首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.  相似文献   

2.
A comparison of effects of two hypocholesterolemic drugs--mevinolin and glycyrrhizinic acid, on cholesterol and bile acid metabolism in cultured rabbit hepatocytes has been carried out. The following parameters have been determined: i) cholesterol synthesis from [2-14C]acetate; ii) bile acid production from newly synthesized and [4-14C]-labeled HDL2 cholesterol, and, iii) total cholesterol efflux into the incubation medium Mevinolin (0.5 microgram/ml) inhibited [2-14C] acetate incorporation into cholesterol by more than 90%. Conversely, glycyrrhizinic acid did not influence cholesterol synthesis even when used at high (100 micrograms/ml) concentrations but stimulated the conversion of endogenous (by 37%) and exogenous (by 18%) cholesterol into bile acids and increased, in addition, the proportion of bile acids in the total sterol pool released from hepatocytes into the incubation medium. At the same time, mevinolin used at 0.5 microgram/ml decreased the bile acid production by endogenous (by 27%) and exogenous (by 40%) cholesterol. The data obtained suggest that glycyrrhizinic acid exerts hypocholesterolemic action by stimulation of cholesterol conversion into bile acids without any effect on cholesterol synthesis. As for mevinolin, it has a cholesterol-suppressing effect via a mechanism of cholesterol synthesis inhibition only.  相似文献   

3.
Primary cultures of rabbit hepatocytes were used to examine the effect of natural and synthetic antioxidants--polyhydroxynaphthoquinones (PHNQ) and alpha-tocopherol on cholesterol and bile acid synthesis. Histochrome, one of the PHNQ, slightly decreased cholesterol synthesis at concentrations 10-100 microM, whereas alpha-tocopherol stimulated cholesterol synthesis. After administration of histochrome or alpha-tocopherol into culture medium a significant stimulation of bile acid synthesis in dose-dependent manner was observed. The increase of bile acid secretion by histochrome in the presence of physiological concentration of HDL2 was found as well. Since histochrome in contrast to alpha-tocopherol enhanced accumulation of [14C] cholesterol of HDL2 in the hepatocytes, it was concluded that histochrome stimulated bile acid synthesis as a result of increased input of HDL2 cholesterol into hepatocytes. These data suggest that histochrome may exhibit a hypocholesterolemic effect by stimulation of bile acid synthesis and inhibition of cholesterol synthesis.  相似文献   

4.
Apolipoprotein B (apoB) of plasma low density lipoproteins (LDL) binds to high affinity receptors on many cell types. A minor subclass of high density lipoproteins (HDL), termed HDL1, which contains apoE but lacks apoB, binds to the same receptor. Bound lipoproteins are engulfed, degraded, and regulate intracellular cholesterol metabolism and receptor activity. The HDL of many patients with liver disease is rich in apoE. We tested the hypothesis that such patient HDL would reduce LDL binding and would themselves regulate cellular cholesterol metabolism. Normal HDL had little effect on binding, uptake, and degradation of 125I-labeled LDL by cultured human skin fibroblasts. Patient HDL (d 1.063-1.21 g/ml) inhibited these processes, and in 15 of the 25 samples studied there was more than 50% inhibition at 125I-labeled LDL and HDL protein concentrations of 10 micrograms/ml and 25 micrograms/ml, respectively. There was a significant negative correlation between the percentage of 125I-labeled LDL bound and the apoE content of the competing HDL (r = -0.54, P less than 0.01). Patient 125I-labeled HDL was also taken up and degraded by the fibroblasts, apparently through the LDL-receptor pathway, stimulated cellular cholesterol esterification, increased cell cholesteryl ester content, and suppressed cholesterol synthesis and receptor activity. We conclude that LDL catabolism by the receptor-mediated pathway may be impaired in liver disease and that patient HDL may deliver cholesterol to cells.  相似文献   

