首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the role of cell surface glycoconjugates during mouse blastocyst maturation, hatching, attachment, and outgrowth by monitoring the influence of six lectins on blastocyst development in vitro. Two lectins, concanavalin A and wheat germ agglutinin were toxic to blastocysts at the concentrations used. Bandierea simplicifolia lectin 1 (BSL-1) induced abnormal growth, developmental arrest at the hatching stage, and some disruption of cell contacts. Culture with Lotus tetragonolobus lectin-1 (LTA-1) also disrupted cell contacts and caused developmental arrest. The remaining lectins, Dolichos biflorus agglutinin (DBA) and Ulex europaeus agglutinin (UEA), retarded blastocyst hatching and outgrowth but did not induce any major defects, although differentiation of the inner cell mass was limited by both. This study demonstrates that very low concentrations of lectins can disrupt blastocyst development, suggesting that exposed surface saccharide moieties may be involved in interactions between blastomeres and their environment.  相似文献   

2.
Summary Mouse embryos were collected at the 2-cell stage, cultured in vitro in the presence of3H deoxyuridine or uridine for 6 or 4 h and autoradiographed.Deoxyuridine is actively incorporated into the DNA of cleaving mouse embryos indicating the existence of thymidylate synthetase activity at least at the 4-cell stage and presumably already before this.RNAase treatment of embryos squashed on slides shows a weak but obvious incorporation of uridine into DNA of cleaving mouse embryos, from the 4-cell stage onwards; this incorporation is totally inhibited by hydroxyurea. The reduction of ribonucleotides to deoxyribonucleotides is a metabolic pathway already required for cleavage, as shown by hydroxyurea experiments.The second polar pody, known to incorporate thymidine, is unable to incorporate either deoxyuridine or uridine.  相似文献   

3.
We report for the first time the detection of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Cholera toxin β (CTβ), which binds to the raft-enriched ganglioside GM1, was selected to label rafts. In a novel application a Qdot reagent was used to detect CTβ labeling. This is the first reported use of nanocrystals in mammalian embryo imaging. Comparative membrane labeling with CTβ and lipophilic membrane dyes containing saturated or unsaturated aliphatic tails showed that the detection of GM1 in mouse oocytes and embryo membranes was consistent with the identification of cholesterol- and sphingolipid-enriched rafts in the cell membrane. Distribution of the GM1 was compared with the known distribution of non-raft membrane components, and disruption of membrane rafts with detergents confirmed the cholesterol dependence of GM1 on lipid raft labeling. Complementary functional studies showed that cholesterol depletion using methyl-β-cyclodextrin inhibited preimplantation development in culture. Our results show that the membranes of the mouse oocyte and zygote are rich in lipid rafts, with heterogeneous and stage-dependent distribution. In dividing embryos, the rafts were clearly associated with the cleavage furrow. At the morula stage, rafts were also apically enriched in each blastomere. In blastocysts, rafts were detectable in the trophectoderm layer, but could not be detected in the inner cell mass without prior fixation and permeabilization of the embryo. Lipid rafts and their associated proteins are, therefore, spatio-temporally positioned to a play a critical role in preimplantation developmental events.  相似文献   

4.
Summary The ultrastructure of mouse blastocysts with nascent and expanded blastocoele is described. In the early blastocyst cells adhere tightly and the blastocoele is often limited at its apex by cells containing a midbody. The expanding blastocyst exhibits a loose cell arrangement due to the presence of intercellular spaces and a cortical layer of filaments develops in cells enclosing the expanded blastocoele. When the blastocoele exceeds 1/2 the embryo diameter desmosomes appear between trophectoderm cells. Possible factors essential for blastocoele formation are discussed.  相似文献   

5.
Summary Effect of colchicine on the ultrastructure of taste bud cells was studied in the mouse. In untreated mice microtubules were abundant throughout the entire cytoplasm of type-III cells, but only in the apical cytoplasm of type-I cells. After 2 h of colchicine treatment, no microtubules were observed in any taste bud cells; dense secretory granules in the apical cytoplasm of type-I cells mostly disappeared, and instead, numerous phagosomes appeared. It is suggested that colchicine causes an interruption of the transport of the secretory granules in type-I cells from the Golgi apparatus to the membrane of the apical surface, from which release occurs. In type-III cells, after 4 or 5 h of treatment, dense-cored vesicles scattered throughout the cytoplasm tended to increase in number; they were often observed to accumulate in the vicinity of the Golgi apparatus. Five hours after treatment with 5-hydroxy-l-tryptophan (5-HTP) following colchicine pretreatment, monoamine specific fluorescent cells and vesicles with highly electron-dense cores of type-III cells were still present. On the other hand, 5 h after 5-HTP treatment alone both fluorescent cells and vesicles with highly electron-dense cores had already disappeared. These observations suggest that the treatment with colchicine interrupts the transport of densecored vesicles of type-III cells to synaptic areas, in which those vesicles are presumed to discharge the neurotransmitter substance.  相似文献   

