首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Micaêlo NM  Soares CM 《The FEBS journal》2007,274(9):2424-2436
A comprehensive study of the hydration mechanism of an enzyme in nonaqueous media was done using molecular dynamics simulations in five organic solvents with different polarities, namely, hexane, 3-pentanone, diisopropyl ether, ethanol, and acetonitrile. In these solvents, the serine protease cutinase from Fusarium solani pisi was increasingly hydrated with 12 different hydration levels ranging from 5% to 100% (w/w) (weight of water/weight of protein). The ability of organic solvents to 'strip off' water from the enzyme surface was clearly dependent on the nature of the organic solvent. The rmsd of the enzyme from the crystal structure was shown to be lower at specific hydration levels, depending on the organic solvent used. It was also shown that organic solvents determine the structure and dynamics of water at the enzyme surface. Nonpolar solvents enhance the formation of large clusters of water that are tightly bound to the enzyme, whereas water in polar organic solvents is fragmented in small clusters loosely bound to the enzyme surface. Ions seem to play an important role in the stabilization of exposed charged residues, mainly at low hydration levels. A common feature is found for the preferential localization of water molecules at particular regions of the enzyme surface in all organic solvents: water seems to be localized at equivalent regions of the enzyme surface independently of the organic solvent employed.  相似文献   

2.
The solvent structure in orthorhombic crystals of bovine trypsin has been independently determined by X-ray diffraction to 1.35 A resolution and by neutron diffraction to 2.1 A resolution. A consensus model of the water molecule positions was obtained using oxygen positions identified in the electron density map determined by X-ray diffraction, which were verified by comparison to D2O-H2O difference neutron scattering density. Six of 184 water molecules in the X-ray structure, all with B-factors greater than 50 A2, were found to be spurious after comparison with neutron results. Roughly two-thirds of the water of hydration expected from thermodynamic data for proteins was localized by neutron diffraction; approximately one-half of the water of hydration was located by X-ray diffraction. Polar regions of the protein are well hydrated, and significant D2O-H2O difference density is seen for a small number of water molecules in a second shell of hydration. Hydrogen bond lengths and angles calculated from unconstrained refinement of water positions are distributed about values typically seen in small molecule structures. Solvent models found in seven other bovine trypsin and trypsinogen and rat trypsin structures determined by X-ray diffraction were compared. Internal water molecules are well conserved in all trypsin structures including anionic rat trypsin, which is 65% homologous to bovine trypsin. Of the 22 conserved waters in trypsin, 19 were also found in trypsinogen, suggesting that they are located in regions of the apoprotein that are structurally conserved in the transition to the mature protein. Seven waters were displaced upon activation of trypsinogen. Water structure at crystal contacts is not generally conserved in different crystal forms. Three groups of integral structural water molecules are highly conserved in all solvent structures, including a spline of water molecules inserted between two beta-strands, which may resemble an intermediate in the formation of beta sheets during the folding of a protein.  相似文献   

