首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Martinez  L. A.  Buschmann  A. H. 《Hydrobiologia》1996,326(1):341-345
Tank cultivation of Gracilaria using fish effluents has permitted a production of 48 kg m–2 yr–1 and can reduce the dissolved nitrogen loads in the seawater. We report the yield, gel strength, gelling and melting point of agar from Gracilaria cultivated in tanks with seawater previously utilized in intensive, land-based salmon cultures and compared to a control using directly pumped seawater, over a study period of 22 months. The results show that the highest agar yield (20 to 22%) was obtained when Gracilaria was cultivated with pure seawater as compared to the fish effluents. The gel strength, gelling and melting point were higher in the agar obtained from algae cultured with fish effluents. During the spring, the gel strength, gelling and melting point increased in tanks with fish effluents and decreased in tanks with a supply of pure seawater.  相似文献   

2.
Seaweeds cultivated in traditional land‐based tank systems usually grow under carbon‐limited conditions and consequently have low production rates, if no costly artificial source of inorganic carbon is supplied. In integrated aquaculture, the fish effluents provide an extra source of dissolved inorganic carbon (DIC) to seaweeds due to fish respiration. To evaluate if the tetrasporophyte of Asparagopsis armata (Harv.) F. Schmitz (the Falkenbergia stage) is carbon limited when cultivated with effluents of a fish (Sparus aurata) farm in southern Portugal, we characterized the DIC forms in the water, assessed the species photosynthetic response to the different DIC concentrations and pH values, and inferred for the presence of a carbonic anhydrase (CA)–mediated mechanism. Results showed that A. armata relies mainly on CO2 to meet photosynthetic needs. Nevertheless, from pH 7.5 upward, the CO2 supply to RUBISCO seems to derive also from the external dehydration of HCO3 mediated by CA. The contribution of this mechanism was essential for A. armata to attain fully saturated O2‐evolution rates at the natural seawater DIC concentration (2–2.2 mM) and pH values (~8.0). We revealed in this study that seaweeds cultivated in fish‐farm effluents benefit not only from a rich source of ammonia but also from an important and free source of DIC for their photosynthesis. If supplied at relatively high turnover rates (~100 vol · d?1), fish‐farm effluents provide enough carbon to maximize the photosynthesis and growth even for species with low affinity for HCO3, avoiding the artificial and costly supply of inorganic carbon to seaweed cultures.  相似文献   

3.
The acute toxicity of nitrite (NO?2) to salmonids is strongly ameliorated by chloride (Cl?) ions rendering it almost harmless in most fresh waters apart from those with low Cl? content. In Cl? poor fresh water external NO?2 is concentrated in the blood plasma until it is at approximately the same molar concentration as haemoglobin (about 8 mmol) and at this point most of the haemoglobin has been oxidized to methaemoglobin this being a contributory cause of death. Two theories are advanced to account for NO?2 concentration in the blood. The first supposes that gills are impermeable to NO?2 but allow its conjugate acid nitrous acid (HNO2) to diffuse into the blood where it dissociates according to the blood pH value. Thus NO?2 will accumulate in the blood plasma if it has a higher pH value than the water. The second supposes that the Cl? uptake mechanism in the freshwater gill has an affinity for NO?2 and accounts for the fact that NO?2 entry to the blood is suppressed when external Cl? is present in significant amounts. The results also suggest that NO?2 and Cl? behave similarly as diffusing ions. Thus NO?2 diffusion into the blood of seawater fish and from the blood of NO?2 loaded freshwater fish occurs at approximately the same rate as the corresponding Cl? fluxes. Nitrite loss from seawater fish is thought to be mainly by diffusion although there is some evidence for the active Cl? extrusion mechanism having a weak affinity for nitrite.  相似文献   

4.
The feasibility of using fish farm effluents was evaluated as a source of inorganic nutrients for mass production of marine diatoms. Batch cultures were conducted from May to July 1995 in 16-L outdoor rectangular tanks, homogenized by gentle aeration (0.2 L air L–1 h–1). The effluents from the two fish farms studied were both characterized by high concentrations of inorganic materials (NH4-N, PO4-;P, Si(OH)4-Si) and were shown to support production of marine diatoms. Moreover, periodic measurements of inorganic matter levels in the cultures showed that clearance was efficacious (90% in 3–5 days). Water purification efficiency and culture productivity were further increased through appropriate nutrient balancing. When effluents were limited in silicate, addition of Na2SiO3 induced a significant increase in both diatom biomass and nutrient removal efficiency. In this case, up to 720 000 cell mL–1 were produced dominated bySkeletonema costatum. By contrast, in effluents loaded with silicate, adjustment of the N:P:Si ratio by NH4-N and PO4-P supplementation then gave increased biomass production. In this case, the maximum cell density found was 450 000 cell mL–1, dominated byChaetoceros spp.Author for correspondence  相似文献   

