首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E H Blaine 《Prostaglandins》1983,26(5):805-815
A recently discovered isosterically-modified prostaglandin analog, 4-(3-[3-[2-(1-hydroxycyclohexyl)ethyl]-4-oxo-2-thiazolidinyl ] propyl) benzoic acid, was studied in conscious Na-deficient dogs to determine if this compound could reverse the deleterious renal effects induced by inhibition of renal cyclooxygenase. Indomethacin (2 mg/kg i.v.) reduced renal function significantly in all dogs studied: GFR decreased from 38 +/- 3 to 26 +/- 1 ml/min (P less than 0.01) and ERPF from 124 +/- 15 to 79 +/- 8 ml/min (P less than 0.01). On separate occasions, the six dogs used in this study were treated with a saline placebo intravenously or with the PG analog (0.1 mg/kg i.v.) 60 min after receiving indomethacin. After placebo treatments renal function remained suppressed for the duration of observation (2 hours). After treatment with PG analog, GFR was restored to pre-indomethacin levels within 1 hour (36 +/- 3 ml/min) and remained at this level or higher for the duration of the experiment. ERPF was restored to pre-indomethacin levels within 30 min of PG analog injection (140 +/- 7 ml/min) and subsequently rose ml/min) for the duration of the experiment. Urinary electrolyte excretion was suppressed by indomethacin and despite the large increase in ERPF, Na excretion was not augmented by PG analog. This study demonstrates that a synthetic, isosterically-modified prostaglandin analog can effectively reverse the hemodynamic effects of non-steroidal antiinflammatory drug treatment on renal function while not affecting renal Na excretion.  相似文献   

2.
In anaesthetized dogs renal function was investigated in four successive 20-min periods in four experimental series. (1) In the first series following the first period (serving as control) 2.5 micrograms/kg/min of dopamine (DA) dissolved in 0.5 ml/min of Ringer's solution was infused into the left renal artery (period 2), than during periods 3 and 4. It was found that first (period 2) and second (period 3) doses of DA induced a significant decrease of about 20-30% in renal vascular resistance, and an increase of about 15-25% in renal blood flow. At the same time, systemic arterial blood pressure fell by 10%. The other investigated parameters of the left kidney (Cinulin, CPAH, sodium, potassium and water excretion) did not differ from the respective parameters of the intact right kidney. (2) In the second experimental series following the first period (prior to period 2) 1.0 mg/kg of the DA antagonist EGYT 2509 was administered intravenously. Prior to the period 3 again 1.0 mg/kg of EGYT 2509 and prior to period 4 2.0 mg/kg of EGYT 2509 was given intravenously. During periods 2 through 4 2.5 micrograms/kg/min of DA was infused into the left renal artery. It could be ascertained that EGYT 2509 abolished the renal effects of DA while not inducing any decrease in arterial blood pressure. (3) In the third experimental series, following the control period, prior to periods 2,3 and 4, 1.0 mg/kg, 1.0 mg/kg and 2.0 mg/kg chlorpromazine respectively, was administered i.v. followed by the infusion of DA into the left renal artery. After the administration of chlorpromazine arterial blood pressure and renal vascular resistance fell concomitantly and DA failed to induce any further changes in these parameters. According to our experiments chlorpromazine abolishes the effect of DA on kidney function. (4) In the fourth series, prior to DA infusion the dogs were given 0.5 mg/kg (period 2) then again 0.5 mg/kg and finally 1.0 mg/kg of haloperidol intravenously. Haloperidol decreased arterial blood pressure as well as renal vascular resistance, thus renal blood flow did not change. Renal blood flow could then be increased by DA infused into the left renal artery. It seems that haloperidol could not abolish the vascular effects of DA in the kidney. Our experiments indicate that substance EGYT 2509 possesses the most marked dopaminergic antagonistic effect, chlorpromazine had also been effective, while haloperidol had proved to be practically ineffective.  相似文献   

