首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Young male rats were sacrificed either at rest or immediately after a single bout of swimming lasting either 5 or 8 h. Mitochondrial population, obtained by centrifugation (10,000g for 10 min) from liver homogenates freed from debris and nuclei, was resolved by differential centrifugation into three fractions. Homogenates and mitochondrial preparations were examined for their protein content, oxidative capacity (by cytochrome oxidase activity), peroxidative processes (by thiobarbituric acid reactive substance and hydroperoxide levels), antioxidant status (by reduced glutathione and vitamin E levels and whole antioxidant capacity), and susceptibility to in vitro oxidative stress. In all groups, the antioxidant level was smaller and oxidative capacity, lipid peroxidation, and susceptibility to oxidants were greater in the heavy mitochondrial fraction. Exercise of shorter duration did not significantly affect most of the parameters; only the resulting homogenate glutathione level and susceptibility to oxidative stress decreased and increased, respectively, compared with control values. In contrast, more prolonged exercise was associated with increased lipid peroxidation and susceptibility to oxidative stress and decreased antioxidant levels in all preparations. The contribution of each fraction to the whole mitochondrial population was also modified in that the heavy fraction decreased and light fractions increased. These results suggest that liver antioxidant defence systems are able to withstand oxidative challenge due to low-intensity exercise of moderate duration. In contrast, the free radical production associated with long-lasting exercise causes oxidative injury in cellular components and in particular induces protein degradation in the heavy mitochondrial fraction characterized by higher susceptibility to oxidative stress.  相似文献   

2.
The present study illustrates the effect of 24-epibrassinolide (24-EBL) on morphological and biochemical parameters in radish (Raphanus sativus L.) seedlings grown under nickel (Ni) ion stress. The radish seeds pre-soaked in different concentrations of 24-EBL were sown in petridishes containing various concentrations of heavy metal (Ni).Observations were made on root/shoot length, fresh biomass, activities of antioxidant enzymes (ascorbate peroxidase, superoxide dismutase, catalase, monodehydroascorbate reductase, dehydroascorbate reductase, guaiacol peroxidase and glutathione reductase), lipid peroxidation, proline and protein content in 7-day-old Ni-stressed radish seedlings. Results indicate that seeds presoaked with 24-EBL reduced the impact of Ni-stress which was evident by assessing the morphological parameters, protein content and antioxidant enzyme activities. It was also observed that 24-EBL reduced the toxicity of heavy metal by influencing proline and malondialdehyde (MDA) content. The present study lays a foundation for understanding the role of 24-EBL in heavy metal stress amelioration, particularly in food crop. Analysis of behaviour of antioxidant enzymes will play a critical role in understanding the stress networking, further filling the knowledge gap on the subject.  相似文献   

3.
Mutations of Cu/Zn superoxide dismutase 1 (SOD1), a metalloenzyme catalyzing the conversion of superoxide anion to hydrogen peroxide (H(2)O(2)), are linked to motor neuron degeneration. Transgenic mouse strains overexpressing wild-type human SOD1 (Tg-SOD1) were shown to have mitochondrial swelling, vacuolization, or learning and memory deficits and are widely used for biochemical, genetic, and cognitive studies; this, along with the advent of advanced proteomic methods, made us investigate protein expression in hippocampus. Hippocampal tissues of wild-type, hemizygous, and homozygous Tg-SOD1 mice were isolated and used for two-dimensional gel electrophoresis with subsequent matrix-assisted laser desorption/ionization-time of flight identification. We identified several synaptosomal, neuronal, antioxidant, and mitochondrial proteins in hippocampus, and expression levels of syntaxin-binding protein 1, N-ethylmaleimide-sensitive factor, synaptosomal-associated protein 25, dynamin-1, neurofilament triplet L protein, neurofilament triplet M protein, neuronal tropomodulin, and neuronal protein 25 were significantly decreased in Tg-SOD1. None of the antioxidant proteins were altered except mouse SOD1. Mitochondrial ATP synthase alpha/beta chain and elongation factor Tu were aberrant in Tg-SOD1. We conclude that derangement of neuronal and mitochondrial proteins may indicate synaptosomal and neuronal loss in Tg-SOD1 hippocampus, already reported in morphological terms. This observation is of relevance to understanding brain deficits in Down syndrome, as SOD1 is encoded on chromosome 21.  相似文献   

