首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of extracellular matrix (ECM) protein receptor expression was followed in the human promonocytic cell line U937 before and after stimulation either with PMA or various cytokines implicated in monocytopoiesis. On undifferentiated U937 cells, alpha-chains of very late Ag (VLA)-4, VLA-5, and VLA-6 were constitutively expressed whereas alpha-chains of VLA-2 (alpha 2) and vitronectin receptor (alpha V) were not. Maturation of U937 cells with PMA resulted in a marked decrease in alpha 4 expression (25% of control by day 5), and a small but significant increase in the expression of alpha 2 and alpha v over 4 days of stimulation. Unstimulated U937 cells attached to fibronectin (FN) but not to laminin (LM), collagens I/IV-coated surfaces. After PMA stimulation, U937 cells exhibited enhanced adherence on FN and expressed the ability to adhere to LM. PMA stimulation also promoted U937 spreading both on FN and LM. Adhesion on FN all along the maturation pathway was specifically and totally inhibited by anti-alpha 5 mAb but not by anti-alpha 4 mAb. Anti-beta 1, anti-alpha 6, anti-alpha 2, and anti-alpha v mAb, as well as Tyr-Ile-Gly-Ser-Arg and Arg-Gly-Asp synthetic peptides from LM, had no effect on adhesion of PMA-stimulated cells on LM, implying that U937 cell adherence to LM is mediated through hitherto distinct receptors. In the presence of rIFN-gamma, differentiating U937 cells did not adhere to LM and lost the capacity to bind to FN. Loss of adhesion to FN was correlated with the concomitant decrease in the expression of alpha 4 and alpha 5 integrin subunits. In contrast, TGF-beta 1 mimicked most of the effects of PMA by enhancing the attachment of maturating U937 cells on FN through alpha 5 receptors and by promoting adherence to LM. TGF-beta 1 stimulation also promoted U937 cell spreading on both FN- and LM-coated surfaces. The data suggest that inflammatory cytokines such as IFN-gamma and TGF-beta 1 may be critically important in the homing of monocytic cells at sites of inflammation by modulating cell-surface expression of ECM receptors.  相似文献   

2.
3.
Rapid apoptotic cell engulfment is crucial for prevention of inflammation and autoimmune diseases and is conducted by special immunocompetent cells like macrophages or immature dendritic cells. We recently demonstrated that endothelial cells (ECs) also participate in apoptotic cell clearance. However, in contrast to conventional phagocytes they respond with an inflammatory phenotype. To further confirm these pro‐inflammatory responses human ECs were exposed to apoptotic murine ECs and changes in thrombospondin‐1 (TSP‐1) expression and in activation of intracellular signalling cascades were determined by real‐time qPCR, immunoblotting and immunocytochemistry. Human primary macrophages or monocytic lymphoma cells (U937) were incubated with conditioned supernatant of human ECs exposed to apoptotic cells and changes in activation, migration and phagocytosis were monitored. Finally, plasma levels of TSP‐1 in patients with anti‐neutrophil cytoplasmic antibody(ANCA)‐associated vasculitis (AAV) were determined by ELISA. We provided evidence that apoptotic cells induce enhanced expression of TSP‐1 in human ECs and that this increase in TSP‐1 is mediated by the mitogen‐activated protein kinases (MAPK) ERK1 and 2 and their upstream regulators MEK and B‐Raf. We also showed that plasma TSP‐1 levels are increased in patients with AAV. Finally, we showed that conditioned supernatant of ECs exposed to apoptotic cells induces pro‐inflammatory responses in monocytes or U937 cells and demonstrated that increased TSP‐1 expression enhances migration and facilitates engulfment of apoptotic cells by monocyte‐derived macrophages or U937 cells. These findings suggest that under pathological conditions with high numbers of uncleared dying cells in the circulation endothelial‐derived elevated TSP‐1 level may serve as an attraction signal for phagocytes promoting enhanced recognition and clearance of apoptotic cells.  相似文献   