5.
Human HDL subfractions (HDL2, HDL3, or HDL separated by heparin affinity chromatography) were labelled either on their apolipoprotein moiety with 125I or on their sterols: unesterified [14C]cholesterol and [3H]cholesteryl linoleyl ether, a non-hydrolysable analog of esterified cholesterol. HDL subfractions were then treated with or without phospholipase A2 from Crotalus adamanteus in presence of albumin leading to a 72-82% phosphatidylcholine degradation. Control and treated HDL were reisolated and then addressed to cultured rat hepatocytes. (A) During incubations, unesterified [14C]cholesterol from HDL3 readily appeared in hepatocytes. The specific uptake of HDL esterified cholesterol calculated from [3H]cholesteryl ether was 2-4-times less important. Uptake of HDL cholesterol tended to saturate at 150-200 micrograms/ml HDL protein. A prior phospholipase treatment of HDL3 stimulated by 2-5-fold the uptake of [3H]cholesteryl ether, whereas the transfer of free [14C]cholesterol was minimally increased. The uptake of 3H/14C-labelled sterols from HDL2 was 2-3-times higher than from HDL3. (B) Parallel experiments were conducted with 125I-labelled HDL subfractions. At 37 degrees C, the specific uptake and degradation of HDL3 125I-apolipoprotein were about 2-fold enhanced following treatment of HDL3 with phospholipase A2. Uptakes of apolipoprotein and of esterified cholesterol were compared, indicating a preferential delivery of the sterol over apoprotein (X5). The dissociation was still more pronounced with phospholipase-treated HDL3. Competition experiments showed that 12-times more unlabelled HDL3 were required to half reduce the uptake of HDL3 [3H]cholesteryl ether than to impede similarly the HDL 125I-apolipoprotein recovered in cells. Uptake of 125I-labelled apolipoprotein from HDL2 was quantitatively comparable to that from HDL3. (C) Binding of 125I-HDL subfractions was followed at 4 degrees C. A specific binding was observed for HDL2 and HDL3, although kinetic parameters were quite different (KD of 9 and 25 micrograms/ml, respectively). Following phospholipolysis, both the specific and non-specific contributions to total binding were increased. Hence, hepatocytes take up more 125I-labelled apolipoprotein and 3H/14C-labelled sterols from lipolysed HDL than from unmodified particles. This is associated to changes in the binding characteristics.  相似文献   

6.
Rat hepatoma cells (Fu5AH) were studied as a model for the net delivery of apoE-free high-density lipoprotein (HDL) cholesterol to a cell. Incubating cells with HDL results in 1) a decrease in both media-free cholesterol and cholesteryl ester concentration; 2) decreased cell sterol synthesis; and 3) increased cell cholesteryl ester synthesis. HDL cholesteryl ester uptake is increased when cells are incubated for 18 hr in cholesterol poor media. Coincubation of 3H-cholesteryl ester-labeled low-density lipoprotein (LDL) with 50 microM chloroquine or 25 microM monensin results in a decrease in the cellular free cholesterol/cholesteryl ester (FC/CE) isotope ratio, indicating an inhibition in the conversion of cholesteryl ester to free cholesterol. In contrast, chloroquine and monensin do not alter the cellular FC/CE isotope ratio for 3H-CE HDL. This evidence indicates that acidic lysosomal cholesteryl ester hydrolase does not account for the hydrolysis of HDL-CE. Free cholesterol generated from 3H-cholesteryl ester of both LDL and HDL is reesterified intracellularly. At higher HDL concentrations (above 50 micrograms/ml) HDL cholesteryl ester hydrolysis is sensitive to chloroquine. We propose that an extralysosomal pathway is operating in the metabolism of HDL cholesterol and that at higher HDL concentrations a lysosomal pathway may be functioning in addition to an extralysosomal pathway.  相似文献   

