首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Kinetic studies of the uptake of hydroquinone--D-glucoside (arbutin) by excised roots of barley demonstrated that this compound is actively transported. Similar studies on the uptake of hydroquinone indicated that the latter compound enters the root tissues by diffusion. A concentration gradient favouring diffusion is maintained for at least three hours by the conversion of the aglucone to its correspondings glucoside. Hydroquinone, at a concentration of 5 mM, reduced uptake of 86rubidium ion by approximately 30%.This work was supported by a grant from the National Research. Council of Canada  相似文献   

3.
4.
Summary Alpha hydroxy acid oxidase activity (using glycolate as substrate) was demonstrated cytochemically in leaf-type peroxisomes, glyoxysomes, and unspecialized peroxisomes of higher plant tissues with the CeCl3 technique in which cerous ions react with enzyme-generated H2O2 to form insoluble, electron-dense cerium perhydroxide. In all peroxisomes examined, reaction product was deposited throughout the matrices. None of the three types of microbody inclusions (crystals, amorphous nucleoids, or fibrillar, threadlike structures) observed in leaftype peroxisomes showed cytochemical reactivity. However, results with crystal-containing peroxisomes of guayule and tobacco leaves indicate an intimate association of glycolate oxidase with the crystals; reaction product was deposited in the spaces between the structural units of the crystal.Prolonged (18- versus 3-hour) incubation with glycolate and CeCl3 were required for reliable cytochemical reactivity in glyoxysomes of castor bean endosperm and unspecialized peroxisomes of barley coleoptile, both of which contain relatively low enzyme activity. The CeCl3 procedure may prove useful for helping identify microbodies observed with the electron microscope as peroxisomes. The lack of significant background deposits, and resolution of reaction product within crystals, illustrate qualities of the CeCl3 procedure superior to those of the ferricyanide-reduction method, which was previously used to localize glycolate oxidase in higher plant microbodies.  相似文献   

5.
6.
The filamentous green alga Klebsormidium flaccidum A.Br. was fixed with glutaraldehyde, incubated in a cytochemical medium designed to detect glycolate-oxidase activity, and prepared for electron microscopy. Heavy deposits of stain were observed in microbodies following incubation with either glycolate or L-lactate as substrate, but not after incubation with D-lactate or H2O. When Chlamydomanas reinhardi Dangeared cells were treated in the same way, their microbodies did not appear stained. The results establish that in Klebsormidium glycolate-oxidase occurs in microbodies (peroxisomes), as it does in angiosperms; also, they emphasize the dichotomy between those green algae which contain glycolate-oxidase and those, such as Chlamydomonas, which possess the mitochondrial enzyme glycolate dehydrogenase.  相似文献   

7.
The ontogeny of glyoxysomes and leaf peroxisomes has been examined in the cotyledons of germinating watermelon (Citrullus vulgaris) seedlings. Organelles from the cotyledons were extracted by razor blade homogenization and microbodies were separated by sucrose density gradient fractionation. Both kinds of microbodies have the same mean equilibrium density on sucrose gradients.  相似文献   

8.
Pronounced staining of Tetrahymena pyriformis peroxisomes was demonstrated when glutaraldehyde-fixed cells were incubated in an alkaline medium containing 3,3'-diaminobenzidine and hydrogen peroxide. A variable amount of electron-opague deposit was observed when cells were incubated in diaminobenzidine and H2O2 for 1 hr while an intense deposit followed incubation for 4 hr in the same medium. The staining was abolished completely when 3-amino-1,2,4-triazole, KCN or NaN3 was added to the incubation medium. Based on these cytochemical observations and the morphologic identification by size, shape and other ultrastructural details, it is suggested that this study presents evidence for a conclusive morphologic identification of Tetrahymena peroxisomes.  相似文献   