4.
Carvedilol, a beta-adrenoreceptor antagonist with strong antioxidant activity, produces a high degree of cardioprotection in a variety of experimental models of ischemic cardiac injury. Although growing evidences suggest specific effects on mitochondrial metabolism, how carvedilol would exert its overall activity has not been completely disclosed. In the present work we have investigated the impact of carvedilol-treatment on mitochondrial bioenergetic functions and ROS metabolism in H9C2 cells. This analysis has revealed a dose-dependent decrease in respiratory fluxes by NAD-dependent substrates associated with a consistent decline of mitochondrial complex I activity. These changes were associated with an increase in mitochondrial H(2)O(2) production, total glutathione and protein thiols content. To evaluate the antioxidant activity of carvedilol, the effect of the exposure of control and carvedilol-pretreated H9C2 cells to H(2)O(2) were investigated. The H(2)O(2)-mediated oxidative insult resulted in a significant decrease of mitochondrial respiration, glutathione and protein thiol content and in an increased level of GSSG. These changes were prevented by carvedilol-pretreatment. A similar protective effect on mitochondrial respiration could be obtained by pre-treatment of the cells with a sub-saturating amount of rotenone, a complex I inhibitor. We therefore suggest that carvedilol exerts its protective antioxidant action both by a direct antioxidant effect and by a preconditioning-like mechanism, via inhibition of mitochondrial complex I.  相似文献   

5.
To investigate the possible existence of a gender dimorphism in the morphology and functionality of brown adipose tissue (BAT) mitochondrial subpopulations, we obtained three mitochondrial fractions - heavy, medium and light - by differential centrifugation. Electron microscopic analysis was carried out and mitochondrial protein content, cytochrome c oxidase and ATP synthase activities, mitochondrial DNA content and UCP1 protein levels were measured in each mitochondrial fraction. Female rats showed a greater mitochondrial size than males, with a different distribution pattern of the subpopulations. These differences were accompanied by higher oxidative and thermogenic capacities and a higher protein content in female rat BAT. This tissue also showed a greater tendency to respiratory chain uncoupling, as well as a close coordination between the oxidative, phosphorylative and thermogenic processes. These differences were found in the heavy subpopulation but not in the light one. Our results demonstrate that female rat BAT shows a highly differentiated mitochondrial pool, with the heavy mitochondrial subpopulation as the main responsible for the greater thermogenic activity of this tissue. In addition, it seems that there is a differential regulation of the mitochondrial growth cycle between genders in BAT, which leads to enhanced thermogenic capacity in female rat mitochondria.  相似文献   

6.
Kil IS  Jung KH  Nam WS  Park JW 《Biochimie》2011,93(10):1808-1815
(−)-Epigallocatechin-3-gallate (EGCG), a well-known chemopreventive factor, induces cancer cells undergoing apoptosis. Over the last several years, we have shown that the mitochondrial NADP+-dependent isocitrate dehydrogenase (IDPm) functions as an antioxidant and anti-apoptotic protein by supplying NADPH to antioxidant systems. Here, we show that EGCG induced the inactivation of IDPm as a purified enzyme and in cultured cancer cells in a dose- and time-dependent manner. Loss of enzyme activity was associated with the depletion of the thiol groups in protein. In addition, transfection of HeLa cells with an IDPm small interfering RNA (siRNA) markedly attenuated the activity of IDPm and substantially enhanced EGCG-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation, and the modulation of mitochondrial function and apoptotic marker proteins. Taken together, our results suggest that the suppression of IDPm activity resulted in the disruption of cellular redox balance and subsequently exacerbates EGCG-induced apoptotic cell death in HeLa cells. These results might have implications for developing an effective combination modality in cancer treatment.  相似文献   

7.
Carvedilol, a β-adrenoreceptor antagonist with strong antioxidant activity, produces a high degree of cardioprotection in a variety of experimental models of ischemic cardiac injury. Although growing evidences suggest specific effects on mitochondrial metabolism, how carvedilol would exert its overall activity has not been completely disclosed. In the present work we have investigated the impact of carvedilol-treatment on mitochondrial bioenergetic functions and ROS metabolism in H9C2 cells. This analysis has revealed a dose-dependent decrease in respiratory fluxes by NAD-dependent substrates associated with a consistent decline of mitochondrial complex I activity. These changes were associated with an increase in mitochondrial H2O2 production, total glutathione and protein thiols content. To evaluate the antioxidant activity of carvedilol, the effect of the exposure of control and carvedilol-pretreated H9C2 cells to H2O2 were investigated. The H2O2-mediated oxidative insult resulted in a significant decrease of mitochondrial respiration, glutathione and protein thiol content and in an increased level of GSSG. These changes were prevented by carvedilol-pretreatment. A similar protective effect on mitochondrial respiration could be obtained by pre-treatment of the cells with a sub-saturating amount of rotenone, a complex I inhibitor.We therefore suggest that carvedilol exerts its protective antioxidant action both by a direct antioxidant effect and by a preconditioning-like mechanism, via inhibition of mitochondrial complex I.  相似文献   