7.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

8.
Lipoprotein cholesterol (C) supports the high rate of progesterone production by the human placenta as endogenous cholesterol synthesis is low. To study underlying mechanisms whereby lipoproteins, including high density lipoprotein-2 (HDL2), stimulate progesterone secretion, trophoblast cells were isolated from human term placentas and maintained in primary tissue culture. Lipoproteins were added at several concentrations and medium progesterone secretion was determined. HDL2 (d 1.063-1.125 g/ml) as well as low density lipoproteins (LDL) (d 1.019-1.063 g/ml) but not HDL3 (d 1.125-1.21 g/ml) stimulated progesterone secretion in a dose-dependent manner, with HDL2 cholesterol entering the cell and serving as substrate for progesterone synthesis. Conversely, LDL and HDL2 produced a significant decrease in [2-14C]acetate incorporation into cell cholesterol. Cholesterol-depleted lipoproteins did not stimulate progesterone secretion. The stimulating effect of LDL was abolished by apolipoprotein modification by cyclohexanedione or reductive methylation and by the addition of anti-LDL receptor antibody or 10 microM chloroquine to the medium. [14C]acetate conversion into cholesterol was accelerated by these procedures. However, HDL2 stimulation of progesterone secretion and reduction of [14C]acetate incorporation into cholesterol was not blocked by chemical modification of apolipoproteins, anti-LDL receptor antibody, or chloroquine. Treatment of HDL2 with tetranitromethane or dimethylsuberimidate also did not block the stimulation of progesterone. To determine whether the capacity of HDL2 to deliver cholesterol to the trophoblast cells was restricted to subfractions differing in apoE content, HDL2 was chromatographed on heparin-Sepharose and three fractions (A, B, and C) were obtained. Fraction A was poorest in apoE and free cholesterol, fraction B contained the majority of cholesterol, and fraction C was the richest in apoE and free cholesterol. When added to trophoblast cells, fraction A stimulated little progesterone secretion, fraction B stimulated moderately, and fraction C did so greatly. Modification of these subfractions with cyclohexanedione or reductive methylation did not inhibit these effects. In conclusion, HDL2 stimulated progesterone secretion in human trophoblast cell culture. Contrary to LDL, the HDL effect was not mediated by apolipoproteins or the LDL receptor pathway. The ability of HDL2 to stimulate progesterone secretion is consistent with the passive transfer of free cholesterol to the cell membrane from a physicochemically specific subfraction of HDL. This mechanism may be an auxiliary source of cholesterol for human steroidogenic cells.  相似文献   

9.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

10.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

11.
The mass efflux of free and esterified cholesterol was studied in skin fibroblasts loaded with cholesterol by incubation with low density lipoproteins (LDL) isolated from normal or hypercholesterolemic cynomolgus monkeys. Cells incubated with hypercholesterolemic LDL accumulated 2-3 times more cholesteryl ester than did cells incubated with the same amount of normal LDL. Cholesteryl oleate was the principal cholesteryl ester species to accumulate in cells incubated with both normal and hypercholesterolemic LDL. Efflux of this accumulated cholesterol was absolutely dependent on the presence of a cholesterol acceptor in the culture medium. Lipoprotein-deficient serum (LPDS) was the most potent promoter of cholesterol efflux tested, with maximum efflux occurring at LPDS concentrations greater than 1.5 mg protein/ml. Upon addition of efflux medium containing LPDS, there was a reduction in both the free and esterified cholesterol concentration of the cells. Greater than 90% of the cholesteryl esters that were lost from the cells appeared in the culture medium as free cholesterol, indicating that hydrolysis of cholesteryl esters preceded efflux. Efflux was not inhibited by chloroquine, however, suggesting a mechanism independent of lysosomes. Loss of cellular free cholesterol was maximum by 6 hr and changed very little thereafter up to 72 hr. Cholesteryl ester loss from cells decreased in a log linear fashion for efflux periods of 6-72 hr, with an average half-life for cholesteryl ester efflux of 30 hr, but with a range of 20-50 hr, depending upon the specific cell line. The rate of efflux of cellular cholesteryl esters was similar for cells loaded with normal or hypercholesterolemic LDL. In cells loaded with cholesteryl esters, cholesterol synthesis was suppressed and cholesterol esterification and fatty acid synthesis were enhanced. During efflux, cholesterol synthesis remained maximally suppressed while cholesterol esterification decreased for the first 24 hr of efflux, then plateaued at a level approximately 5-fold higher than control levels, while fatty acid synthesis was slightly stimulated. There was little difference in the rate of efflux of individual cholesteryl ester species. There was, however, the suggestion that reesterification of cholesterol principally to palmitic acid occurred during efflux. Since the rate of cellular cholesteryl ester efflux was similar regardless of whether the cells had been loaded with cholesterol by incubation with normal LDL or hypercholesterolemic LDL, the greater accumulation of cholesterol in cells incubated with hypercholesterolemic LDL cannot be explained by differences in rates of efflux.-St. Clair, R. W., and M. A. Leight. Cholesterol efflux from cells enriched with cholesteryl esters by incubation with hypercholesterolemic monkey low density lipoprotein.  相似文献   