3.
To determine the role of superoxide (O(2)(-)) formation in the kidney during alterations in the renin-angiotensin system, we evaluated responses to the intra-arterial infusion of an O(2)(-) - scavenging agent, tempol, in the denervated kidney of anesthetized salt-depleted (SD, n=6) dogs and salt-replete (SR, n=6) dogs. As expected, basal plasma renin activity was higher in SD than in SR dogs (8.4 +/- 1.0 vs. 2.3 +/- 0.6 ng angiotensin 1/ml/hr). Interestingly, the basal level of urinary F(2)-isoprostanes excretion (marker for endogenous O(2)(-) activity) relative to creatinine (Cr) excretion was also significantly higher in SD compared to SR dogs (9.1 +/- 2.8 vs. 1.6 +/- 0.4 ng F(2)-isoprostanes/mg of Cr). There was a significant increase in renal blood flow (4.3 +/- 0.5 to 4.9 +/- 0.6 ml/min/g) and decreases in renal vascular resistance (38.2 +/- 5.8 to 33.2 +/- 4.7 mm Hg/ml/min/g) and mean systemic arterial pressure (148 +/- 6 to 112 +/- 10 mm Hg) in SD dogs but not in SR dogs during infusion of tempol at 1 mg/kg/min for 30 mins. Glomerular filtration rate and urinary sodium excretion (U(Na)V) did not change significantly during tempol infusion in both groups of dogs. Administration of the nitric oxide synthase inhibitor nitro-L-arginine (50 mug/kg/min) during tempol infusion caused a reduction in U(Na)V in SR dogs (47% +/- 12%) but did not cause a decrease in SD dogs. These data show that low salt intake enhances O(2)(-) activity that influences renal and systemic hemodynamics and thus may contribute to the regulation of arterial pressure in the salt-restricted state.  相似文献   

4.
In dogs and cats an assessment of renal function is often needed, however, existing methods including urine and plasma clearances are invasive, cumbersome and time consuming. This pilot study evaluated the feasibility of a transcutaneous glomerular filtration rate (GFR) measurement in dogs and cats. Additionally the optimal dose and location for the transcutaneous measurement device were investigated. Renal elimination of fluorescein-isothiocyanate-labelled sinistrin (FITC-S) was measured transcutaneously for 4 hours. The procedures were performed in awake, freely moving animals using escalating doses of FITC-S (10 mg/kg, 30 mg/kg, 50 mg/kg) with a wash-out period of at least 24 h in between. Multiple devices were placed on each animal. The resulting FITC-S disappearance curves were visually assessed to determine the most suitable location and the appropriate dose to reach an adequate transcutaneous peak signal for kinetic analysis. In both species 30 mg/kg were adequate for kinetic calculation. The most suitable place for the device was the lateral thoracic wall in dogs and the ventral abdominal wall in cats, respectively. Transcutaneous FITC-S clearance was then repeated using the optimal dose and location and in parallel with an additional plasma sinistrin clearance. Plasma elimination half-lives [min] were 26, 31 and 35, and corresponding transcutaneous elimination half-lives [min] were 26, 34 and 55, respectively in the dogs. Plasma elimination half-lives [min] were 51, 60 and 61, and corresponding transcutaneous elimination half-lives [min] were 75, 96 and 83, respectively in the cats. In conclusion, transcutaneous FITC-S clearance is a feasible method for the assessment of GFR in awake dogs and cats. It is noninvasive, well tolerated and easy to perform even in a clinical setting with results being readily available. A dose of 30 mg/kg of FITC-S seems adequate for kinetic assessment. Further studies are now needed to establish reference values and evaluate transcutaneous renal clearance in various conditions.  相似文献   

5.
All the parameters of renal function (inulin clearance, para amino hippuric acid clearance and urine flow) which were depressed during experimentally induced hemorrhagic shock in dogs improved significantly in addition to improvement in mean arterial pressure (MAP) after bolus administration (iv) of 1 or 2 mg/kg naloxone. A smaller dose (0.5 mg/kg) of naloxone, however, did not improve the renal function. Even renal arterial injection of the same dose of naloxone showed no improvement in the renal function. In both these cases the improvement in the MAP was significantly less as compared to other groups of animals which received 1 or 2 mg/kg naloxone. It may be concluded that (a) naloxone at doses of 1 or 2 mg/kg improved the renal function by improving MAP and (b) naloxone has no direct action on renal vasculature.  相似文献   