8.
9.
10.
Mitochondrial morphology is dynamic and controlled by coordinated fusion and fission pathways. The role of mitochondrial chaperones in mitochondrial morphological changes and pathology is currently unclear. Here we report that altered levels of DnaJA3 (Tid1/mtHsp40) a mitochondrial member of the DnaJ protein family, and heat shock protein (Hsp) co-chaperone of matrix 70 kDa Hsp70 (mtHsp70/mortalin/HSPA9), induces mitochondrial fragmentation. Suppression of DnaJA3 induced mitochondrial fragmentation in HeLa cells. Elevated levels of DnaJA3 in normal Hs68 fibroblast cells and HeLa, SKN-SH, U87 and U251 cancer cell lines induces mitochondrial fragmentation. Mitochondrial fragmentation induction was not observed in HeLa cells when other DnaJA family members, or mitochondrial DnaJ protein HSC20, were ectopically expressed, indicating that the effects on mitochondrial morphology were specific to DnaJA3. We show that the DnaJ domain (amino acids 88-168) of DnaJA3 is sufficient for the induction of mitochondrial fragmentation. Furthermore, an H121Q point mutation of the DnaJ domain, which abrogates interaction and activation of mtHsp70 ATPase, eliminates fragmentation induced by DnaJA3. This suggests that DnaJA3 interaction with mtHsp70 may be critical in mitochondrial morphological changes. DnaJA3-induced mitochondrial fragmentation was dependent on fission factor dynamin-related protein 1 (Drp1). Ectopic expression of the mitofusins (Mfn1 and Mfn2), however, does not rescue DnaJA3-induced mitochondrial fragmentation. Lastly, elevated levels of DnaJA3 inducing mitochondrial fragmentation were associated with reduction in cell viability. Taken together, elevated DnaJA3 induces Drp1-depedendent mitochondrial fragmentation and decreased cell viability.  相似文献   

11.
1. Heavy and light mitochondrial fractions obtained by differential centrifugation were further characterized with respect to their lipid composition and synthesis and protein profiles, as seen by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 2. The light mitochondrial fraction was rich in total lipids, phospholipids and cholesterol. The cardiolipin content, however, was low. 3. Rates of [3H]glycerol incorporation into phospholipids of heavy mitochondria and microsomal fractions were almost identical. On the other hand, incorporation into the individual phospholipids in light mitochondria was about 4-6 times higher. Incorporation into cardiolipin of light mitochondria was about 10-fold higher than in the heavy mitochondria. 4. Analysis of protein profiles by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showed that the pattern obtained for the light mitochondria was similar to that for heavy mitochondria. However, the light fraction was relatively poor in high-molecular-weight proteins and rich in low-molecular-weight proteins. The microsomal protein profile was altogether different. 5. The significance of these findings is discussed in relation to mitochondrial biogenesis.  相似文献   

12.
Properties of porcine white adipose tissue heavy and light mitochondrial subpopulations were investigated so as to identify any functional heterogeneity. Liver mitochondrial subpopulations were concurrently evaluated since their properties have been studied in some detail. Mitochondrial subpopulations were isolated by means of differential centrifugation and the relative purity estimated using marker enzymes. Due to the greater contamination of the light mitochondrial fractions, mtDNA content, determined by PCR analysis, was used as a basis to demonstrate any mitochondrial heterogeneity. Enzymatic activity, electron microscopy, lipid analysis and Western blotting were used to characterise the different populations. With the exception of liver cytochrome c oxidase, the enzymatic capacity of adipose and liver heavy mitochondria ranged between approximately two- and threefold higher than the corresponding light fraction. The cardiolipin content and mean mitochondrial diameters paralleled these differences, suggesting an increased mitochondrial mass rather than a functional difference. However, the cytochrome c oxidase activity of the liver heavy mitochondria was 4.75-fold higher relative to the light fraction. A strong correlation between cytochrome c oxidase activity and the subunit I content was evident. Adipose tissue mitochondrial subpopulations would seem to possess a comparable oxidative capacity per gram mitochondrial protein, while liver heavy mitochondria possess an increased oxidative capacity and mass.  相似文献   