9.
《Experimental mycology》1981,5(3):209-216
Microbodies in uredospores and germ tubes ofPuccinia graminis var.tritici reacted positively to the catalase test using 3,3′-diaminobenzidine and hydrogen peroxide in an alkaline medium. Reaction occurred following fixation in 2% glutaraldehyde in cacodylate buffer but was enhanced by reducing the glutaraldehyde concentration to 1%, which is significantly less than is normally used. Use of formaldehyde fixative, either alone or in combination with glutaraldehyde, resulted in a complete absence of staining. This also occurred when phosphate buffer was substituted for cacodylate. A similar inactivation of the staining process was obtained when the material was treated with 3-amino-1,2,4-triazole. It is concluded that the microbodies in germinating uredospores and germ tubes ofP. graminis var.tritici have functions similar to those of glyoxysomes in higher plants.  相似文献   

10.
11.
12.
Synopsis The distribution of catalase, amino acid oxidase, -hydroxy acid oxidase, urate oxidase and alcohol oxidase was studied cytochemically in rat hepatocytes. The presence of catalase was demonstrated with the conventional diaminobenzidine technique. Oxidase activities were visualized with methods based on the enzymatic or chemical trapping of the hydrogen peroxide produced by these enzymes during aerobic incubations.All enzymes investigated were found to be present in peroxisomes. Catalase activity was found in the peroxisomal matrix, but also associated with the nucleoid. After staining for oxidase activities the stain deposits occurred invariably in the peroxisomal matrix as well as in the nucleoids. In all experiments the activity of both catalase and the oxidases was confined to the peroxisomes. The presence of a hydrogen peroxide-producing alcohol oxidase was demonstrated for the first time in peroxisomes in liver cells.The results imply that the enzyme activity of the nucleoids of rat liver peroxisomes is not exclusively due to urate oxidase. The nucleoids obviously contain a variety of other enzymes that may be more or less loosely associated with the insoluble components of these structures.  相似文献   

13.
14.
Summary The subcellular localization of glucose oxidase (E.C. 1.1.3.4) in mycelia of Aspergillus niger has been investigated using cytochemical staining techniques. Mycelia from fermenter cultures, which produced gluconic acid from glucose, contained elevated levels of glucose oxidase and catalase. Both enzymes were located in microbodies. In addition, when the organism was grown on glucose with methylamine as a nitrogen source, amine oxidase activity was detected in the microbodies. These organelles can therefore be designated as peroxisomes.  相似文献   

15.
Summary Leptomonas samueli possesses in its cytoplasm a membrane-bounded organelle which can reach a length of 2.8 m and a diameter of 0.2 m. Catalase activity, which is inhibited by 3-amino-1, 2, 4-triazole, was detected at the ultrastructural level in the matrix of the organelle by using an alkaline diaminobenzidine medium. Freeze-fracture studies showed the presence of a large number of intramembranous particles on both the P and the E faces of the membrane of the organelle. Based on these data as well as on previous observations, it is suggested that the trypanosomatids possess an organelle that can be considered to be a peroxisome.  相似文献   

16.
The localization of peroxidase activity in methanol-grown cells of the yeast Hansenula polymorpha has been studied by a method based on cytochemical staining with diaminobenzidine (DAB). The oxidation product of DAB occurred in microbodies, which characteristically develop during growth on methanol, and in the intracristate space of the mitochondria. The staining of microbodies was H2O2 dependent, appeared to be optimal at pH 10.5, diminished below pH 10 and was inhibited by 20 mM 3-amino 1,2,4 triazole (AT). In contrast to these observations, the reaction in the mitochondria was not H2O2 dependent and not notably affected by differences in pH in the range of 8.5 to 10.5. Microbodies and mitochondria were also stained when H2O2 was replaced by methanol. Appropriate control experiments indicated that in this case methanol oxidase generated the H2O2 for the peroxidative conversion of DAB by catalase. These results suggest that catalase is located in the microbodies of methanol-grown yeasts. A model for a possible physiological function of the microbodies during growth on methanol is put forward.  相似文献   

17.
Upon differential centrifugation of rat liver homogenate, the enzyme acyl-CoA:dihydroxyacetone-phosphate acyltransferase (EC 2.3.1.42) was found to be localized in the light mitochondrial (L) fraction which is enriched with lysosomes and peroxisomes. Peroxisomes were separated from lysosomes in a density gradient centrifugation using rats which were injected with Triton WR 1339. By comparing the enzyme distribution with the distribution of different marker enzymes, it was concluded that dihydroxyacetone phosphate acyltransferase is primarily localized in rat liver peroxisomes (microbodies). Similarly, the enzyme acyl dihydroxyacetone-phosphate:NADPH oxidoreductase (EC 1.1.1.101) was shown to be enriched in the peroxisomal fraction, although a portion of this reductase is also present in the microsomal fraction.  相似文献   