5.
Stable carbon and nitrogen isotope ratios were used to elucidate primary carbon sources and trophic relationships of the fish and shrimp community in the Klong Ngao mangrove ecosystem, southern Thailand. There were no significant differences in isotopic compositions of biota between mangrove and offshore sites (Welch–Aspin test). The δ15N values of eight fish species and two shrimp species at both sites were also not significantly different by the test, meaning that at both sites they feed on the same diets due to the discharge of large quantities of mangrove sediments. The δ15N isotopic enrichment of consumers suggested that there are four trophic levels in the Klong Ngao food web, with at least two fish species capable of switching feeding strategies and thus altering their apparent trophic positions. Phytoplankton culture experiments indicated that mangrove-derived sediments could play an important role in stimulating phytoplankton growth for low turbidity offshore areas, thus providing an alternate food source. The isotopic associations among sources and consumers indicated that mangroves were the major carbon source supporting aquatic food webs in the Klong Ngao ecosystem.  相似文献   

6.
Post-treatments are necessary if anaerobic effluents need to be discharged into surface waters, because anaerobic digestion alone is not able to produce effluents that can meet the discharge standards applied in most industrialized countries, particularly for suspended solids, particulate COD, nitrogen, phosphorus and sulphides. This paper has the aim to present some results obtained in the recent years in our laboratory, where different comprehensive processes that include anaerobic digestion have been studied. Discussion will regard: 1) the ANANOX (ANaerobic-ANoxic-OXic) process for the treatment of municipal wastewater; 2) a process studied for the biological removal of C, N and P from piggery wastewater that has a hybrid anaerobic/anoxic reactor as the first treatment step; 3) the use of a Sequencing Batch Reactor for the post-treatment of digested cheese whey mixed with cheese factory cleaning waters.Abbreviations ABR Anaerobic Baffled Reactor - Bv organic volumetric loading rate (gCOD·L-1·d-1) - BV bed volumes - F/M food to microorganism ratio or sludge loading rate (gCOD·g.VSS-1·d-1) - HRT hydraulic retention time (t) - JHB University of Johannesburg nutrient removal process - p.e. person equivalent - Qrd recycle for denitrification flow rate - Qrs sludge recycle flow rate - SBR Sequencing Batch Reactor - TKN Total Kjeldahl Nitrogen - VCF Volumetric Concentration Factor (vol. permeate/vol. retentate)  相似文献   

7.
Ammonia in estuaries and effects on fish   总被引:3,自引:0,他引:3  
This review aims to explore the biological responses of fish in estuaries to increased levels of environmental ammonia. Results from laboratory and field studies on responses of fish to varying salinity and their responses increased ammonia will be evaluated, although studies which examine responses to ammonia, in relation to varying salinity, pH and temperature together are rare. In a survey of British estuaries the continuous measurement of total ammonia showed values that ranged from background levels increasing up to c. 10 mg N l?1 although higher values have been noted sporadically. In outer estuaries pH values tended to stabilize towards sea water values (e.g. c. pH 8). Upper reaches of estuaries are influenced by the quality of their fresh waters sources which can show a wide range of pH and water quality values depending on geological, climatic and pollution conditions. In general the ammonia toxicity (96 h LC50) to marine species (e.g. 0·09–3·35 mg l?1 NH3) appears to be roughly similar to freshwater species (e.g. 0·068–2·0 mg l?1 NH3). Ammonia toxicity is related to differences between species and pH rather than to the comparatively minor influences of salinity and temperature. In the marine environment the toxicity of ionized ammonia should be considered. The water quality standard for freshwater salmonids of 21 μg l?1 NH3–N was considered to be protective for most marine fish and estuarine fish although the influence of cyclical changes in pH, salinity and temperature were not considered. During ammonia exposures, whether chronic or episodic, estuarine fish may be most at risk as larvae or juveniles, at elevated temperatures, if salinity is near the seawater value and if the pH value of the water is decreased. They are also likely to be at risk from ammonia intoxication in waters of low salinity, high pH and high ammonia levels. These conditions are likely to promote ammonia transfer from the environment into the fish, both as ionized and unionized ammonia, as well as promoting ammonia retention by the fish. Fish are more likely to be prone to ammonia toxicity if they are not feeding, are stressed and if they are active and swimming. Episodic or cycling exposures should also be considered in relation to the rate at which the animal is able to accumulate and excrete ammonia and the physiological processes involved in the transfer of ammonia. In the complex environment of an estuary, evaluation of ammonia as a pollutant will involve field and laboratory experiments to determine the responses of fish to ammonia as salinity and temperature vary over a period of time. It will also be necessary to evaluate the responses of a variety of species including estuarine residents and migrants.  相似文献   