3.
M Nakasako  M Odaka  M Yohda  N Dohmae  K Takio  N Kamiya  I Endo 《Biochemistry》1999,38(31):9887-9898
The crystal structure analysis of the Fe-type nitrile hydratase from Rhodococcus sp. N-771 revealed the unique structure of the enzyme composed of the alpha- and beta-subunits and the unprecedented structure of the non-heme iron active center [Nagashima, S., et al. (1998) Nat. Struct. Biol. 5, 347-351]. A number of hydration water molecules were identified both in the interior and at the exterior of the enzyme. The study presented here investigated the roles of the hydration water molecules in stabilizing the tertiary and the quaternary structures of the enzyme, based on the crystal structure and the results from a laser light scattering experiment for the enzyme in solution. Seventy-six hydration water molecules between the two subunits significantly contribute to the alphabeta heterodimer formation by making up the surface shape, forming extensive networks of hydrogen bonds, and moderating the surface charge of the beta-subunit. In particular, 20 hydration water molecules form the extensive networks of hydrogen bonds stabilizing the unique structure of the active center. The amino acid residues hydrogen-bonded to those hydration water molecules are highly conserved among all known nitrile hydratases and even in the homologous enzyme, thiocyanate hydrolase, suggesting the structural conservation of the water molecules in the NHase family. The crystallographic asymmetric unit contained two heterodimers connected by 50 hydration water molecules. The heterotetramer formation in crystallization was clearly explained by the concentration-dependent aggregation state of NHase found in the light scattering measurement. The measurement proved that the dimer-tetramer equilibrium shifted toward the heterotetramer dominant state in the concentration range of 10(-2)-1.0 mg/mL. In the tetramer dominant state, 50 water molecules likely glue the two heterodimers together as observed in the crystal structure. Because NHase exhibits a high abundance in bacterial cells, the result suggests that the heterotetramer is physiologically relevant. In addition, it was revealed that the substrate specificity of this enzyme, recognizing small aliphatic substrates rather than aromatic ones, came from the narrowness of the entrance channel from the bulk solvent to the active center. This finding may give a clue for changing the substrate specificity of the enzyme. Under the crystallization condition described here, one 1,4-dioxane molecule plugged the channel. Through spectroscopic and crystallographic experiments, we found that the molecule prevented the dissociation of the endogenous NO molecule from the active center even when the crystal was exposed to light.  相似文献   

4.
The structures at protein-water interface, i.e. the hydration structure of proteins, have been investigated by cryogenic X-ray crystal structure analyses. Hydration structures appeared far clearer at cryogenic temperature than at ambient temperature, presumably because the motions of hydration water molecules were quenched by cooling. Based on the structural models obtained, the hydration structures were systematically analyzed with respect to the amount of water molecules, the interaction modes between water molecules and proteins, the local and the global distribution of them on the surface of proteins. The standard tetrahedral interaction geometry of water in bulk retained at the interface and enabled the three-dimensional chain connection of hydrogen bonds between hydration water molecules and polar protein atoms. Large-scale networks of hydrogen bonds covering the entire surface of proteins were quite flexible to accommodate to the large-scale conformational changes of proteins and seemed to have great influences on the dynamics and function of proteins. The present observation may provide a new concept for discussing the dynamics of proteins in aqueous solution.  相似文献   

5.
Cryogenic X-ray crystallography has heen applied to investigate thehydration structures of proteins. The amount of hydration water moleculesidentified at cryogenic temperature is more than twice those at ambienttemperature, and the structural models of proteins with a lot of hydrationwater molecules have provided much information to elucidate the static anddynamical characteristics of hydration structures of proteins. On proteinsurface, hydration water molecules distribute non-randomly and stillretain the tetrahedral hydrogen-bond geometry as well as in bulk solvent.In addition, water molecules form clathrate-like arrangements to cover thehydrophobic residues exposed to solvent. The standard interaction geometryenables the three-dimensional extension of hydrogen-bond networks aroundprotein molecules and, simultaneously, ensures the concerted reorganizationof hydration structures during the dynamical motion of proteins at work.The hydration structure analyses at cryogenic temperatures may contributeto understanding physical principles governing the dynamics of `molecularmachines' in aqueous environment.  相似文献   