4.
The binding of human urokinase-type plasminogen activator (u-PA) to the surface of the human monocytic cell line U937 was studied by immunological detection of bound u-PA or binding of biotinylated diisopropyl fluorophosphate-inactivated human u-PA visualized by light or electron microscopy. Untreated U937 cells showed a characteristic binding pattern, with the majority of the u-PA bound to the microvillar-containing protruding pole of the cells. After treatment with the phorbol ester PMA, the resulting adherent cell population was very heterogeneous with respect to both cellular morphology and u-PA binding. The bound u-PA was distributed on both the dorsal and the substrate side of the cells, and the patches of bound u-PA could not be correlated to any typical membrane conformations or cell-cell or cell-substratum contacts. When a monoclonal antibody directed against the amino-terminal fragment (ATF) of u-PA was used, the results were identical regardless of whether intact u-PA or ATF was used for binding to the cells. In contrast, when a monoclonal antibody recognizing the non-receptor-binding protease domain of u-PA was used, bound ATF showed no staining, while bound intact u-PA was stained as efficiently as above. The alteration of u-PA receptor distribution following treatment with PMA could be related to the changes in glycosylation and ligand affinity of the purified u-PA receptor previously described following PMA treatment of U937 cells.  相似文献   

5.
Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell-lines. Whereas recombinant tumor necrosis factor-alpha (rTNF-alpha) slightly up-regulated CD93 expression on the U937 cells, recombinant interleukin-1beta (rIL-1beta), recombinant interleukin-2 (rIL-2), recombinant interferon-gamma (rIFN-gamma) and lipopolysaccharide (LPS) had no effect. Taken together, these findings indicate that the regulation of CD93 expression on these cells involves the PKC isoenzymes.  相似文献   

6.
We examined the effect of tumor necrosis factor alpha (TNF alpha) on the increase in pulmonary microvascular endothelial monolayer permeability induced by activated neutrophils (PMN). Layering of PMN onto endothelial monolayers followed by activation of PMN with phorbol 12-myristate 13-acetate (PMA) increased 125I-albumin clearance rate across the monolayers. Pretreatment of endothelial monolayers for 6 hr with TNF alpha (200 U/ml) potentiated the PMN-dependent increase in endothelial permeability, whereas 1 hr or 6 hr pretreatment of endothelial monolayers with 200 U/ml and 100 U/ml, respectively, TNF alpha did not enhance the response. Adherence of PMN to the endothelial cells was increased at 1 and 6 hr after TNF alpha (200 U/ml) treatment, but the adherence response was markedly greater following 6 hr of TNF alpha. The TNF alpha treatment of endothelial cells did not enhance neutrophil activation responses to PMA. Pretreatment of PMN with IB4, a MAb to the CD18 integrin, the common beta subunit of the adhesion proteins LFA-1, Mac-1, and p150,95 of PMN, reduced the increases in PMN adherence and the endothelial monolayer permeability induced by the 6 hr TNF alpha treatment. In contrast, pretreatment of PMN with OKM-1, a MAb to the CD11b epitope (alpha-subunit), had no effect on the adherence and the potentiation of the increase in permeability. The potentiation of the PMN-dependent permeability increase and enhanced endothelial adhesivity at 6 hr after TNF alpha priming of endothelial cells was dependent on protein synthesis. The results indicate that protein synthesis-dependent expression of an endothelial ligand for CD18 and resultant endothelial hyperadhesiveness potentiates the PMN-mediated increase in endothelial permeability after TNF alpha activation of endothelial cells. The priming of endothelial cells by TNF alpha may be a critical step in the mediation of endothelial injury.  相似文献   

7.
8.
Human monocytes synthesize large amounts of the second complement component (C2) after incubation with a T-lymphocyte product called monocyte complement stimulator (MCS). The human monocyte-like cell line, U937, also synthesizes C2 and can be stimulated to increase this synthesis by lymphokine-rich culture supernates. Additionally, phorbol myristate acetate (PMA), an agent which induces maturational changes in other macrophage-like cell lines, also stimulates C2 synthesis by U937 cells. Lymphokine and PMA stimulation of C2 secretion by U937 are both reversibly inhibitable by cycloheximide. At optimal concentrations for stimulation of C2 synthesis, PMA inhibits [3H]thymidine incorporation by U937 indicating that increased C2 is not due to increased numbers of U937 cells.  相似文献   