8.
9.
Seasonal variations in nitrate and organic nitrogen content along the wing and midrib of Alaria esculenta (L.) Grev. lamina have been compared with the NO3- cycle in the sea and yearly growth pattern of the blade. Throughout the year, organic N is highest in blade meristem, while NO3- distribution is less consistent. NO3-in blades reaches a peak in March (ca. 25–28 μM), whereas maximum relative accumulation, 3,300X ambient seawater level, occurs in October. Content of NO3- and organic N in the blade decreases in concert with the decline of seawater NO3- in April. The three periods of rapid blade growth are not correlated with a specific organic N content in the blade meristem. Laboratory experiments suggest that low NO3- and elevated seawater temperature are not the major factors retarding Alaria blade growth during summer and early fall in nature.  相似文献   

10.
Water samples were collected from three sites located in the middle reach of the Njoro River, Kenya, and analysed for total phosphorus (TP), orthophosphate, ammonia‐nitrogen, and nitrate‐nitrogen to evaluate stressor sources (e.g. factories and wastewater ponds) and the general stream water quality. The stream surface water was also analysed for biochemical oxygen demand (BOD5) to provide an overview of organic matter loading. Mugo, Egerton Bridge and the canning factory sites of the Njoro River had low water quality which is likely to be due to poor farming, partially treated effluents and poor provision of sanitation facilities to the riparian communities. The concentrations of the selected nutrients did not differ significantly among the three sites, presumably due to pollution of the whole stream reach by the catchment nutrient sources. High phosphate concentrations (i.e. ~0.76 mgPO4 l?1 and ~0.87 mgTP l?1) at Canning Factory were recorded during the low flow dry season. Nitrate‐nitrogen concentrations varied significantly with water discharge which explained between 63 and 87% of the nutrient variability in the three sites. BOD5 differed significantly among the three sites, with historical effects of wastewater and factory effluent discharge being reflected in the results of Egerton Bridge and Canning Factory. The concentrations of ammonia‐nitrogen, TP and orthophosphate were higher in the wastewater than in the river water whereas nitrate‐nitrogen was lower. This study indicates that the Njoro River is stressed by nutrients from the activities within its catchment. With the increasing population, the nutrient load to the river will continue to increase and the water quality will continue to deteriorate. Reductions of nutrient loads into the river as well as provision of sanitation facilities to the riparian communities are needed to control further water degradation.  相似文献   

11.
1. Benthivorous fish may play an important role in internal nutrient loading. Ruffe are highly specialised, feeding exclusively on bottom animals; thus all nutrients released via their feeding are derived from the bottom and are new to the water column. The fish can also release nutrients from the sediment through resuspension while searching for food. 2. The aim of this study was to estimate experimentally in the laboratory the effect on water quality of resuspension and nutrient release by ruffe and bottom animals (chironomids). 3. Ruffe released nutrients during 8 h experiments as follows: total P 1.4, dissolved PO4 0.6, total N 24.0 and NH4‐N 15.9 μg g?1 WW h?1. A decreasing trend in mass‐specific release was observed over time, probably because of starvation. The mass‐specific release of total N and NH4‐N decreased as the mean weight of fish increased. The mean ratio of excreted N : P was 32. 4. In 26 h experiments with sediment and both ruffe and chironomids, ruffe increased nutrient concentrations and turbidity values significantly but chironomids had an effect only on turbidity. Neither ruffe nor chironomids affected the ratio of inorganic N : P concentrations. An interaction between ruffe and chironomids was found for turbidity. 5. According to these results, benthivorous fish may increase nutrient concentrations in the water column and need to be taken into account when estimating internal loading.  相似文献   