12.
We have previously shown that in Hep G2 cells and human hepatocytes, as compared with fibroblasts, the low-density lipoprotein (LDL) receptor activity is only weakly down-regulated after incubation of the cells with LDL, whereas incubation with high-density lipoproteins (HDL) of density 1.16-1.20 g/ml (heavy HDL) strongly increased the LDL-receptor activity. To elucidate this difference between hepatocytes and fibroblasts, we studied the cellular cholesterol homoeostasis in relation to the LDL-receptor activity in Hep G2 cells. (1) Interrupting the cholesteryl ester cycle by inhibiting acyl-CoA: cholesterol acyltransferase (ACAT) activity with compound 58-035 (Sandoz) resulted in an enhanced LDL-mediated down-regulation of the receptor activity. (2) The stimulation of the receptor activity by incubation of the cells with cholesterol acceptors such as heavy HDL was not affected by ACAT inhibition. (3) Incubation of the Hep G2 cells with LDL, heavy HDL or a combination of both grossly affected LDL-receptor activity, but did not significantly change the intracellular content of free cholesterol, suggesting that in Hep G2 cells the regulatory free cholesterol pool is small as compared with the total free cholesterol mass. (4) We used changes in ACAT activity as a sensitive (indirect) measure for changes in the regulatory free cholesterol pool. (5) Incubation of the cells with compactin (2 microM) without lipoproteins resulted in a 4-fold decrease in ACAT activity, indicating that endogenously synthesized cholesterol is directed to the ACAT-substrate pool. (6) Incubation of the cells with LDL or a combination of LDL and heavy HDL stimulated ACAT activity 3-5 fold, whereas incubation with heavy HDL alone decreased ACAT activity more than 20-fold. Our results suggest that in Hep G2 cells exogenously delivered (LDL)-cholesterol and endogenously synthesized cholesterol are primarily directed to the cholesteryl ester (ACAT-substrate) pool or, if present, to extracellular cholesterol acceptors (heavy HDL) rather than to the free cholesterol pool involved in LDL-receptor regulation.  相似文献   

13.
ApoE plays an important role in lipoprotein metabolism. This study investigated the effects of adenovirus-mediated human apoE overexpression (AdhApoE3) on sterol metabolism and in vivo reverse cholesterol transport (RCT). In wild-type mice, AdhApoE3 resulted in decreased HDL cholesterol levels and a shift toward larger HDL in plasma, whereas hepatic cholesterol content increased (P < 0.05). These effects were dependent on scavenger receptor class B type I (SR-BI) as confirmed using SR-BI-deficient mice. Kinetic studies demonstrated increased plasma HDL cholesteryl ester catabolic rates (P < 0.05) and higher hepatic selective uptake of HDL cholesteryl esters in AdhApoE3-injected wild-type mice (P < 0.01). However, biliary and fecal sterol output as well as in vivo macrophage-to-feces RCT studied with (3)H-cholesterol-loaded mouse macrophage foam cells remained unchanged upon human apoE overexpression. Similar results were obtained using hApoE3 overexpression in human CETP transgenic mice. However, blocking ABCA1-mediated cholesterol efflux from hepatocytes in AdhApoE3-injected mice using probucol increased biliary cholesterol secretion (P < 0.05), fecal neutral sterol excretion (P < 0.05), and in vivo RCT (P < 0.01), specifically within neutral sterols. These combined data demonstrate that systemic apoE overexpression increases i) SR-BI-mediated selective uptake into the liver and ii) ABCA1-mediated efflux of RCT-relevant cholesterol from hepatocytes back to the plasma compartment, thereby resulting in unchanged fecal mass sterol excretion and overall in vivo RCT.  相似文献   

14.
The effect of a rat high-density lipoprotein subfraction (HDL2) on the synthesis of bile salts by rat hepatocyte monolayers prepared from rats fed a diet containing cholestyramine, was investigated. The synthesis of bile salts as measured by radioimmunoassay of conjugated cholic, chenodeoxycholic and beta-muricholic acids was significantly increased when hepatocytes were incubated with a physiological concentration (500 micrograms HDL2 protein X ml-1) of HDL2.  相似文献   