6.
The lack of a paternal genome in parthenogenetic embryos clearly limits their postimplantation development, but apparently not their preimplantation development, since morphologically normal blastocysts can be formed. The cleavage rate of these embryos during the preimplantation period gives a better indication of the influence of their genetic constitution than blastocyst formation. Conflicting results from previous studies prompted us to use a more suitable method of following the development of haploid and diploid parthenogenetic embryos during this period. Two classes of parthenogenetic embryos were analysed following the activation of oocytes in vitro with 7% ethanol: 1) single pronuclear (haploid) embryos and 2) two pronuclear (diploid) embryos. Each group was then transferred separately during the afternoon to the oviducts of recipients on the 1st day of pseudopregnancy. Control (diploid) 1-cell fertilised embryos were isolated in the morning of finding a vaginal plug, and transferred to pseudopregnant recipients at approximately the same time of the day as the parthenogenones. Embryos were isolated at various times after the HCG injection to induce ovulation, from each of the three groups studied. Total cell counts were made of each embryo, and the log mean values were plotted against time. The gradient of the lines indicated that 1) the cell doubling time of the diploid parthenogenones was 12.25 +/- 0.34 h, and was not significantly different from the value obtained for the control group (12.74 +/- 1.17 h), and that 2) the cell doubling time of the haploid parthenogenones (15.25 +/- 0.99 h) was slower than that of the diploid parthenogenones and the control diploid group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The midbody is a structural organelle formed in late phase mitosis which is responsible for completion of cytokinesis. Although various kinds of proteins have been found to distribute or immigrate to this organelle, their functions have still not been completely worked out. In this study, we demonstrated that NAT10 (N-acetyltransferase 10, NAT10) is not only predominantly distributed in the nucleolus in interphase, but is also concentrated in the mitotic midbody during telophase. The domain in N-terminal residues 549-834 of NAT10 specifically mediated its subcellular localization. Treatment with genotoxic agents or irradiation increased concentration of NAT10 in both the nucleolus and midbody. Moreover, DNA damage induced increase of NAT10 in the midbody apparently accompanied by in situ elevation of the level of acetylated α-tubulin, suggesting that it plays a role in maintaining or enhancing stability of α-tubulin. The depletion of NAT10 induced defects in nucleolar assembly, cytokinesis and decreased acetylated α-tubulin, leading to G2/M cell cycle arrest or delay of mitotic exit. In addition, over-expression of NAT10 was found in a variety of soft tissue sarcomas, and correlated with tumor histological grading. These results indicate that NAT10 may play an important role in cell division through facilitating reformation of the nucleolus and midbody in the late phase of cell mitosis, and stabilization of microtubules.  相似文献   

8.
Summary First and second division spindles and the three cell plates of moss meiosis are oriented in accordance with polarity established during meiotic prophase. Plastids are located at the second division poles and cytoplasmic infurrowing marks the planes along which the cytoplasm will cleave into four spores. Anaphase I spindles that terminate in two focal points of microtubules straddling opposite cleavage furrows reflect the unusual tetrahedral origin of the functionally bipolar spindle. The organelles (except for the plastids which remain in the four cytoplasmic lobes) are polarized in the first division equatorial region at the time of phragmoplast microtubule assembly and remain in a distinct band after microtubule disassembly. Prophasic spindles appear to be directly transformed into metaphase II spindles in the predetermined axes between mutually perpendicular pairs of plastids. Cell plates form by vesicle coalescence in the equatorial regions of the two sets of second division phragmoplasts at approximately the same time as a cell plate belatedly forms in the organelle band. The cytoplasmic markers (plastid migration, cytoplasmic lobing and infurrowing) that predict poles and cleavage planes in free cells lacking a preprophase band strongly strengthens the concept that division sites are capable of preserving preprogrammed signals that can be triggered later in the process of cell division.  相似文献   