12.
自工业革命以来,在人类活动的影响下,大气CO_2浓度持续增加,其中有大约1/3被海洋吸收,造成海水pH值降低和碳酸盐平衡体系的波动,即"海洋酸化"现象(Ocean Acidification)。据联合国政府间气候变化专门委员会预测,如果以当前速率排放CO_2,到21世纪末表层海水的pH值将降低至7.7—7.8,而到2300年将降低至7.3—7.4。作为鱼类对外界刺激最直接的反应,行为在鱼类的繁衍、捕食、避敌等过程中发挥着关键作用。基于此,海洋酸化对海洋鱼类行为的影响受到了越来越多关注。现有研究结果显示海洋酸化不仅会显著干扰包括嗅觉、听觉、视觉在内的感官功能,还将对神经生理功能和细胞信号传导等过程产生不利影响,从而影响海洋鱼类的捕食、逃避捕食、行为侧向化、栖息地识别与选择和集群等行为。行为异常将直接损害鱼类种群的生存与繁衍,继而威胁海洋生态系统的稳定和功能。我国海岸线漫长,海域辽阔,鱼类资源丰富,鱼类捕捞和养殖业发达。但与国外相比,国内此类研究十分匮乏,仅见零星报道。这种现状极大的制约了我国相关应对策略的制定,对我国海洋生态保育和渔业发展非常不利。此外,当前的研究也存在研究范围窄、研究手段不合理、行为效应、潜在机制及生态风险考察不足、研究结果难以整合等问题亟待改进。为此,研究对国内外相关研究进展进行了梳理和总结,并对未来的研究进行展望,以期弥补上述缺憾,促进国内相关研究的广泛开展。  相似文献   

13.
The nitrogen isotope ratio (δ15N) in tissues of native macroalgae was evaluated as a means of indicating the intensity and spatial extent of organic contamination due to disposal of waste from land-based marine fish farms (LBMFFs). Three species of macroalgae from the genus Fucus and the green macroalgae Codium tomentosum were selected for study. The study was carried out at seven flat marine fish farms located in Galicia (NW Spain). Tests were carried out to determine the intra-annual variation in δ15N values and any differences between selected macroalgae. The δ15N values enrichment was observed close to the disposal point, and δ15N values varied more widely throughout the year (±5.57 ‰) at sites affected by the marine fish farm effluent compared to natural conditions (±2 ‰). No significant differences in the isotopic signals were observed in the different species studied (standard major axis). The δ15N values of macroalgae may be an ideal means of detecting the presence of LBMFFs effluents.  相似文献   

14.
Physiological responses of the euryhaline red drum, Sciaenops ocellatus, to chloride salt addition, low salinity, and high sulfate concentration were measured. Survival was increased by addition of calcium chloride (CaCl2) or magnesium chloride (MgCl2) to dilute artificial seawater (0.2 ppt salinity). Although survival and routine metabolic rates were greater in MgCl2 treatments, growth and feed efficiency were greater in CaCl2 treatments. Marginal metabolic scope increased when CaCl2 or MgCl2 were added to dilute artificial seawater. There was a strong positive linear relationship (p=0.0001, r=0.91) between fish survival and salinity of artificial seawater dilutions over the salinity range 0.1 to 3.0 ppt. Monovalent ion concentrations in red drum plasma varied; whereas, divalent ion concentrations were relatively constant. Survival and growth were not affected by high sulfate concentrations (2000 mg l-1) in 3.0 ppt artificial seawater supplemented with either sodium sulfate or magnesium sulfate. Routine metabolic rate and marginal metabolic scope of red drum exposed to high sulfate concentrations were slightly, but not significantly, lower than those of red drum in 3 ppt artificial seawater.  相似文献   

15.
Identification of sources of nutrient pollution is a first step towards remediation of eutrophication in aquatic ecosystems. The stable isotope nitrogen-15 (15N) is a natural indicator of nitrogen (N) source and biogeochemistry. We sampled Lake Taihu, a hyper-eutrophic lake in eastern China, and major inflow rivers during winter and spring of 2004 to determine concentration and δ15N of nitrate (NO 3 ). Nitrate concentrations in rivers and the lake were higher, in most cases, in spring than in winter. δ15N of NO 3 was not correlated with NO 3 concentration, indicating that concentrations alone are insufficient to describe N sources. Results show that riverine N inputs in winter are influenced by discharge of human sewage into rivers and the lake. In spring, however, wastewater inputs to the lake appear to be balanced by fertilizers, atmospheric, and/or N2 fixation sources. Rain NO 3 concentrations were seasonally high and isotopically enriched compared to potential sources, indicating that rain may be a significant or even dominant source of N to the lake during the rainy season. δ15N values show that urbanized areas of the lake have more sewage-derived N than those areas dominated by agriculture, aquaculture, or industry. This observation has important implications for human health, since Lake Taihu is a source of drinking and irrigation water as well as fish for human consumption.  相似文献   

