共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A linkage between sulfur and iron metabolism has been suggested since sulfide has the ability to release iron from ferritin
in the presence of iron acceptors in vitro. Nevertheless, this linkage is still lacking evidence in vivo as well as in cellular
models. In this study we have treated human RD4 skeletal muscle cells with sodium sulfide and measured the level of the labile
iron pool (LIP) as well as the intracellular sulfide concentration. We have also detected the amounts of L-ferritin protein
as well as the iron regulatory protein 2 (IRP2). The sulfide treatment resulted in a 100% increase in the amount of LIP after
1 and 2 h. We also found that the raise of the LIP levels was coupled to an elevation of the amounts of intracellular sulfide
that increased by 60%. The bioavailability of the released iron was confirmed by a 100% increase in L-ferritin protein as
well as a 60% decrease of the IRP2 protein levels. These results suggest that there is a linkage between sulfur metabolism
and intracellular iron regulation in mammalian cells. 相似文献
3.
The cytoplasmic labile iron pool supplies iron to the mitochondrion for heme and iron sulfur cluster synthesis and to many cytoplasmic enzymes, thereby controlling numerous metabolic reactions. Surprisingly the chemical nature of this pool has never been convincingly characterised. Here we provide evidence for iron(II)glutathione being the dominant component of this pool. We report for the first time the affinity constant for the glutathione–iron(II) interaction and use this value to study the cytoplasmic speciation of iron(II). The formation of this complex is a major determinant of the electrode potential of the cytoplasmic ferrous iron pool, a means of selecting between iron(II) and manganese(II) and it provides a substrate for glutaredoxin/iron clusters at the dimer interface of glutaredoxins involved in the synthesis of Fe–S cluster proteins. 相似文献
4.
Bacteria use tight-binding, ferric-specific chelators called siderophores to acquire iron from the environment and from the host during infection; animals use proteins such as transferrin and ferritin to transport and store iron. Recently, candidate compounds that could serve endogenously as mammalian siderophore equivalents have been identified and characterized through associations with siderocalin, the only mammalian siderophore-binding protein currently known. Siderocalin, an antibacterial protein, acts by sequestering iron away from infecting bacteria as siderophore complexes. Candidate endogenous siderophores include compounds that only effectively transport iron as ternary complexes with siderocalin, explaining pleiotropic activities in normal cellular processes and specific disease states. 相似文献
5.
Brigitte Sturm Hans Goldenberg Barbara Scheiber-Mojdehkar 《European journal of biochemistry》2003,270(18):3731-3738
Intravenous iron, used for the treatment of anemia in chronic renal failure and other diseases, represents a possible source of free iron in tissue cells, particularly in the liver. In this study we examined the effect of different sources of intravenous iron (IVI) on the labile iron pool (LIP) which represents the nonferritin-bound, redox-active iron that is implicated in oxidative stress and cell injury. Furthermore, we examined the role of the LIP for the synthesis of ferritin. We used HepG2 cells as a well known model for hepatoma cells and monitored the LIP with the metal-sensitive fluorescent probe, calcein-AM, the fluorescence of which is quenched on binding to iron. We showed that steady state LIP levels in HepG2 cells were increased transiently, up to three-fold compared to control cells, as an adaptive response to long-term IVI exposure. In relation to the amount of iron in the LIP, the ferritin levels increased and the iron content of ferritin decreased. As any fluctuation in the LIP, even when it is only transient (e.g. after exposure to intravenous iron in this study), may result either in impairment of synthesis of iron containing proteins or in cell injury by pro-oxidants. Such findings in nonreticuloendothelial cells may have important implications in the generation of the adverse effects of chronic iron exposure reported in dialysis patients. 相似文献
6.