9.
The U937 cell line is a monoblast-like cell line that can be induced to differentiate when treated with phorbol ester or a variety of other agents. Collagenase was detected in the media of U937 cell cultures after treatment with phorbol myristate acetate (PMA) at concentrations of 5 ng/mL or greater. In general, no collagenase was detected in the media of untreated cells. The induced collagenase cleaved native type I collagen into the 3/4 and 1/4-length fragments and showed the inhibition by ethylenediaminetetraacetic acid characteristic of the action of mammalian collagenases. Collagenase activity could be detected in the media of treated cells 12-18 h after the addition of PMA. Secretion of collagenase continued for 2-3 days after PMA addition. The production of collagenase by PMA-treated U937 cells was inhibited by actinomycin D and cycloheximide, suggesting that the induction of the enzyme is the result of de novo synthesis. The collagenase secreted by U937 cells induced with PMA has been purified 12-fold by using DEAE-Sephacel followed by wheat germ agglutinin-agarose chromatography. The apparent molecular mass of this U937 collagenase, determined by gel filtration chromatography on the partially purified enzyme, was 29-36 kilodaltons.  相似文献   

10.
11.
The U937 human monocytic cell line was studied to determine its ability to generate a respiratory burst after stimulation with phorbol myristate acetate (PMA) or opsonized zymosan. U937 cells cultured in normal medium produced virtually no superoxide anion or chemiluminescence in response to either stimulus. In contrast, U937 cells cultured in medium containing soluble factors from activated lymphocytes produced significant O2- and chemiluminescence when stimulated with PMA or opsonized zymosan. The chemiluminescence in response to PMA was maximal in U937 cells precultured with these soluble factors for 3 days, whereas maximal responsiveness to opsonized zymosan was not observed until 5 to 6 days of lymphokine exposure. Although this ability to generate a respiratory burst persisted for a number of days in U937 cells that were subsequently recultured in normal medium, this responsiveness was gradually lost in the continued absence of these factors. The data indicate that the U937 monocytic cell line can be activated or induced to differentiate by soluble factors released by activated lymphocytes. In the process, these cells acquire the ability to generate a respiratory burst. The U937 cell line may serve as a useful model for the study of the ontogeny and regulation of the respiratory burst during human monocytic differentiation.  相似文献   

12.
The effect of phorbol myristate acetate (PMA) on T4 (CD4) expression by monocytoid cells was studied. Greater than 99% of untreated U937 and HL-60 cells expressed surface T4 as measured with a fluorescence-activated cell sorter. The percentage of T4 positive cells decreased to less than 20% after incubation with PMA (10(-8) M). A decrease was observed within 15 min of PMA exposure, was maximal within 1 hr, and persisted for at least 3 days in the continuous presence of PMA. The susceptibility of untreated and PMA-treated U937 cells to human immunodeficiency virus (HIV) was also studied. Pretreatment of cells with PMA for 18 hr decreased the production of viral RNA and p24 antigen 24 hr after infection. The dose of PMA resulted in a parallel reduction of both T4 expression and infection by HIV. When PMA was washed from cultures and replaced with fresh medium for 48 hr, then T4 expression and the production viral RNA and p24 antigen following infection were restored. These data suggest that pharmacologic manipulation of surface T4 expression may have a potential role in the prevention or treatment of HIV infection.  相似文献   

13.
Thrombospondin-1 (TSP) induces endothelial cell (EC) actin reorganization and focal adhesion disassembly and influences multiple EC functions. To determine whether TSP might regulate EC-EC interactions, we studied the effect of exogenous TSP on the movement of albumin across postconfluent EC monolayers. TSP increased transendothelial albumin flux in a dose-dependent manner at concentrations >/=1 microg/ml (2.2 nM). Increases in albumin flux were observed as early as 1 h after exposure to 30 microg/ml (71 nM) TSP. Inhibition of tyrosine kinases with herbimycin A or genistein protected against the TSP-induced barrier dysfunction by >80% and >50%, respectively. TSP-exposed monolayers exhibited actin reorganization and intercellular gap formation, whereas pretreatment with herbimycin A protected against this effect. Increased staining of phosphotyrosine-containing proteins was observed in plaque-like structures and at the intercellular boundaries of TSP-treated cells. In the presence of protein tyrosine phosphatase inhibition, TSP induced dose- and time-dependent increments in levels of phosphotyrosine-containing proteins; these TSP dose and time requirements were compatible with those defined for EC barrier dysfunction. Phosphoproteins that were identified include the adherens junction proteins focal adhesion kinase, paxillin, gamma-catenin, and p120(Cas). These combined data indicate that TSP can modulate endothelial barrier function, in part, through tyrosine phosphorylation of EC proteins.  相似文献   