15.
The effect of individual oxysterols--products of auto-oxidation of cholesterol on bile acid synthesis by cultivated rabbit hepatocytes was studied. Relative rates of bile acid synthesis were measured as the conversion of 4-14C cholesterol-HDL2 into total 4-14C labeled bile acids. 7 beta-hydroxycholesterol and 3,5-cholestane-7-dione strongly inhibited bile acid synthesis at concentrations 1-10 micrograms/ml. These data support the hypothesis that oxidized cholesterol derivatives accelerate the development of hypercholesterolemia in rabbits fed on cholesterol containing diet.  相似文献   

16.
The availability of different sources of cholesterol for bile acid synthesis by cultured chick embryo hepatocytes was studied. Mevalonolactone was taken up by the cells and converted to cholesterol, cholesterol ester and tauroconjugates of bile acids. The addition of mevalonolactone had little effect on the conversion of endogenous cholesterol to taurocholic acid; however, taurochenodeoxycholic acid synthesis was stimulated. 25-30% of the cholesterol synthesized from mevalonolactone was converted to taurochenodeoxycholic, taurocholic and two so-far unidentified bile acids. All bile acids were secreted into the incubation medium. When cholesterol was added as mixed liposomes with phosphatidylcholine, it was taken up by the cells and converted to bile acids. At low concentrations of liposomes, the greater part of the cholesterol which was taken up by the cells was converted to bile acids. At higher concentrations, considerable amounts of cholesterol and cholesterol ester accumulated inside the cells. When mevalonolactone and cholesterol liposomes was added together, both substrates were used simultaneously for bile acids synthesis. HDL cholesterol was the best substrate tested, yielding large amounts of two, so-far, unidentified bile acids (possibly allo-bile acids) and smaller amounts of taurocholic and taurochenodeoxycholic acid. Addition of HDL suppressed the conversion of endogenous cholesterol to taurocholic acid; taurochenodeoxycholic acid synthesis, however, was stimulated.  相似文献   

17.
The effect of individual bile acids on bile acid synthesis was studied in primary hepatocyte cultures. Relative rates of bile acid synthesis were measured as the conversion of lipoprotein [4-14C]cholesterol into 4-14C-labeled bile acids. Additions to the culture media of cholate, taurocholate, glycocholate, chenodeoxycholate, taurochenodeoxycholate, glycochenodeoxycholate, deoxycholate, and taurodeoxycholate (10-200 microM) did not inhibit bile acid synthesis. The addition of cholate (100 microM) to the medium raised the intracellular level of cholate 10-fold, documenting effective uptake of added bile acid by cultured hepatocytes. The addition of 200 microM taurocholate to cultured hepatocytes prelabeled with [4-14C]cholesterol did not result in inhibition of bile acid synthesis. Taurocholate (10-200 microM) also failed to inhibit bile acid synthesis in suspensions of freshly isolated hepatocytes after 2, 4, and 6 h of incubation. Surprisingly, the addition of taurocholate and taurochenodeoxycholate (10-200 microM) stimulated taurocholate synthesis from [2-14C]mevalonate-labeled cholesterol (p less than 0.05). Neither taurocholate nor taurochenodeoxycholate directly inhibited cholesterol 7 alpha-hydroxylase activity in the microsomes prepared from cholestyramine-fed rats. By contrast, 7-ketocholesterol and 20 alpha-hydroxycholesterol strongly inhibited cholesterol 7 alpha-hydroxylase activity at low concentrations (10 microM). In conclusion, these data strongly suggest that bile acids, at the level of the hepatocyte, do not directly inhibit bile acid synthesis from exogenous or endogenous cholesterol even at concentrations 3-6-fold higher than those found in rat portal blood.  相似文献   