6.
A method of determining the water structure in protein crystals is described using neutron solvent difference maps. These maps are obtained by comparing the changes in diffracted intensities between two data sets, one in which H2O is the major solvent constituent, and a second in which D2O is the solvent medium. To a good first approximation, the protein atom contributions to the scattering intensities in both data sets are equal and cancel, but since H2O and D2O have very different neutron-scattering properties, their differences are accentuated to reveal an accurate representation of the solvent structure. The method also employs a series of density modification steps that impose known physical constraints on the density distribution function in the unit cell by making real space modifications directly to the density maps. Important attributes of the method are that (1) it is less subjective in the assignment of water positions than X-ray analysis; (2) there is threefold improvement in the signal-to-noise ratio for the solvent density; and (3) the iterative density modification produces a low-biased representation of the solvent density. Tests showed that water molecules with as low as 10% occupancy could be confidently assigned. About 300 water sites were assigned for trypsin from the refined solvent density; 140 of these sites were defined in the maps as discrete peaks, while the remaining were found within less-ordered channels of density. There is a very good correspondence between the sites in the primary hydration layer and waters found in the X-ray structure. Most water sites are clustered into H-bonding networks, many of which are found along intermolecular contact zones. The bound water is equally distributed between contacting apolar and polar atoms at the protein interface. A common occurrence at hydrophobic surfaces is that apolar atoms are circumvented by one or more waters that are part of a larger water network. When the effects on surface accessibility by neighboring molecules in the crystal lattice are taken into consideration, only about 29% of the surface does not interface ordered water. About 25% of the ordered water is found in the second hydration sphere. In many instances these waters bridge larger clusters of primary layer waters. It is apparent that, in certain regions of the crystal, the organization of ordered water reflects the characteristics of the crystal environment more than those of trypsin's surface alone.  相似文献   

7.
Water plays an important role in enzyme structure and function in aqueous media. That role becomes even more important when one focuses on enzymes in low water media. Here we present results from molecular dynamics simulations of surfactant-solubilized subtilisin BPN' in three organic solvents (octane, tetrahydrofuran, and acetonitrile) and in pure water. Trajectories from simulations are analyzed with a focus on enzyme structure, flexibility, and the details of enzyme hydration. The overall enzyme and backbone structures, as well as individual residue flexibility, do not show significant differences between water and the three organic solvents over a timescale of several nanoseconds currently accessible to large-scale molecular dynamics simulations. The key factor that distinguishes molecular-level details in different media is the partitioning of hydration water between the enzyme and the bulk solvent. The enzyme surface and the active site region are well hydrated in aqueous medium, whereas with increasing polarity of the organic solvent (octane --> tetrahydrofuran --> acetonitrile) the hydration water is stripped from the enzyme surface. Water stripping is accompanied by the penetration of tetrahydrofuran and acetonitrile molecules into crevices on the enzyme surface and especially into the active site. More polar organic solvents (tetrahydrofuran and acetonitrile) replace mobile and weakly bound water molecules in the active site and leave primarily the tightly bound water in that region. In contrast, the lack of water stripping in octane allows efficient hydration of the active site uniformly by mobile and weakly bound water and some structural water similar to that in aqueous solution. These differences in the active site hydration are consistent with the inverse dependence of enzymatic activity on organic solvent polarity and indicate that the behavior of hydration water on the enzyme surface and in the active site is an important determinant of biological function especially in low water media.  相似文献   

8.
The crystal structure of bovine pancreatic beta-trypsin (BPT) has been determined from a novel orthorhombic crystal form which contains substantially more solvent (filling 57% of the volume of the unit cell) than previously determined orthorhombic (44%) and trigonal (37%) BPT structures. The native and benzamidine-inhibited crystal structures of BPT in ammonium sulphate at pH 5.3 have been determined for the new form by molecular replacement techniques. The structures have been refined at 1.5 A resolution with final R-values of 16.7% and 16.9%, respectively. Comparison with the previously refined old orthorhombic forms shows that the overall conformation of the protein backbone is highly conserved. A great number of previously undefined side-chains have been located in density. At the C terminus an extra ion pair involving lysines 87 and 107 has been revealed. A far more detailed picture of the ordered solvent structure has been derived. Thirty water clusters have been identified. A large water network extends from the calcium binding site to the activation area and the autolysis loop. There is evidence for a water channel reaching from the depth of the specificity pocket to the nearby protein surface which might be involved in the displacement of water molecules upon substrate binding. A sulphate anion which forms hydrogen bonds to the active site residues His57, Ser195 and Gly193 was for the first time positioned in clearly defined electron density. Interaction with the sulphate ion may explain the increase in the pKa value of His57 at high sulphate concentrations which was observed by nuclear magnetic resonance studies of a bacterial serine protease both in crystalline form and in solution. Thus, a His-Ser hydrogen bond will not exist in solvents containing sulphate at low pH (up to at least 6.8) where the imidazole of His57 is protonated. The new crystal form is of considerable interest for substrate binding studies. Wide solvent channels should allow diffusion of large substrates (comparable in size to, e.g. pancreatic trypsin inhibitor) into the enzyme crystal. The active site is accessible; intermolecular contact areas are further remote from the active site than in the old orthorhombic form.  相似文献   