14.
Serglycin is the major proteoglycan in most hematopoietic cells, including monocytes and macrophages. The monoblastic cell line U937-1 was used to study the expression of serglycin during proliferation and differentiation. In unstimulated proliferating U937-1 cells serglycin mRNA is nonconstitutively expressed. The level of serglycin mRNA was found to correlate with the synthesis of chondroitin sulfate proteoglycan (CSPG). The U937-1 cells were induced to differentiate into different types of macrophage-like cells by exposing the cells to PMA, RA, or VitD3. These inducers of differentiation affected the expression of serglycin mRNA in three different ways. The initial upregulation seen in the normally proliferating cells was not observed in PMA treated cells. In contrast, RA increased the initial upregulation, giving a reproducible six times increase in serglycin mRNA level from 4 to 24 h of incubation, compared to a four times increase in the control cells. VitD3 had no effect on the expression of serglycin mRNA. The incorporation of (35S)sulfate into CSPG decreased approximately 50% in all three differentiated cell types. Further, the (35S)CSPGs expressed were of larger size in PMA treated cells than controls, but smaller after RA treatment. This was due to the expression of CSPGs, with CS-chains of 25 and 5 kDa in PMA and RA treated cells, respectively, compared to 11 kDa in the controls. VitD3 had no significant effect on the size of CSPG produced. PMA treated cells secreted 75% of the (35S)PGs expressed, but the major portion was retained in cells treated with VitD3 or RA. The differences seen in serglycin mRNA levels, the macromolecular properties of serglycin and in the PG secretion patterns, suggest that serglycin may have different functions in different types of macrophages.   相似文献   

15.
Human monocytes are known to metabolize arachidonic acid (AA) and to release prostaglandins upon stimulation. Previous data indicate that in vitro maturation and differentiation of monocytes result in alteration of this property with greatly diminished response to stimulators of release of prostaglandin E (PGE) and thromboxane B2 (TxB2) occurring after cells have been cultured. To further study the effects of differentiation on human monocyte AA metabolism, a model system was established based upon the human histiocytic cell line U937. Among tested stimulants, which included opsonized zymosan, complement fragment C3b, phorbol myristate acetate (PMA), calcium ionophore A23187, and concanavalin A, it was found that Escherichia coli lipopolysaccharide (LPS) was unique in that it stimulated increased release of TxB2 from U937 cells. The effect of the phorbol ester PMA, a compound commonly used to induce differentiation of U937, on the ability of U937 to respond to LPS was examined. Following 48 hr of treatment with PMA, U937 became capable of releasing both PGE and TxB2 in response to small doses of LPS. As previously observed for human monocytes, the release of PGE was delayed for several hours following stimulation and failed to reach maximal cumulative levels in culture until 24-48 hr following stimulation. In contrast to human monocytes, PMA-induced U937 were capable of maintaining their responsiveness to LPS for several days. Thus, the U937 cell line provides a useful model for study of the effects of differentiation of human mononuclear phagocytes on their ability to metabolize AA, and for the effects of LPS on histiocytic tumor cell prostaglandin release.  相似文献   

16.
Protein kinase C (PKC) is activated in response to various inflammatory mediators and contributes significantly to the endothelial barrier breakdown. However, the mechanisms underlying PKC-mediated permeability regulation are not well understood. We prepared microvascular myocardial endothelial cells from both wild-type (WT) and caveolin-1-deficient mice. Activation of PKC by phorbol myristate acetate (PMA) (100 nM) for 30 min induced intercellular gap formation and fragmentation of VE-cadherin immunoreactivity in WT but not in caveolin-1-deficient monolayers. To test the effect of PKC activation on VE-cadherin-mediated adhesion, we allowed VE-cadherin-coated microbeads to bind to the endothelial cell surface and probed their adhesion by laser tweezers. PMA significantly reduced bead binding to 78±6% of controls in WT endothelial cells without any effect in caveolin-1-deficient cells. In WT cells, PMA caused an 86±18% increase in FITC-dextran permeability whereas no increase in permeability was observed in caveolin-1-deficient monolayers. Inhibition of PKC by staurosporine (50 nM, 30 min) did not affect barrier functions in both WT and caveolin-1-deficient MyEnd cells. Theses data indicate that PKC activation reduces endothelial barrier functions at least in part by the reduction of VE-cadherin-mediated adhesion and demonstrate that PKC-mediated permeability regulation depends on caveolin-1.  相似文献   