The role of nitric oxide in cardiovascular diseases 总被引:18,自引:0,他引:18
Naseem KM 《Molecular aspects of medicine》2005,26(1-2):33-65
Nitric oxide (NO) is a gaseous lipophilic free radical cellular messenger generated by three distinct isoforms of nitric oxide synthases (NOS), neuronal (nNOS), inducible (iNOS) and endothelial NOS (eNOS). NO plays an important role in the protection against the onset and progression of cardiovascular disease. Cardiovascular disease is associated with a number of different disorders including hypercholesterolaemia, hypertension and diabetes. The underlying pathology for most cardiovascular diseases is atherosclerosis, which is in turn associated with endothelial dysfunctional. The cardioprotective roles of NO include regulation of blood pressure and vascular tone, inhibition of platelet aggregation and leukocyte adhesion, and prevention smooth muscle cell proliferation. Reduced bioavailability of NO is thought to be one of the central factors common to cardiovascular disease, although it is unclear whether this is a cause of, or result of, endothelial dysfunction. Disturbances in NO bioavailability leads to a loss of the cardio protective actions and in some case may even increase disease progression. In this chapter the cellular and biochemical mechanisms leading to reduced NO bioavailability are discussed and evidence for the prevalence of these mechanisms in cardiovascular disease evaluated. 相似文献
7.
Gackowski D Kruszewsk M Banaszkiewicz Z Jawien A Olinski R 《Acta biochimica Polonica》2002,49(1):269-272
Patients with colorectal carcinoma showed statistically significant lower values of transferrin saturation, total iron binding capacity and serum iron level as compared with control group, while the level of ferritin and the size of labile iron pool in carcinoma patients were higher, although this difference was not statistically significant. Our observations are in favour of the hypothesis which suggests that changes in iron metabolism restrict iron availability for tumour cells and as consequence, slow their growth. 相似文献
8.
Ding Yuejia Lu Chunmiao Zhang Wanqin Wang Yuan Li Yanyang Zhu Yaping Lv Shichao Zhang Junping 《Journal of physiology and biochemistry》2021,77(3):343-353
Journal of Physiology and Biochemistry - Cardiovascular disease (CVD) is one of the vital causes of morbidity and mortality, and the number of deaths from CVD has increased worldwide. Circular RNAs... 相似文献
9.
Breuer W Shvartsman M Cabantchik ZI 《The international journal of biochemistry & cell biology》2008,40(3):350-354
Cells maintain organellar pools of "labile iron" (LI), despite its propensity for catalyzing the formation of reactive oxygen species. These pools are identifiable by iron-chelating probes and accessible to pharmacological agents. Cytosolic LI has been assumed to have a dual function: providing a rapidly adjustable source of iron for immediate metabolic utilization, and for sensing by iron-regulatory proteins (IRPs) that regulate iron uptake and compartmentalization via transferrin receptors and ferritin. However, it now appears that IRPs may respond both to fluctuations in LI per se and to secondary signals associated with redox-active species. Recent information also indicates that iron can be delivered to mitochondria via pathways that circumvent cytosolic LI, suggesting possible alternative mechanisms of cell iron mobilization and trafficking. We discuss the changing views of intracellular LI pools in relation to iron homeostasis and cellular distribution in physiological and pathological states. 相似文献
10.
Santamaria R Fiorito F Irace C De Martino L Maffettone C Granato GE Di Pascale A Iovane V Pagnini U Colonna A 《Biochimica et biophysica acta》2011,1813(5):704-712
Cellular iron metabolism is essentially controlled by the binding of cytosolic iron regulatory proteins (IRP1 or IRP2) to iron-responsive elements (IREs) located on mRNAs coding for proteins involved in iron acquisition, utilization and storage. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most potent toxins of current interest that occurs as poisonous chemical in the environment. TCDD exposure has been reported to induce a broad spectrum of toxic and biological responses, including significant changes in gene expression for heme and iron metabolism associated with liver injury. Here, we have investigated the molecular effects of TCDD on the iron metabolism providing the first evidence that administration of the toxin TCDD to mammalian cells affects the maintenance of iron homeostasis. We found that exposure of Madin-Darby Bovine Kidney cell to TCDD caused a divergent modulation of IRP1 and IRP2 RNA-binding capacity. Interestingly, we observed a concomitant IRP1 down-regulation and IRP2 up-regulation thus determining a marked enhancement of transferrin receptor 1 (TfR-1) expression and a biphasic response in ferritin content. The changed ferritin content coupled to TfR-1 induction after TCDD exposure impairs the cellular iron homeostasis, ultimately leading to significant changes in the labile iron pool (LIP) extent. Since important iron requirement changes occur during the regulation of cell growth, it is not surprising that the dioxin-dependent iron metabolism dysregulation herein described may be linked to cell-fate decision, supporting the hypothesis of a central connection among exposure to dioxins and the regulation of critical cellular processes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. 相似文献
11.