9.
The solvent molecules found around crystallized oligonucleotides after X-ray refinement are analysed in terms of interaction sites to bases, phosphates and sugars in the three main forms of nucleic acid structures, the A-form, the B-form and the Z-form. The average numbers of contacts to nucleic acid atoms made by solvent molecules are identical in the three forms, but it appears that the average number of contacts solvent molecules make with each other depends on the resolution of the structure. The phosphate anionic oxygen atoms are the most hydrated, while the O(3′) and O(5′) backbone atoms and the ring oxygen atom O(4′) are the least hydrated. Among the hydrophilic atoms of the bases, there is a modulation of the relative water affinities with the nucleic acid form. Numerous hydration sites are such that water molecules can bridge hydrophilic atoms of the same residue, of adjacent residues on the same strand, of distant residues on the two strands, or belonging to symmetry-related residues. Through the helical periodicity of the nucleic acid structure, those bridges can lead to regular and striking hydration networks involving several water molecules and characteristic of the nucleic acid form. Solvent dynamics, as seen by temperature factor versus occupancy plots, seems intimately related to nucleic acid structure and dynamics, since they depend on hydration sites around the nucleic acids.  相似文献   

10.
Here we describe the large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase. Glutamate dehydrogenase from Thermococcus profundus is composed of six identical subunits of M(r) 46K, each with two distinct domains of roughly equal size separated by a large active-site cleft. The enzyme in the unligated state was crystallized so that one hexamer occupied a crystallographic asymmetric unit, and the crystal structure of the hexamer was solved and refined at a resolution of 2.25 A with a crystallographic R-factor of 0.190. In that structure, the six subunits displayed significant conformational variations with respect to the orientations of the two domains. The variation was most likely explained as a hinge-bending motion caused by small changes in the main chain torsion angle of the residue composing a loop connecting the two domains. Small-angle X-ray scattering profiles both at 293 and 338 K suggested that the apparent molecular size of the hexamer was slightly larger in solution than in the crystalline state. These results led us to the conclusion that (i) the spontaneous domain motion was the property of the enzyme in solution, (ii) the domain motion was trapped in the crystallization process through different modes of crystal contacts, and (iii) the magnitude of the motion in solution was greater than that observed in the crystal structure. The present cryogenic diffraction experiment enabled us to identify 1931 hydration water molecules around the hexamer. The hydration structures around the subunits exhibited significant changes in accord with the degree of the domain movement. In particular, the hydration water molecules in the active-site cleft were rearranged markedly through migrations between specific hydration sites in coupling strongly with the domain movement. We discussed the cooperative dynamics between the domain motion and the hydration structure changes in the active site of the enzyme. The present study provides the first example of a visualized hydration structure varying transiently with the dynamic movements of enzymes and may form a new concept of the dynamics of multidomain enzymes in solution.  相似文献   