17.
Intermittent reports of cytoskeleton proteins (actin and tubulin) on the cell surface have appeared over the last 13 years. Whereas most have concentrated on lymphocytes, this study provides evidence for the presence of these proteins on the surface of a human cultured monocyte-like cell line, U937. Both actin and tubulin were detected on the surface of U937 cells by flow cytometry, using an indirect staining procedure based on biotin-streptavidin-phycoerythrin, chosen for greater sensitivity. By use of this procedure, the majority of viable unstimulated U937 cells stained positively for actin and tubulin, although the level of fluorescence intensity was low. With an antibody specific for tyrosine-tubulin, most of the surface tubulin was also found to be tyrosinylated. For vimentin, an intermediate filament protein abundantly present in the cytoplasm of U937 cells, no staining could be detected. Confirmation of the flow cytometry data for surface actin and tubulin on unstimulated U937 cells was achieved by direct vesualization using a confocal laser scanning microscope. When U937 cells were activated with PMA and LPS, a marked reduction in the level of cell surface actin and tubulin occurred. The role of cell surface actin and tubulin on unstimulated U937 cells, in terms of monocyte function, remains to be elucidated.  相似文献   

18.
19.
The effects of several cytokines and phorbol myristate acetate (PMA) on LFA-1 and ICAM-1 expression on a human eosinophilic leukemia cell line, EoL-3, were investigated and compared with those of a human monocytic leukemia cell line, U937. EoL-3 cells expressed large amounts of LFA-1 and small amounts of ICAM-1, and their expression was regulated similarly in EoL-3 cells and U937 cells. Interferon-gamma (IFN-gamma) enhanced ICAM-1 expression but not LFA-1 expression, and PMA augmented both LFA-1 and ICAM-1 expression. IFN-gamma and PMA showed an additive effect on ICAM-1 expression. These results collectively suggest that expression of LFA-1 and ICAM-1 is regulated differently and that IFN-gamma and PMA regulate the expression through different mechanisms. PMA but not IFN-gamma induced homotypic adhesion of EoL-3 and U937 cells, suggesting that PMA but not IFN-gamma activated the adhesive function of these cells. Staurosporin, an inhibitor of protein kinases (PKs), partly suppressed IFN-gamma- and PMA-augmented expression of ICAM-1 on EoL-3 and U937 cells, but did not affect PMA-augmented LFA-1 expression, suggesting that staurosporin-sensitive PKs are involved in IFN-gamma- and PMA-augmented ICAM-1 expression but not in PMA-augmented LFA-1 expression. The role of protein kinase C (PK-C) in these mechanisms was not revealed because a PK-C inhibitor, H-7, did not show any definitive effect on IFN-gamma- and PMA-induced expression of LFA-1 and ICAM-1. Moreover, cyclic AMP (cAMP)- and cGMP-dependent pathways were not shown to be involved in the augmentation of the expression of these molecules.  相似文献   

20.
Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 (PP-1) and 2A (PP-2A). The phosphorylation and dephosphorylation at the serine/threonine residues on proteins play important roles in regulating gene expression, cell cycle progression, and apoptosis. In this study, phosphatase inhibitor okadaic acid induces apoptosis in U937 cells via a mechanism that appears to involve caspase 3 activation, but not modulation of Bcl-2, Bax, and Bcl-X(L) expression levels. Treatment with 20 or 40 nM okadaic acid for 24 h produced DNA fragmentation in U937 cells. This was associated with caspase 3 activation and PLC-gamma1 degradation. Okadaic acid-induced caspase 3 activation and PLC-gamma1 degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 40 nM. Moreover, PMA (phorbol myristate acetate), PKC (protein kinase C) activator, protected U937 cells from okadaic acid-induced apoptosis, abrogated okadaic acid-induced caspase 3 activation, and specifically inhibited downregulation of XIAP (X-linked inhibitor of apoptosis) by okadaic acid. PMA cotreated U937 cells exhibited less cytochrome c release and sustained expression levels of the IAP (inhibitor of apoptosis) proteins during okadaic acid-induced apoptosis. In addition, these findings indicate that PMA inhibits okadaic acid-induced apoptosis by a mechanism that interferes with cytochrome c release and activity of caspase 3 that is involved in the execution of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号