13.
Seed germination is a complex physiological process in plants that can be affected severely by heavy metals. The interference of germination by cadmium stress has not been well documented at the proteomic level. In the present study, in order to investigate the protein profile alternations during the germination stage following exposure to cadmium, a proteomic approach has been adopted in combination with morphological and physiological parameters. Seeds were exposed with a wide range of cadmium between 0.2 and 1.0 mM. Increases of cadmium concentration in the medium resulted in increased cadmium accumulation in seeds and TBARS content, whereas germination rate, shoot elongation, biomass, and water content were decreased significantly. Temporal changes of the total proteins were investigated by two-dimensional electrophoresis (2-DE). Twenty-one proteins were identified using MALDI-TOF mass spectrometry, which were upregulated at least 1.5-fold in response to cadmium stress. The identified proteins are involved in several processes, including defense and detoxification, antioxidant, protein biosynthesis, and germination processes. The identification of these proteins in the cadmium stress response provides new insight that can lead to a better understanding of the molecular basis of heavy metal responses of seeds at the germination stage.  相似文献   

14.
The mechanism of induction of apoptosis by the novel anti-cancer drug 1-O-octadecyl-2-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3) was investigated in p53-defective SV40 immortalized rat hepatocytes (CWSV1). Exposure to 12 microM ET-18-OCH3 for 36 h induced apoptosis as determined using classical morphological features and agarose gel electrophoresis of genomic DNA. Increased levels of reactive oxygen species (ROS) were detected spectrophotometrically using a nitroblue tetrazolium (NBT) assay in cells treated with ET-18-OCH3. Both the increased generation of ROS and the induction of apoptosis were inhibited when cells were treated concurrently with ET-18-OCH3 in the presence of the antioxidant alpha-tocopherol. Similar results were achieved when cells were switched acutely to choline-deficient (CD) medium in the presence of the antioxidant. The possible role of mitochondria in the generation of ROS was investigated. Both ET-18-OCH3 and CD decreased the phosphatidylcholine (PC) content of mitochondrial and associated membranes, which correlated with depolarization of the mitochondrial membrane as analyzed using 5,5',6,6'-tetramethylbenzimidazolcarbocyanine iodide (JC-1), a sensitive probe of mitochondrial membrane potential. Rotenone, an inhibitor of the mitochondrial electron transport chain, significantly reduced the intracellular level of ROS and prevented mitochondrial membrane depolarization, correlating with a reduction of apoptosis in response to either ET-18-OCH3 or CD. Taken together, these results suggest that the form of p53-independent apoptosis induced by ET-18-OCH3 is mediated by alterations in mitochondrial membrane PC, a loss of mitochondrial membrane potential, and the release of ROS, resulting in completion of apoptosis.  相似文献   

15.
1α-Hydroxyvitamin D-3 25-hydroxylase activity was measured in subcellular fractions of rat and human liver. The formation of 1,25-dihydroxyvitamin D-3 was determined by high pressure liquid chromatography. In rat liver 1α-hydroxyvitamin D-3 25-hydroxylase activities were found in the purified nuclei, the heavy mitochondrial fraction and the microsomal fraction. The enrichment of 25-hydroxylase activity was highest in the heavy mitochondrial fraction. With this fraction a minimum amount (about 0.5 mg) of protein was required before formation of 1,25-dihydroxyvitamin D-3 could be detected. Above this amount the reaction was linear with amount of protein up to at least 2 mg/ml. The reaction was also linear with time up to 60 min. An apparent Km value of 2·10?5 M was found. The mitochondrial 25-hydroxylase was stimulated by addition of cytosolic protein or bovine serum albumin. The degree of stimulation was dependent on the amount of mitochondrial protein present in the incubation mixture. Maximal stimulation was seen with 0.2 mg/ml of either protein in the presence of 0.5 mg mitochondrial protein. The stimulating effect remained after heating the protein for 5 min at 100°C. The cytosolic protein did not stimulate a reconstituted mitochondrial 1α-hydroxyvitamin D-3 25-hydroxylase. The mitochondrial vitamin D-3 25-hydroxylase was inhibited both by cytosolic protein and by bovine serum albumin. Human liver revealed only one 1α-hydroxyvitamin D-3 25-hydroxylase activity located to the heavy mitochondrial fraction. The results are in agreement with previous studies on the localization of vitamin D-3 25-hydroxylase in rat and human liver. The difference in localization of the 25-hydroxylase between rat and human liver implies that studies on the regulation of the microsomal 25-hydroxylase in rat liver may not be relevant to the situation in human liver.  相似文献   