11.
Multiple solvent crystal structures (MSCS) of porcine pancreatic elastase were used to map the binding surface the enzyme. Crystal structures of elastase in neat acetonitrile, 95% acetone, 55% dimethylformamide, 80% 5-hexene-1,2-diol, 80% isopropanol, 80% ethanol and 40% trifluoroethanol showed that the organic solvent molecules clustered in the active site, were found mostly unclustered in crystal contacts and in general did not bind elsewhere on the surface of elastase. Mixtures of 40% benzene or 40% cyclohexane in 50% isopropanol and 10% water showed no bound benzene or cyclohexane molecules, but did reveal bound isopropanol. The clusters of organic solvent probe molecules coincide with pockets occupied by known inhibitors. MSCS also reveal the areas of plasticity within the elastase binding site and allow for the visualization of a nearly complete first hydration shell. The pattern of organic solvent clusters determined by MSCS for elastase is consistent with patterns for hot spots in protein-ligand interactions determined from database analysis in general. The MSCS method allows probing of hot spots, plasticity and hydration simultaneously, providing a powerful complementary strategy to guide computational methods currently in development for binding site determination, ligand docking and design.  相似文献   

12.
The Fv fragment from an anti-dansyl antibody was optimally crystallized into two crystal forms having slightly different lattice dimensions at pH 5.25 and 6.75. The two crystal structures were determined and refined at high resolution at 112 K (at 1.45 A for the crystal at pH 5.25 and at 1.55 A for that at pH 6.75). In the two crystal structures, marked differences were identified in the first half of CDRH3 s having an amino acid sequence of Ile95H-Tyr96H-Tyr97H-His98H-Tyr99H-Pro1 00H-Trp100aH-Phe100bH-Ala101H- Tyr102H. NMR pH titration experiments revealed the p Kavalues of four histidine residues (His27dL, His93L, His55H and His98H) exposed to solvent. Only His98H (p Ka=6.3) completely changed its protonation state between the two crystallization conditions. In addition, the environmental structures including hydration water molecules around the four histidine residues were carefully compared. While the hydration structures around His27dL, His93L and His55H were almost invariant between the two crystal structures, those around His98Hs showed great difference in spite of the small conformational difference of His98H between the two crystal structures. These spectroscopic and crystallographic findings suggested that the change in the protonation state in His98H was responsible for the structural differences between pH 5.25 and 6.75. In addition, the most plausible binding site of the dansyl group was mapped into the present structural models with our previous NMR experimental results. The complementarity-determining regions H1, H3 and the N-terminal region in the VH domain formed the site. The side-chain of Tyr96H occupied the site and interacted with Phe27H of H1, giving a clue for the binding mode of the dansyl group in the site.  相似文献   

13.
The crystal structure of the double-helical B-DNA dodecamer of sequence C-G-C-G-A-A-T-T-C-G-C-G has been solved and refined independently in three forms: (1) the parent sequence at room temperature; (2) the same sequence at 16 K; and (3) the 9-bromo variant C-G-C-G-A-A-T-TBrC-G-C-G at 7 °C in 60% (v/v) 2-methyl-2.4-pentanediol. The latter two structures show extensive hydration along the phosphate backbone, a feature that was invisible in the native structure because of high temperature factors (indicating thermal or static disorder) of the backbone atoms. Sixty-five solvent peaks are associated with the phosphate backbone, or an average of three per phosphate group. Nineteen other molecules form a first shell of hydration to base edge N and O atoms within the major groove, and 36 more are found in upper hydration layers. The latter tend to occur in strings or clusters spanning the major groove from one phosphate group to another. A single spermine molecule also spans the major groove. In the minor groove, the zig-zag spine of hydration that we believe to be principally responsible for stabilizing the B form of DNA is found in all three structures. Upper level hydration in the minor groove is relatively sparse, and consists mainly of strings of water molecules extending across the groove, with few contacts to the spine below. Sugar O-1′ atoms are closely associated with water molecules, but these are chiefly molecules in the spine, so the association may reflect the geometry of the minor groove rather than any intrinsic attraction of O-1′ atoms for hydration. The phosphate O-3′ and O-5′ atoms within the backbone chain are least hydrated of all, although no physical or steric impediment seems to exist that would deny access to these oxygen atoms by water molecules.  相似文献   