18.
The localization of peroxidase activity in methanol-grown cells of the yeast Hansenula polymorphia has been studied by a method based on cytochemical staining with diaminobenzidine (DAB). The oxidation product of DAB occurred in microbodies, which characteristically develop growth on or methanol, and in the intracristate space of the mitochondria. The staining of microbodies was H2O2 dependent, appeared to be optimal at pH 10.5, diminished below pH 10 and was inhibited by 20 mM 3-amino 1,2,4 triazole (AT). In contrast to these observations, the reaction in the mitochondria was not H2O2 dependent and not notably affected by differences in pH in the range of 8.5 to 10.5. Microbodies and mitochondria were also stained when H2O2 was replaced by methanol. Appropriate control experiments indicated that in this case methanol oxidase generated the H2O2 for the peroxidative conversion of DAB by catalase. These results suggest that catalase is located in the microbodies of methanol-grown yeasts. A model for a possible physiological function of the microbodies during growth on methanol is put forward.  相似文献   

19.
The localization of catalase in isolated maize scutellum glyoxysomes was investigated by means of the diaminobenzidine histochemical reaction. Only the membranes of the glyoxysomes become heavily stained after incubation with diaminobenzidine and H2O2. If the glyoxysomes are lysed with Tricine buffer at pH 9, 70% of the catalase is solubilized, while the remaining 30% is tightly bound to an insoluble fraction formed mostly by glyoxysomal membranes. This suggests that catalase may be present also in the matrix of the glyoxysomes. The lack of staining of the matrix with diaminobenzidine is probably due to the high concentration of catalase in the membranes of the organelles.  相似文献   

20.
How proteins get into microbodies (peroxisomes, glyoxysomes, glycosomes)   总被引:31,自引:0,他引:31  
All microbody proteins studies, including one microbody membrane protein, are made on free polysomes and imported post-translationally. This holds for animal tissues, plants, and fungi. The majority of microbody protein sub-units are synthesized in a form not detectably different from mature sub-units. In five cases a larger precursor protein has been found. The position of the extra piece in this precursor is not known. In two of the five cases, processing of the precursor is not coupled to import; in the other three this remains to be determined. It is not even known whether information in the prepiece contributes to topogenesis, or serves other purposes. Microbody preparations from Neurospora, plant tissue and rat liver can take up some newly synthesized microbody proteins in vitro. In most cases uptake is inefficient. No special requirements for uptake have been established and whether a receptor is involved is not yet known. Several examples have been reported of peroxisomal enzymes with a counterpart in another cell compartment. With the exception of catalase, no direct evidence is available in any of these cases for two isoenzymes specified by the same gene. In the Zellweger syndrome, a lethal hereditary disease of man, characterized by a lack of peroxisomes, the levels of several enzymes of lipid metabolism are strongly decreased. In contrast, D-amino-acid oxidase, L-alpha-hydroxyacid oxidase and catalase levels are normal. The catalase resides in the cytosol. Since there is no separate gene for cytosolic catalase, the normal catalase levels in Zellweger cells show that some peroxisomal enzymes can mature and survive stably in the cytosol. It is possible that maturation of the peroxisomal enzyme in the cytoplasm can account for the finding of cytosolic catalase in some normal mammalian cells. The glycosomes of trypanosomes are microbodies that contain a glycolytic system. Comparison of the glycosomal phosphoglycerate kinase with its cytosolic counterpart has shown that these isoenzymes are 93% homologous in amino-acid sequence, but less than 50% homologous to the corresponding enzymes of yeast and mammals. This implies that few alterations are required to direct a protein into microbodies. This interpretation is supported by the evidence for homology between some microbody and mitochondrial isoenzymes in other organisms mentioned under point 4. The major changes of the glycosomal phosphoglycerate kinase relative to the cytosolic enzyme are a large increase in positive charge and a C-terminal extension of 20 amino acids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号