Analysis of yggX and gshA mutants provides insights into the labile iron pool in Salmonella enterica
下载免费PDF全文

Strains of Salmonella enterica lacking YggX and the cellular reductant glutathione exhibit defects similar to those resulting from iron deficiency and oxidative stress. Mutant strains are sensitive to hydrogen peroxide and superoxide, deregulate the expression of the Fur-regulated gene entB, and fail to grow on succinate medium. Suppression of some yggX gshA mutant phenotypes by the cell-permeable iron chelator deferoxamine allowed the conclusion that increased levels of cellular Fenton chemistry played a role in the growth defects. The data presented are consistent with a scenario in which glutathione acts as a physiological chelator of the labile iron pool and in which YggX acts upstream of the labile iron pool by preventing superoxide toxicity. 相似文献
12.
Rita Santamaria Filomena FioritoCarlo Irace Luisa De MartinoCarmen Maffettone Giovanna Elvira GranatoAntonio Di Pascale Valentina IovaneUgo Pagnini Alfredo Colonna 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(5):704-712
Cellular iron metabolism is essentially controlled by the binding of cytosolic iron regulatory proteins (IRP1 or IRP2) to iron-responsive elements (IREs) located on mRNAs coding for proteins involved in iron acquisition, utilization and storage. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most potent toxins of current interest that occurs as poisonous chemical in the environment. TCDD exposure has been reported to induce a broad spectrum of toxic and biological responses, including significant changes in gene expression for heme and iron metabolism associated with liver injury. Here, we have investigated the molecular effects of TCDD on the iron metabolism providing the first evidence that administration of the toxin TCDD to mammalian cells affects the maintenance of iron homeostasis. We found that exposure of Madin-Darby Bovine Kidney cell to TCDD caused a divergent modulation of IRP1 and IRP2 RNA-binding capacity. Interestingly, we observed a concomitant IRP1 down-regulation and IRP2 up-regulation thus determining a marked enhancement of transferrin receptor 1 (TfR-1) expression and a biphasic response in ferritin content. The changed ferritin content coupled to TfR-1 induction after TCDD exposure impairs the cellular iron homeostasis, ultimately leading to significant changes in the labile iron pool (LIP) extent. Since important iron requirement changes occur during the regulation of cell growth, it is not surprising that the dioxin-dependent iron metabolism dysregulation herein described may be linked to cell-fate decision, supporting the hypothesis of a central connection among exposure to dioxins and the regulation of critical cellular processes. 相似文献
13.
A Gasbarrini F Cremonini A Armuzzi V Ojetti M Candelli C Di Campli E Sanz-Torre R Pola G Gasbarrini P Pola 《Journal of physiology and pharmacology》1999,50(5):735-742
Classical risk factors for cardiovascular and cerebrovascular diseases do not fully coincide with the prevalence of these conditions. Emerging evidences show that new factors may be predisposing for the development of ischemic events. It has been demonstrated that atherosclerosis has a strong inflammatory background; such state of chronic inflammation may be related to the presence of persistent infectious agent. Helicobacter pylori (H. pylori), among other microorganisms, has been extensively investigated for its possible role. Many molecular mechanisms have been hypothesized to explain its eventual action. Epidemiological studies do not exclude a correlation between the infection and cardiovascular and cerebrovascular diseases. Many confounding factors, however, make difficult a definitive evaluation of the huge number of data present in the literature. Moreover, various therapeutic studies have been attempted to show if antibiotic treatment improves prognosis in patients affected by ischemic heart disease. Still, none of these trials focused specifically on the effects of H. pylori eradication on the clinical progression of vascular lesions. 相似文献
14.
中性内肽酶及其抑制剂在心血管疾病过程中的作用 总被引:1,自引:0,他引:1
中性内肽酶是一种属于Ⅱ型跨膜蛋白的肽类内切酶,在肽链的氨基端水解疏水氨基酸肽键,灭活心钠素、肾上腺髓质素、血管紧张素、内皮素等心血管活性肽,在高血压病、心力衰竭、动脉粥样硬化和休克等心血管疾病的发病过程中发挥重要作用。 相似文献
15.
16.