14.
This paper reports an incoherent quasielastic neutron scattering study of the single particle, diffusive motions of water molecules surrounding a globular protein, the hen egg-white lysozyme. For the first time such an analysis has been done on protein crystals. It can thus be directly related and compared with a recent structural study of the same sample. The measurement temperature ranged from 100 to 300 K, but focus was on the room temperature analysis. The very good agreement between the structural and dynamical studies suggested a model for the dynamics of water in triclinic crystals of lysozyme in the time range approximately 330 ps and at 300 K. Herein, the dynamics of all water molecules is affected by the presence of the protein, and the water molecules can be divided into two populations. The first mainly corresponds to the first hydration shell, in which water molecules reorient themselves fivefold to 10-fold slower than in bulk solvent, and diffuse by jumps from hydration site to hydration site. The long-range diffusion coefficient is five to sixfold less than for bulk solvent. The second group corresponds to water molecules further away from the surface of the protein, in a second incomplete hydration layer, confined between hydrated macromolecules. Within the time scale probed they undergo a translational diffusion with a self-diffusion coefficient reduced approximately 50-fold compared with bulk solvent. As protein crystals have a highly crowded arrangement close to the packing of macromolecules in cells, our conclusion can be discussed with respect to solvent behavior in intracellular media: as the mobility is highest next to the surface, it suggests that under some crowding conditions, a two-dimensional motion for the transport of metabolites can be dominant.  相似文献   

15.
Hydration of transfer RNA molecules: a crystallographic study   总被引:3,自引:0,他引:3  
E Westhof  P Dumas  D Moras 《Biochimie》1988,70(2):145-165
Four crystal structures of transfer RNA molecules were refined at 3 A resolution with the inclusion of the solvent molecules found in the difference maps: yeast tRNA-phe in the orthorhombic form, yeast tRNA-phe in the monoclinic form and yeast tRNA-asp in the A and B forms. Over 100 solvent molecules were located in each tRNA crystal. Several hydration schemes are found repeatedly in the 4 crystals. The tertiary interactions in the corner of the L-shaped molecule attract numerous solvent molecules which bridge the ribose hydroxyl O(2') atoms, base exocyclic atoms and phosphate anionic oxygen atoms. Conservation of bases leads to conservative localized hydration patterns. Several solvent molecules are found stabilizing unusual base pairs like the G-U pairs and those involving the pseudouridine base. Water bridges between the O(2') and the exocyclic atom O2 of pyrimidines or the N3 atom of purines are common. Water bridges occur frequently between successive anionic oxygen atoms of each strand as well as between N7 or other exocyclic atoms of successive bases in the major groove. Magnesium ions or spermine molecules are found to bind in the major groove of tRNA helices without specific interactions.  相似文献   

16.
The crystal structure of the light-harvesting phycobiliprotein, c-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus has been refined to 1.6 A resolution based on the previously determined lower resolution structure (PDB entry 1I7Y). The improved data was collected using synchrotron radiation at 100 K. The significantly improved crystallographic data has lead to improved calculated electron density maps, allowing the unambiguous positioning of all protein and co-factor atoms and the positioning of 377 solvent molecules. The positions of solvent molecules at specific sites important for stabilization of different levels of self-assembly of the phycobilisome structure were identified and the bonding network is described. The presence of solvent molecules in the vicinity of the co-factors and in intermolecular spaces is identified and their possible roles are suggested. All three of the phycocyanobilin co-factors bind water molecules at specific sites between the propionic acid side chains. Molecular dynamic (MD) simulations support that these special waters have a role in stabilization of this conformation. On the basis of the crystal packing reported here and in comparison to other phycobiliprotein crystal forms, we have analyzed the roles of specific sites on the formation of the phycobilisome complex.  相似文献   