9.
Summary Mouse embryos at the blastocyst, blastocyst outgrowth, and primitive streak (day 7.5) stages of development were analysed for expression of lectin receptors using a panel of six FITC-conjugated lectins with affinities for five distinct saccharides (BSL, ConA, DBA, LTL, UEA and WGA). Blastocyst trophoblast expressed receptors for all the lectins but later tissues of the trophectoderm lineage lost receptors for distinct but overlapping subsets of the lectin panel. The inner cell mass (ICM) of the early blastocyst lacked receptors only for UEA. Differentiation of primary endoderm was accompanied by the aquisition of UEA receptors but subsequent differentiation into visceral and parietal endoderm involved the loss of receptors for both fucose binding lectins (UEA and LTL). Embryonic ectoderm in the day 7.5 egg cylinder retained receptors only for ConA and WGA. Thus, in general, differentiation during the peri- and early post-implantation period was associated with a differential loss of lectin receptors in all cell lineages of the mouse conceptus.  相似文献   

10.
11.
12.
Cells subjected to the events occurring before, during, and after freezing and thawing are exposed to major changes in the osmotic pressure of the surrounding medium; i.e., the osmolalities can exceed 30. An important question in understanding the mechanisms of injury is whether cells respond as ideal osmometers to these strongly anisotonic solutions. Mouse and bovine embryos from eight-cell to blastocyst stage were used to investigate the question. They were found to behave as ideal osmometers at room temperature over a wide range of tonicities; i.e., from four times isotonic to almost 1/3 times isotonic, ideality being defined by a Boyle-van't Hoff equation. Embryo volumes increased from 40 to 200% of isotonic over this range and survivals of mouse embryos were unaffected. However, outside this range the membrane apparently becomes leaky and the survival of mouse embryos drops sharply. Osmolalities rise to high values during freezing and the paper develops the thermodynamic equations to show how computed cell volumes as a function of subzero temperature can be translated into the Boyle-van't Hoff format of cell volume as a function of the reciprocal of osmolality.  相似文献   

13.
Summary We have examined the potential of fluorescent latex microparticles for use as a short term cell lineage marker in the mouse preimplantation embryo. Isolated blastomeres and intact embryos rapidly adsorb and subsequently endocytose the particles (0.2 m diameter) from a monodisperse suspension in normal medium, so that cytoplasmic endocytic organelles, but not the cytosol itself, becomes labelled. Latex fluorescence, either within intact embryos, disaggregated cells or thick resin sections, is stable during UV irradiation. The development of labelled embryos, both in terms of sequential morphological changes and their time of expression, was comparable to controls and resulted in blastocysts with normal cell numbers and capacity for tissue differentiation. Latex fluorescence is preserved within all the progeny of labelled blastomeres over several cell cycles (e.g. from 8-cell stage to 64-cell stage) and is not transmitted to unlabelled cells either by exocytosis or via midbodies. The particles are particularly suitable for labelling exclusively the entire population of outside cells in the intact embryo from the 16-cell stage onwards.  相似文献   

14.
Summary Changes in the microtubular cytoskeleton during meiosis and cytokinesis in hybrid moth orchids were studied by indirect immunofluorescence. Lagging chromosomes not incorporated into telophase nuclei after first meiotic division behave as small extra nuclei. Events in the microtubular cycle associated with these micronuclei are similar to and synchronous with those of the principal nuclei. During second meiotic division the micronuclei trigger formation of minispindles which are variously oriented with respect to the two principal spindles. After meiosis, radial systems of microtubules measure cytoplasmic domains around each nucleus in the coenocyte. Cleavage planes are established in regions where opposing radial arrays interact and the cytoplasm cleaved around micronuclei is proportionately smaller than that around the four principal nuclei. These observations clearly demonstrate that nuclei in plant cells are of fundamental importance in microtubule organization and provide strong evidence in support of our recently advanced hypothesis that division planes in simultaneous cytokinesis following meiosis are determined by establishment of cytoplasmic domains via radial systems of nuclear-based microtubules rather than by division sites established before nuclear division.Abbreviations DMSO dimethylsulfoxide - FITC fluorescein isothiocyanate - MTOC microtubule organizing center - PBS phosphate buffered saline - PPB preprophase band of microtubules  相似文献   

15.
作为胚胎冷冻保存的基础性研究,冷冻保护剂的渗透性和毒性研究非常重要.本试验选用1,2-丙二醇、甘油、乙二醇和二甲基亚砜4种常用冷冻保护剂,对小鼠2-细胞胚胎进行渗透性和毒性研究.结果显示:1.5 mol/L的1,2-丙二醇、乙二醇和二甲基亚砜冷冻保护剂对2-细胞胚胎的渗透性显著高于甘油保护剂;4种冷冻保护剂对细胞膜的完整性没有影响;1.5 mol/L的乙二醇、1,2-丙二醇和甘油保护剂处理后的2-细胞胚胎的囊胚发育率和孵化率与对照组胚胎比较差异不显著(P>0.05),但显著高于二甲基亚砜处理后的2-细胞囊胚发育率和孵化率(P<0.01).结果表明:在4种冷冻保护剂中,乙二醇和1,2-丙二醇适合于小鼠2-细胞胚胎冷冻保存  相似文献   