6.
C E Hock  J C Passmore 《Life sciences》1985,37(21):1997-2003
We investigated the respective contributions of the renin-angiotensin and alpha-adrenergic systems to nicotine-induced, canine, renal vasoconstriction by using saralasin (4 micrograms/kg/min) and phentolamine (25 micrograms/kg/min) blockade respectively. Nicotine infusion (0.024 mg/kg/min) increased mean arterial blood pressure (MABP) (114 +/- 3.0 to 219 +/- 8.0 mmHg) and decreased total renal blood flow (TRBF) (3.12 +/- 0.34 to 1.60 +/- 0.37 ml/min/g). Nicotine infusion produced a significantly lesser blood flow in outer cortex (OC), inner cortex (IC), and outer medulla (OM) compared to control dogs. The intrarenal-artery infusion of saralasin or phentolamine had no effect on the nicotine-induced MABP changes. Phentolamine infusion prior to nicotine resulted in a significantly greater TRBF (P less than 0.01), OC (p less than 0.001), IC (p less than 0.001) and OM (p less than 0.01) flow than in the group that received nicotine only. Saralasin pretreatment prior to nicotine resulted only in a significantly (p less than 0.01) greater OC flow than nicotine only. Our data suggest that while angiotensin II mediates a portion of the action of nicotine on the OC renal vasculature, the alpha adrenergic system predominates as the mediator of nicotine-induced renal vasoconstriction in the first 7 minutes of nicotine infusion.  相似文献   

7.
Intrarenal arterial (i.a.) infusions of prostacyclin (PGI2) at 30-300 ng/min to anaesthetized dogs reduced renal vascular resistance (RVR) and filtration fraction (FF), increased mean renal blood flow (MRBF) but did not alter mean arterial pressure (MAP)or glomerular filtration rate (GFR). The urinary excretion of sodium (UNaV), potassium (UKV) and chloride ions (UC1V) were increased through inhibition of net tubular ion reabsorption. PGI2 (3000 ng/min, i.a.) reduced MAP and increased heart rate. Intravenous (i.v.) infusions of PGI2 (3000 gn/min) reduced MAP, GFR, FF, urine volume and ion excretion, with elevation of heart rate. The measured variables were unaltered by 6-oxo-PGF1 alpha (10,000 ng/min i.a.). Treatment of the dogs with the PG synthetase inhibitor meclofenamic acid (2.5 mg/kg i.v.) did not antagonise the elevation of MRBF to PGI2 (300 ng/min i.a.). Thus the renal effects of PGI2 were due to a direct action rather than through conversion to 6-oxo-PGF1 alpha or through stimulation of endogenous renal PG biosynthesis and release.  相似文献   

8.
The opiate antagonist naloxone increases arterial pressure, maximal left ventricular dp/dt and cardiac output when administered to dogs subjected to hemorrhagic shock. The purpose of this study was to investigate regional blood flow changes associated with naloxone treatment in anesthetized hypovolemic and normovolemic dogs. Hypovolemic dogs (n = 10) were bled over 30 min (t = -30 to t = 0) to a pressure of 45 mm Hg which was maintained for 1 hr. At t = 60, five dogs received naloxone (2 mg/kg + 2 mg/kg X hr), and five received an equal volume of saline. Regional blood flows were determined at t = -30, 45, and 90 min using 15-micron microspheres. Normovolemic dogs (n = 10) were subjected to the same protocol except they were not bled. During hypovolemia, naloxone produced significant increases in myocardial, intestinal, hepatic, and adrenal blood flows whereas saline treatment did not. No significant changes in skin, muscle, fat, pancreatic, renal, or brain flows were detected. The increases in blood flow were not associated with significant changes in vascular resistance. Naloxone had no significant effects on any hemodynamic parameter during normovolemia. The beneficial effects of naloxone in hemorrhagic shock include increased blood flow to vital organs due to increased perfusion pressure which is secondary to improved cardiac performance.  相似文献   

9.
Infusion of 0.75 μ g/kgbw/min norepinephrine (NE), for 40 minutes, into one renal artery in anesthetized dogs, induced acute renal failure (ARF). Subsequently there was nearly complete reversal of function within 8 weeks. Isotonic saline volume expansion, or renal vasodilation plus diuresis by acetylcholine (into renal artery: 20 μg/min) did not protect against this type of ARF. Volume expansion with either 5 or 20 percent mannitol partly prevented the fall of GFR 3 hours after NE, this protection being correlated with the magnitude of the osmolar clearance at the time of the insult. IV furosemide (10 mg/kg + 10 mg/kg/h; fluid losses replaced) afforded an even better protection. Proximal tubular necrosis in the “protected” kidneys was as severe as in non-protected kidneys. Glomerular cell morphology (scanning electron microscopy) was not altered by the 40-minute NE infusions. Functional “protection” appeared to depend on solute diuresis at the time of insult.  相似文献   