16.
17.
The ketogenic diet increases mitochondrial glutathione levels   总被引:2,自引:0,他引:2  
The ketogenic diet (KD) is a high-fat, low carbohydrate diet that is used as a therapy for intractable epilepsy. However, the mechanism(s) by which the KD achieves neuroprotection and/or seizure control are not yet known. We sought to determine whether the KD improves mitochondrial redox status. Adolescent Sprague–Dawley rats (P28) were fed a KD or control diet for 3 weeks and ketosis was confirmed by plasma levels of β-hydroxybutyrate (BHB). KD-fed rats showed a twofold increase in hippocampal mitochondrial GSH and GSH/GSSG ratios compared with control diet-fed rats. To determine whether elevated mitochondrial GSH was associated with increased de novo synthesis, the enzymatic activity of glutamate cysteine ligase (GCL) (the rate-limiting enzyme in GSH biosynthesis) and protein levels of the catalytic (GCLC) and modulatory (GCLM) subunits of GCL were analyzed. Increased GCL activity was observed in KD-fed rats, as well as up-regulated protein levels of GCL subunits. Reduced CoA (CoASH), an indicator of mitochondrial redox status, and lipoic acid, a thiol antioxidant, were also significantly increased in the hippocampus of KD-fed rats compared with controls. As GSH is a major mitochondrial antioxidant that protects mitochondrial DNA (mtDNA) against oxidative damage, we measured mitochondrial H2O2 production and H2O2-induced mtDNA damage. Isolated hippocampal mitochondria from KD-fed rats showed functional consequences consistent with the improvement of mitochondrial redox status i.e. decreased H2O2 production and mtDNA damage. Together, the results demonstrate that the KD up-regulates GSH biosynthesis, enhances mitochondrial antioxidant status, and protects mtDNA from oxidant-induced damage.  相似文献   

18.
《Phytomedicine》2014,21(4):497-505
The study investigates the antioxidant, hepatoprotective and antiproliferative effects of novel icetexane diterpenoids (ice 14) isolated from hexane extract of stem bark of Premna tomentosa. A549, HT-29, MCF-7, MDA-MB-231, A431 cells were used to assess the antiproliferative activity by MTT assay. Cell death induced by apoptosis was determined by morphological assessment studies using acridine orange/ethidium bromide staining (dual staining), mitochondrial potential measurement by JC-1 staining, and cell cycle analysis by propidium iodide staining method by Muse cell analyser. Anti oxidant activity was investigated by in vitro assays such as DPPH, nitric oxide and superoxide scavenging activities. Hepatoprotective activity was determined in vitro with HepG2 cells and in vivo by tBHP induced hepatic damage mice model. Based on the in vitro cytotoxic assays and morphological assessment studies using fluorescence microscopic study (acridine orange and ethidium bromide double staining) and mitochondrial potential measurements, it was found that ice 2 and 3 possess good antiproliferative effect via mitochondrial mediated apoptosis in human lung and breast cancer cells. Results of in vitro antioxidant studies demonstrated that ice-4 has showed good antioxidant activity. The restoration of serum levels of SGOT, SGPT and ALKP, liver GSH status and reduction or inhibition of lipid peroxidation in liver of tBHP intoxicated mice after administration of ice-4 at dose of 250 mg/kg indicated its potential use for hepatoprotective activity.  相似文献   

19.
Pinocembrin (PB; 5,7-dihydroxyflavanone) is found in propolis and exhibits antioxidant activity in several experimental models. The antioxidant capacity of PB is associated with the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. The Nrf2/ARE axis mediates the expression of antioxidant and detoxifying enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR), heme oxygenase-1 (HO-1), and the catalytic (GCLC) and regulatory (GCLM) subunits of the rate-limiting enzyme in the synthesis of glutathione (GSH), γ-glutamate-cysteine ligase (γ-GCL). Nonetheless, it is not clear how PB exerts mitochondrial protection in mammalian cells. Human neuroblastoma SH-SY5Y cells were pretreated (4 h) with PB (0–25 µM) and then exposed to methylglyoxal (MG; 500 µM) for further 24 h. Mitochondria were isolated by differential centrifugation. PB (25 µM) provided mitochondrial protection (decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes; decreased mitochondrial free radical production; enhanced the content of GSH in mitochondria; rescued mitochondrial membrane potential—MMP) and blocked MG-triggered cell death by a mechanism dependent on the activation of the extracellular-related kinase (Erk1/2) and consequent upregulation of Nrf2. PB increased the levels of GPx, GR, HO-1, and mitochondrial GSH. The PB-induced effects were suppressed by silencing of Nrf2 with siRNA. Therefore, PB activated the Erk1/2–Nrf2 signaling pathway resulting in mitochondrial protection in SH-SY5Y cells exposed to MG. Our work shows that PB is a strong candidate to figure among mitochondria-focusing agents with pharmacological potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号