16.
The nitrogen (N) budget calculation approach is a useful means of evaluating the impact of human activity on the N cycle. Field scale N budget calculations may ignore the interactions between landscapes, and regional scale calculations rely on statistical data and indirect parameters. Watershed scale budget calculations allow for a more direct quantification of N inputs and outputs. We conducted N budget calculations for a rice paddy-dominated agricultural watershed in eastern China for 2007?C2009, based on intensive monitoring of stream N dynamics, atmospheric deposition, ammonia (NH3) volatilization and household interviews about N-related agricultural activities. The results showed that although total N input to the watershed was up to 280 kg N ha?1 year?1, riverine discharge was only 4.2 kg N ha?1 year?1, accounting for 1.5% of the total N input, and was further reduced to 2.0 kg N ha?1 year?1 after reservoir storage and/or denitrification removal. The low riverine N output was because of the characteristics of the rice paddy-dominated landscape, which intercepts run-off and enhances soil denitrification. The watershed actually purified the N in rainwater, as N concentrations in river discharge were much lower than those in rain water. Major N outputs included food/feed export, NH3 volatilization from chemical fertilizer and manure, and emissions from crop residue burning. Net reactive gaseous emissions (emissions minus deposition) accounted for 5.5% of the total N input, much higher than riverine discharge. Therefore, the agricultural N cycle in such paddy-dominated watersheds impacts the environment mainly through gas exchange rather than water discharge.  相似文献   

17.
Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310–350 cells mL−1 vs. 1600–2000 cells mL−1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals'' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.  相似文献   

18.
A novel integrated dynamic model, the Integrated Fish Model (INTFISH), incorporating mercury (Hg) dynamics at non-steady state in marine organisms, is presented and is applied to the benthic food web in a polluted area. The integrated Fish model represents the dynamics of inorganic mercury (HgII) and methyl‑mercury (MeHg) in a real marine ecosystem including environmental (seawater and sediments) and biota compartments. Mercury concentration in fish is estimated using the INTFISH model coupled, in real-time, with results from i) the seawater and sediments modules computed using the HR3DHG model, ii) a dedicated Phytoplankton model and iii) six modules for Hg fluxes within the invertebrate compartment, incorporating the main organisms included in fish diet preferences, whose variations during the whole life cycle are also taken into account to verify the sensitivity of the integrated model to the core set of parameters. The simulated total mercury concentrations (HgTOT) in specimens of red mullet (Mullus barbatus), selected as target species for the Fish model, are in excellent agreement with field observations reported from the investigated area. The intrinsic modularity of the model offers the opportunity to extend simulations to other fish species (which are part of the diet of human populations of interest) and predict Hg concentration in food. A natural extension of the model will allow to evaluate the health risks related to human consumption of contaminated fish.  相似文献   

19.
The majority of pulp and paper mills now biotreat their combined effluents using activated sludge. On the assumption that their wood-based effluents have negligible fixed N, and that activated-sludge microorganisms will not fix significant N, these mills routinely spend large amounts adding ammonia or urea to their aeration tanks (bioreactors) to permit normal biomass growth. N2 fixation in seven Eastern Canadian pulp and paper mill effluent treatment systems was analyzed using acetylene reduction assays, quantitative nitrogenase (nifH) gene probing, and bacterial isolations. In situ N2 fixation was undetectable in all seven bioreactors but was present in six associated primary clarifiers. One primary clarifier was studied in greater detail. Approximately 50% of all culturable cells in the clarifier contained nifH, of which >90% were Klebsiella strains. All primary-clarifier coliform bacteria growing on MacConkey agar were identified as klebsiellas, and all those probed contained nifH. In contrast, analysis of 48 random coliform isolates from other mill water system locations showed that only 24 (50%) possessed the nifH gene, and only 13 (27%) showed inducible N2-fixing activity. Thus, all the pulp and paper mill primary clarifiers tested appeared to be sites of active N2 fixation (0.87 to 4.90 mg of N liter−1 day−1) and a microbial community strongly biased toward this activity. This may also explain why coliform bacteria, especially klebsiellas, are indigenous in pulp and paper mill water systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号