GnRH had no effect on the secretion of the investigated steroid hormones by luteal cells from cyclic sows. GnRH at a dose of 10 g inhibited E2 secretion and at a dose of 1 ng T secretion by cells from pregnant sows. LH and hCG stimulated release of P4 by luteal cells in both physiological stages. The conclusion drawn was that GnRH does not act directly on luteal cells of cyclic sows but may inhibit E2 and T secretion by cells of pregnant sows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号