10.
An overdose of propranolol, a widely used nonselective beta-adrenergic receptor blocking agent, can result in hypotension and bradycardia leading to irreversible shock and death. In addition, the blockade of adrenergic receptors can lead to alterations in neurotransmitter receptors resulting in the interruption of the activity of other second messengers and the ultimate cellular responses. In the present experiment, three agents, aminophylline, amrinone, and forskolin were tested in an attempt to reverse the potential lethal effects of a propranolol overdose in dogs. Twenty-two anesthetized beagle dogs were given a 10-min infusion of propranolol at a dose of 1 mg/kg/min. Six of the dogs, treated only with intravenous saline, served as controls. Within 15-30 min all six control dogs exhibited profound hypotension and severe bradycardia that led to cardiogenic shock and death. Seven dogs were treated with intravenous aminophylline 20 mg/kg 5 min after the end of the propranolol infusion. Within 10-15 min heart rate and systemic arterial blood pressure returned to near control levels, and all seven dogs survived. Intravenous amrinone (2-3 mg/kg) given to five dogs, and forskolin (1-2 mg/kg) given to four dogs, also increased heart rate and systemic arterial blood pressure but the recovery of these parameters was appreciably slower than that seen with aminophylline. All of these animals also survived with no apparent adverse effects. Histopathologic evaluation of the hearts of the dogs treated with aminophylline showed less damage (vacuolization, inflammation, hemorrhage) than the hearts from animals given propranolol alone. Results of this study showed that these three drugs, all of which increase cyclic AMP, are capable of reversing the otherwise lethal effects of a propranolol overdose in dogs.  相似文献   

11.
In the present study, we tested the hemodynamic and renal response of 15 sham-operated dogs and 15 dogs with subacute (5-9 days) biliary obstruction to either acute or more chronic hemorrhage. All studies were conducted on sedated but unanaesthetized animals. Both groups were comparable before blood withdrawal with respect to central hemodynamics and renal perfusion. Serum bilirubin was 0.70 +/- 0.09 mg/dL for control dogs and 8.25 +/- 0.14 for experimental dogs (P less than 0.05). In the acute protocol, nine control and seven jaundiced dogs were bled over a period of 30-40 min to lower blood pressure by 19.1 and 19.5%, respectively. Blood volumes required to achieve this drop were 21.3 and 20.05 mL/kg, respectively (P greater than 0.05). Cardiac output declined by an equivalent value for each group and glomerular filtration rate and clearance of p-aminohippurate remained unchanged from control values. In six control and eight experimental dogs, 500 mL of blood was withdrawn over 5 days. Although blood pressure and cardiac output declined for each group by an equivalent amount, renal perfusion remained unchanged for each group from control values. We conclude that acute or chronic hemorrhage of modest degree does not predispose to acute renal insufficiency in dogs with subacute biliary obstruction.  相似文献   

12.
A Livnat  J E Zehr 《Life sciences》1984,35(20):2011-2018
We examined the renin secretory response to bradykinin (BK) injection into the left circumflex coronary artery (LCx) in dogs. Studies were conducted in anesthetized, carotid sinus denervated dogs which had been maintained on a low sodium diet. A 25 ga needle was inserted into the LCx for injection of BK (0.15 micrograms/kg). The rate of renin secretion (RS) was obtained during a 30 min control period, at 5 min after a non-hypotensive hemorrhage (10 ml/kg), at 1, 3 and 5 min after BK injection and at 15 min after the reinfusion of withdrawn blood. Four series of studies were conducted. Series I: BK injection into the LCx, Series II: saline injection into the LCx (sham), Series III: intravenous injection of BK, and Series IV: BK injection into the LCx in dogs with prior renal denervation. RS was suppressed by 80% (P less than 0.05) 5 min after injection of BK into the LCx. Saline injection (sham) into the LCx or intravenous BK administration did not inhibit RS. Furthermore, suppression of RS was not present in dogs with prior renal denervation. These results indicate that BK injection into the LCx causes a prompt reduction in the rate of RS and that this response is reflexively mediated by the renal nerves.  相似文献   

13.
Intramuscular injection of levomepromazine (0.5 mg/kg) 30 min before intravenous injection of 10 mg/kg pentobarbital sodium induces a good surgical anaesthesia in dogs artificially ventilated with 50% N2O and 50% O2 and given 0.01 mg/kg atropine and 0.1 mg/kg pancuronium intravenously before left thoracotomy. This protocol is suitable for the study of the arrhythmogenic effects of acute one-stage coronary artery ligation in anaesthetized dogs. In fact, minor interference with the autonomic nervous system appears to be involved since heart rate is maintained slow and mean aortic pressure is kept within normal limits, as pH, PaO2, anc PaCO2 during subsequent periods. Acute circumflex coronary arterio-venous pedicle ligation close to the left main trunk division resulted in this model in a high incidence of ventricular fibrillation (10 out of 15 dogs) early (7 +/- 4 min) after occlusion. Specific interventions aimed at reducing the incidence of early post-ischemic life-threatening ventricular arrhythmias might be tested in this model.  相似文献   