16.
Centromere-associated protein E (CENP-E) is a kinesin-related microtubule motor protein that is essential for chromosome congression during mitosis. Our previous studies show that microtubule motor CENP-E represents a link between attachment of spindle microtubules and the mitotic checkpoint signaling cascade. However, the molecular function of CENP-E at the midbody had remained elusive. Here we show that CENP-E interacts with Skp1 at the midbody and participates in cytokinesis. CENP-E interacts with Skp1 in vitro and in vivo via its coiled-coil domain. Our yeast two-hybrid assays mapped the binding interfaces to the central stalk region of CENP-E (955-1571 aa) and the C-terminal 33 amino acids of Skp1, respectively. Our immunocytochemical studies revealed that CENP-E targets to the midbody prior to Skp1 and the midbody localization of CENP-E becomes diminished as Skp1 arrives at the midbody. Suppression of Skp1 in mitotic HeLa cells by siRNA resulted in accumulation of telophase cells with elongated inter-cell bridges and with midbodies stretched 2-3 times longer than that of normal cells. These Skp1-eliminated or -suppressed cells accumulate higher level of CENP-E, suggesting that spatiotemporal regulation of CENP-E degradation at the midbody is essential for cytokinesis. Over-expression of Skp1 lacking the CENP-E-binding domain confirmed that Skp1-CENP-E interaction is essential for faithful cytokinesis. We hypothesize that CENP-E degradation is essential for faithful mitotic exit and the proteolysis of CENP-E is mediated by SCF via a direct Skp1 link.  相似文献   

17.
18.
19.
Microsporocytes of the slipper orchidCypripedium californicum A. Gray divide simultaneously after second meiosis. The organization and apportionment of the cytoplasm throughout meiosis are functions of nuclear-based radial microtubule systems (RMSs) that define domains of cytoplasm - a single sporocyte domain before meiosis, dyad domains within the undivided cytoplasm after first meiosis, and four spore domains after second meiosis. Organelles migrate to the interface of dyad domains in the undivided cytoplasm after first meiotic division, and second meiotic division takes place simultaneously on both sides of the equatorial organelle band. Microtubules emanating from the telophase II nuclei interact to form columnar arrrays that interconnect all four nuclei, non-sister as well as sister. Cell plates are initiated in these columns of microtubules and expand centrifugally along the interface of opposing RMSs, coalescing in the center of the sporocyte and joining with the original sporocyte wall at the periphery to form the tetrad of microspores. Organelles are distributed into the spore domains in conjunction with RMSs. These data, demonstrating that cytokinesis in microsporogenesis can occur in the absence of both components of the typical cytokinetic apparatus (the preprophase band of microtubules which predicts the division site and the phragmoplast which controls cell-plate deposition), suggest that plant nuclei have an inherent ability to establish a domain of cytoplasm via radial microtubule systems and to regulate wall deposition independently of the more complex cytokinetic apparatus of vegetative cells.  相似文献   

20.
R. C. Brown  B. E. Lemmon 《Protoplasma》1991,165(1-3):155-166
Summary Cytokinesis in microsporocytes of moth orchids is unusual in that it occurs simultaneously after meiosis, the cytoplasm does not infurrow in the division planes, and cell plates are deposited in association with centrifugal expansion of phragmoplasts. Microtubules radiating from the nuclear envelopes appear to be of fundamental importance in establishment of division planes. Primary interzonal spindles develop between sister nuclei and interaction of radial microtubules triggers development of secondary interzonal spindles between non-sister nuclei. From three to six or more phragmoplasts, depending upon the arrangement of nuclei in the coenocyte, develop from these postmeiotic arrays. The phragmoplasts consist of co-aligned microtubules and F-actin organized into bundles that are broad proximal to the mid-plane and taper distally. Ultrastructure of the phragmoplast/cell plate reveals that abundant ER is associated with vesicle aggregation and coalescence. Cell plates are deposited in association with phragmoplasts as they expand centrifugally to join the parental wall and/or fuse with one another in the interior of the cell.Abbreviations CLSM confocal laser scanning microscope/microscopy - FITC flnorescein isothiocyanate - PPB preprophase band of microtubules - TEM transmission electron microscope/microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号