Exposure to nitric oxide protects against oxidative damage but increases the labile iron pool in sorghum embryonic axes 总被引:1,自引:0,他引:1
Sodium nitroprusside (SNP) and diethylenetriamine NONOate (DETA NONOate), were used as the source of exogenous NO to study the effect of NO upon germination of sorghum (Sorghum bicolor (L.) Moench) seeds through its possible interaction with iron. Modulation of cellular Fe status could be an important factor for the establishment of oxidative stress and the regulation of plant physiology. Fresh and dry weights of the embryonic axes were significantly increased in the presence of 0.1 mM SNP, as compared to control. Spin trapping EPR was used to assess the NO content in axes from control seeds after 24 h of imbibition (2.4+/-0.2 nmol NO g(-1) FW) and seeds exposed to 0.01, 0.1, and 1 mM SNP (3.1+/-0.3, 4.6+/-0.2, and 6.0+/-0.9 nmol NO g(-1) FW, respectively) and 1 mM DETA NONOate (6.2+/-0.6 nmol NO g(-1) FW). Incubation of seeds with 1 mM SNP protected against oxidative damage to lipids and maintained membrane integrity. The content of the deferoxamine-Fe (III) complex significantly increased in homogenates of axes excised from seeds incubated in the presence of 1 mM SNP or 1 mM DETA NONOate as compared to the control (19+/-2 nmol Fe g(-1) FW, 15.2+/-0.5 nmol Fe g(-1) FW, and 8+/-1 nmol Fe g(-1) FW, respectively), whereas total Fe content in the axes was not affected by the NO donor exposure. Data presented here provide experimental evidence to support the hypothesis that increased availability of NO drives not only protective effects to biomacromolecules, but to increasing the Fe availability for promoting cellular development as well. 相似文献
17.
The labile iron pool (LIP) plays a role in generation of free radicals and is thus the target of chelators used for the treatment of iron overload. We have previously shown that the LIP is bound mostly to high molecular weight carriers (MW>5000). However, the iron does not remain associated with these proteins during native gel electrophoresis. In this study we describe a new method to reconstruct the interaction of iron with iron-binding proteins. Proteins were separated by native gradient polyacrylamide gel electrophoresis and transfered to polyvinilidene difluoride membrane under native conditions. The immobilized iron-binding proteins are then labeled by 59Fe using a 'titrational blotting' technique and visualized by storage phosphorimaging. At least six proteins, in addition to ferritin and transferrin, are specifically labeled in cellular lysates of human erythroleukemic cells. This technique enables separation and detection of iron-binding proteins or other metal-protein complexes under near-physiological conditions and facilitates identification of weak iron-protein complexes. Using a new native metal blotting method, we have confirmed that specific high molecular weight proteins bind the labile iron pool. 相似文献
18.
Deepinder Kaur Donna Lee Subramanian Ragapolan Julie K. Andersen 《Free radical biology & medicine》2009,46(5):593-598
Glutathione depletion is one of the earliest detectable events in the Parkinsonian substantia nigra (SN), but whether it is causative for ensuing molecular events associated with the disease is unknown. Here we report that reduction in levels of glutathione in immortalized midbrain-derived dopaminergic neurons results in increases in the cellular labile iron pool (LIP). This increase is independent of either iron regulatory protein/iron regulatory element (IRP/IRE) or hypoxia inducible factor (HIF) induction but is both H202 and protein synthesis-dependent. Our findings suggest a novel mechanistic link between dopaminergic glutathione depletion and increased iron levels based on translational activation of TfR1. This may have important implications for neurodegeneration associated with Parkinson's disease in which both glutathione reduction and iron elevation have been implicated. 相似文献
19.
Summary This review examines various aspects of iron metabolism in mammalian and bacterial cells which support the hypothesis of the existence and the biological significance of an intracellular pool of low-molecular mass iron complexes. 相似文献
20.
松弛素是一类新近发现可作用于心血管的肽类激素,参与心血管系统的生理和病理过程。大量实验研究显示松弛素有扩血管、改善心血管重塑及调节炎症反应的心血管保护作用,也有利于改善高凝状态和胰岛素抵抗。松弛素作用广泛,可与松弛素受体或糖皮质激素受体结合,但其受体后的确切机制以及不同生理和病理状态对松弛素的调控还需进一步基础研究阐明。在从实验室到临床应用转化的初期临床试验中可观察到,人重组松弛素治疗急慢性心力衰竭安全性好,可改善症状、血流动力学指标及近期预后,为Ⅲ期临床试验奠定了基础,其临床应用前景令人期待。 相似文献