14.
Using pancreactectomized (PX) dogs, we recently suggested the importance of glucagon in modulating amino acid-induced increases in renal blood flow (RBF) and glomerular filtration rate (GFR). We have now ascertained whether glucagon's modulatory effect is associated with an impairment in renal autoregulation. As renal arterial pressure (RAP) was reduced to 70 mmHg (the lower limit of the autoregulatory range) in both sham-operated control (C) and PX control dogs, RBF and GFR remained at values that were greater than 90% of their respective controls. In control dogs infused with amino acids (0.051 mmol/kg per min, i.v.), RBF and GFR rose by 26 and 27%, respectively, at baseline RAP. As RAP was reduced to 70 mmHg, RBF and GFR fell by 25 and 37%, respectively. In PX dogs infused with either amino acids or glucagon (0.86 pmol/kg per min, i.v.) alone, RBF and GFR did not increase appreciably at baseline RAP. As RAP was reduced to 70 mmHg in these dogs, RBF and GFR remained at values that were greater than 90% of their respective controls. Yet, in PX dogs infused simultaneously with amino acids and glucagon, RBF and GFR rose by 22 and 24%, respectively, at baseline RAP. Moreover, as RAP was reduced to 70 mmHg, RBF and GFR fell by 22 and 31%, respectively. These data suggest that the ability of glucagon to modulate the renal hemodynamic response to amino acid infusion involves an impairment in renal autoregulation.  相似文献   

15.
CI-906 and CI-907, new orally active nonsulfhydryl angiotensin-converting enzyme inhibitors, were examined for antihypertensive effects in unanesthetized hypertensive rats and dogs. In two-kidney, one-clip Goldblatt hypertensive rats, single oral daily doses (0.03-30 mg/kg) produced dose-dependent decreases in blood pressure; a single 3 mg/kg oral dose lowered blood pressure to normotensive levels. In spontaneously hypertensive rats, 30 mg/(kg X day) orally administered for 5 consecutive days achieved the same blood pressure decrease as that obtained on the first day in the renal hypertensive rats. In diuretic-pretreated renal hypertensive dogs, a 10 mg/kg oral dose decreased blood pressure by 25%. No adverse side effects were observed with CI-906 and CI-907 in any of the conscious animals. These studies indicate that CI-906 and CI-907 are potent, orally active antihypertensive agents without any apparent limiting side effects.  相似文献   

16.
Although recent data point to a possible indirect role for galanin in modulating renal blood flow (RBF) and fluid homeostasis in experimental animals, there have been no systematic studies exploring the possible direct effects of the peptide on the mammalian kidney. We ascertained the RBF, glomerular filtration rate (GFR) and plasma glucose responses to direct intrarenal infusion of three progressively increasing doses of synthetic galanin in anesthetized dogs. A 50 ng/kg per min dose (n = 6) failed to affect RBF, GFR or arterial plasma glucose (APG). Yet, a 100 ng/kg per min dose elevated RBF and GFR by 13 and 14%, respectively, while concomitantly increasing APG by 38%. At 200 ng/kg per min, galanin elevated RBF and GFR by 32 and 33%, respectively, while elevating APG by 57%. Intrarenal infusion of glucose (12.5 mg/kg per min; n = 6), reproducing the percentage rise in glucose (62%) elicited by the highest dose of galanin, elevated RBF and GFR by 20 and 23%, respectively. These data indicate that the elevated plasma glucose level, stimulated by galanin infusion, may account for about 63 and 70% of the RBF and GFR responses, respectively, elicited by galanin infusion at the 200 ng dose. The factors mediating the remaining renal hyperemia and hyperfiltration await resolution.  相似文献   