17.
Although internal water molecules are essential for the structure and function of many proteins, the structural and physical factors that govern internal hydration are poorly understood. We have examined the molecular determinants of internal hydration systematically, by solving the crystal structures of variants of staphylococcal nuclease with Gln-66, Asn-66, and Tyr-66 at cryo (100 K) and room (298 K) temperatures, and comparing them with existing cryo and room temperature structures of variants with Glu-66, Asp-66, Lys-66, Glu-92 or Lys-92 obtained under conditions of pH where the internal ionizable groups are in the neutral state. At cryogenic temperatures the polar moieties of all these internal side chains are hydrated except in the cases of Lys-66 and Lys-92. At room temperature the internal water molecules were observed only in variants with Glu-66 and Tyr-66; water molecules in the other variants are probably present but they are disordered and therefore undetectable crystallographically. Each internal water molecule establishes between 3 and 5 hydrogen bonds with the protein or with other internal water molecules. The strength of interactions between internal polar side chains and water molecules seems to decrease from carboxylic acids to amides to amines. Low temperature, low cavity volume, and the presence of oxygen atoms in the cavity increase the positional stability of internal water molecules. This set of structures and the physical insight they contribute into internal hydration will be useful for the development and benchmarking of computational methods for artificial hydration of pockets, cavities, and active sites in proteins.  相似文献   

18.
Roy A  Taraphder S 《Biopolymers》2006,82(6):623-630
We have investigated the possible proton transfer pathways from the surface of the protein to the zinc-bound water molecule in the mutant His-64-Ala of human carbonic anhydrase II. Starting with an input of known crystallographic structures of the mutant, we model the proton pathways as hydrogen-bonded networks of proton conducting groups and bound solvent molecules. No proton path is detected in the mutant, in close agreement with the experimental observation of a 20-fold decrease in its catalytic efficiency compared to the wild-type enzyme. We also investigate in detail changes in hydration structure at the active site of the mutant and the resulting proton paths in the presence of an exogenous proton donor 4-methylimidazole (4-MI). The proton transfer pathways thus detected are correlated to the observed chemical rescue of catalytic activity by 4-MI.  相似文献   

19.
Water-protein interactions from high-resolution protein crystallography   总被引:1,自引:0,他引:1  
To understand the role of water in life at molecular and atomic levels, structures and interactions at the protein-water interface have been investigated by cryogenic X-ray crystallography. The method enabled a much clearer visualization of definite hydration sites on the protein surface than at ambient temperature. Using the structural models of proteins, including several hydration water molecules, the characteristics in hydration structures were systematically analysed for the amount, the interaction geometries between water molecules and proteins, and the local and global distribution of water molecules on the surface of proteins. The tetrahedral hydrogen-bond geometry of water molecules in bulk solvent was retained at the interface and enabled the extension of a three-dimensional chain connection of a hydrogen-bond network among hydration water molecules and polar protein atoms over the entire surface of proteins. Networks of hydrogen bonds were quite flexible to accommodate and/or to regulate the conformational changes of proteins such as domain motions. The present experimental results may have profound implications in the understanding of the physico-chemical principles governing the dynamics of proteins in an aqueous environment and a discussion of why water is essential to life at a molecular level.  相似文献   

20.
Water molecules make a hydration structure with the network of hydrogen bonds, covering on the surface of proteins. To quantitatively estimate the contribution of the hydration structure to protein stability, a series of hydrophilic mutant human lysozymes (Val to Ser, Tyr, Asp, Asn, and Arg) modified at three different positions on the surface, which are located in the alpha-helix (Val-110), the beta-sheet (Val-2), and the loop (Val-74), were constructed. Their thermodynamic parameters of denaturation and crystal structures were examined by calorimetry and by x-ray crystallography at 100 K, respectively. The introduced polar residues made hydrogen bonds with protein atoms and/or water molecules, sometimes changing the hydration structure around the mutation site. Changes in the stability of the mutant proteins can be evaluated by a unique equation that considers the conformational changes resulting from the substitutions. Using this analysis, the relationship between the changes in the stabilities and the hydration structures for mutant human lysozymes substituted on the surface could be quantitatively estimated. The analysis indicated that the hydration structure on protein surface plays an important role in determining the conformational stability of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号