18.
ApoE synthesis and secretion, as a function of cellular cholesterol content and cholesterol efflux, was studied in thioglycolate-elicited mouse peritoneal macrophages. As expected, loading elicited macrophages with cholesterol induced a 5-fold increase in apoE secretion and a 2.5-fold increase in cellular apoE content over a 5-h period. Treatment of cholesterol-loaded cells with HDL3 further increased apoE secretion 1.7-fold and decreased cellular cholesterol by 20%. Treatment of cholesterol-loaded cells with HDL3 and SAH 58.035 (an ACAT inhibitor) increased apoE secretion 2.4-fold and decreased cellular cholesterol content by 35%. Treatment of the cells with the ACAT inhibitor alone suppressed apoE secretion by 40% but did not change cellular cholesterol content. Northern blot analysis of RNA indicated that cholesterol loading increased apoE mRNA 2-fold. ApoE mRNA levels were not further affected by treatment with HDL3 and/or the ACAT inhibitor. Cholesterol-loaded cells, in the absence of HDL3, secreted apoE into the media in two fractions as determined by column chromatography: a large molecular weight complex, (larger than HDL), and an essentially lipid-free protein. In the presence of HDL3, the cells secreted apoE in three fractions: a large molecular weight complex, an essentially lipid-free protein, and over 50% of apoE associated with HDL. In the process, HDL3 became larger and eluted in a position identical to that of HDL2. A small amount of HDL3-derived material was also transformed to an LDL-size particle. Incubation of HDL3 in the absence of cholesterol-loaded cells did not produce these changes. It is concluded that cholesterol-loading increases apoE mRNA content and apoE synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Metabolism of high density lipoprotein (HDL) cholesteryl ester (CE) by cultured rat adrenal cells was studied. Addition of [3H]CE-HDL to cells pretreated with adrenocorticotrophin in lipoprotein poor media resulted in a time- and concentration-dependent accumulation of [3H]cholesteryl ester and production of [3H]cholesterol and [3H]corticosterone. HDL-CE metabolism could be described as the sum of a high affinity ([ HDL-cholesterol]1/2 max = 16 micrograms/ml) and low affinity ([ HDL-cholesterol]1/2 max greater than 70 micrograms/ml) process. [3H]Cholesterol was found both intracellularly and in the media. Accumulation of [3H]cholesteryl ester could not be attributed to uptake and re-esterification of unesterified cholesterol since addition of Sandoz 58-035, an inhibitor of acyl coenzyme A:cholesterol acyltransferase, did not prevent ester accumulation. Moreover, addition of chloroquine did not inhibit cholesteryl ester hydrolysis indicating that hydrolysis was not lysosomally mediated. Aminoglutethimide prevented conversion of [3H]CE-HDL to steroid hormones but did not inhibit [3H]cholesteryl ester uptake. Cellular accumulation of [3H] cholesteryl ester exceeded accumulation of 125I-apoproteins 5-fold at 1 h and 35-fold at 24 h indicating selective uptake of cholesteryl ester moiety. We conclude that rat adrenal cells possess a mechanism for selective uptake of HDL cholesteryl esters which provides substrate for steroidogenesis. These results constitute the first direct demonstration that cholesteryl esters in HDL can be used as steroidogenic substrate by the rat adrenal cortex.  相似文献   

20.
Human total HDL (hydrated density 1.070-1.210), HDL2 (1.070-1.125), HDL3 (1.125-1.210) or HDL separated by heparin affinity chromatography were treated with or without purified phospholipase A2 from Crotalus adamanteus. Control and treated HDL were reisolated and were then incubated with cultured hepatocytes. 1. Mass measurements evidenced a time-dependent cholesterol enrichment in hepatocytes cultured in the absence of lipoproteins. Addition of HDL2 still enhanced by 25% the cell cholesterol content and down-regulated endogenous sterol synthesis in similar proportions. Conversely, HDL3 slightly decreased the amount of free cholesterol in hepatocytes (-12%). 2. Incubations with phospholipase A2-treated HDL resulted in a 35%-50% increase of both the cellular cholesterol esterification and the cholesterylester accumulation, when compared to cells cultured in the presence of control-HDL. This effect was observed with HDL2, HDL3 and combining the data with all subfractions. 3. Cultured hepatocytes secreted cholic and beta-muricholic acids as major bile acids and HDL2 showed a tendency to stimulate their secretion. Phospholipase treatment of HDL again induced an increased production by hepatocytes of those two bile acids. Thus, whereas HDL2 and HDL3 display different behaviours with respect to cell cholesterol content, neosynthesis and bile acid secretion, their modifications by phospholipases always orientate the cell sterol metabolism in the same direction: increased cholesterylester accumulation and bile acid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号