17.
Studies were performed to determine the mechanism by which the antihypertensive agent clonidine increased urine flow. The response of the kidney has been examined in four combinations. The parameters of renal function have been compared during volume expansion by 1.5-2.0% body weight Ringer solution. In the control animals, volume expansion by 2% body weight, resulted in a slight increase in sodium excretion and urine flow. In 10 anesthetized dogs 1.0 microgram/kg/min of clonidine infused i.v. during 30 minutes (the total amount of clonidine infused was 30 micrograms/kg) decreased the arterial blood pressure from 136 +/- 13 mmHg to 127 +/- 12 mmHg and elevated urine flow from 2.95 +/- 1.65 ml/min to 4.34 +/- 1.77 ml/min while the urine osmolality diminished from 399 +/- 107 mosm/l to 265 +/- 90 mosm/l and the glomerular filtration remained constant. In 5 animals 0.1 microgram/kg/min of clonidine was infused into the left renal artery (this dose is corresponding to the renal fraction of the cardiac output) without any effects in the left kidney. 1.0 microgram/kg/min of clonidine infused directly into the left renal artery produced vasoconstriction in the ipsilateral kidney, decreased the glomerular filtration rate and the urine flow. By contrast in the right kidney the urine flow rose without hemodynamic changes, and the urine osmolality became hypoosmotic compared to the plasma. In ten dogs 1.0 microgram/kg/min of clonidine and 1 mU/kg/min of arginine-vasopressin were infused intravenously. The vasopressin infusion superimposed on the clonidine could not inhibit the increase of the urine excretion, and the fall of the urine osmolality. The results suggest that the clonidine increases the renal medullary blood flow possibly via a direct mechanism, decreases the sympathetic outflow to the kidney and via an indirect pathway, mediated by the renin-angiotensin system. The renal medullary flow increase produces a washout of the medullary osmotic gradient, and the water reabsorption diminishes.  相似文献   

18.
Atrial natriuretic factor (ANF 101-126) was compared to the standard diuretics, furosemide and hydrochlorothiazide, and to the vasodilator, acetylcholine in hydrated and dehydrated anesthetized dogs. ANF 101-126 (20 pmole/kg/min, ira) modestly reduced solute-free water clearance in water-loaded dogs and slightly lowered free water reabsorption in dehydrated animals. This pattern of responses most closely resembled those produce by 10 mg/kg, ira of the distally-acting diuretic, hydrochlorothiazide and a natriuretic dose of acetylcholine (2.5 micrograms/kg/min, ira). In contrast, the loop diuretic, furosemide (1 mg/kg, ira) drastically suppressed both free water clearance and reabsorption. ANF 101-126 produced changes in free water handling which were not readily distinguishable from those induced by either hydrochlorothiazide, a distally-acting diuretic, or acetylcholine, a vasodilator.  相似文献   

19.
This study evaluated the effects of synthetic atrial natriuretic factor (ANF) on renal hemodynamics, urinary excretion of electrolytes, norepinephrine (NE), and dopamine (DA); and renal production of renin in anesthetized dogs. Following a bolus (1 micrograms/kg body weight) and infusion (0.1 microgram/kg/min) for 30 min, there was significant increase in urine flow (220 +/- 41%), glomerular filtration rate (72 +/- 14%), and urinary sodium excretion (170 +/- 34%). There was a decrease in renin secretory rate and the concentration ratio of urine NE to DA following ANF was decreased (p less than 0.05). These data suggest that ANF decreases renal production of NE and renin.  相似文献   

20.
It has been shown that monoclonal anti-P-selectin antibody administration protects renal function in an ischemic model of acute renal failure. This study was designed to evaluate the effect of administration of fucoidan, P-selectin inhibitor, on reduction in renal blood flow induced by ischemia/reperfusion injury in the rat. Experiments were performed on male Wistar rats weighting 35-400 g. The systemic blood pressure (mm Hg) (BP) and renal blood flow (RBF) were monitored continuously and renal vascular resistance (RVR) was calculated. After 20 min period of stabilization animals (6 rats in each group) received one of the following agents administered by continuous i.v. infusion during 165 min: 1 mg/kg of body weight of fucoidan (F1), 10 mg/kg of fucoidan (F10), 100 mg/kg of fucoidan (F100), 10 mg/kg of heparin (H), or 0.9% NaCl solution (control). After 15 min of drug administration the renal vessels of the both kidney were occluded with vascular clamps for 60 min. There were no significant changes in the initial values of RBF, RVR and BP between groups. None procedure affected significantly BP during all experiments. In F10 RBF returned to the initial values in 70th min of reperfusion and did not change up to 90th min. This value was significantly higher than respective value in the control group. In F1 group RBF in 90th min was also higher than in the control group, but it was not statistically significant. The dose of heparine and fucoidan used in the H and F100 groups failed to preserve RBF during reperfusion. In the present study we found that administration of fucoidan--P-selectin inhibitor, increases significantly postischemic renal blood flow and may have renoprotective activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号