首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
荧光共振能量转移(fluorescence resonance energy transfer,FRET)是基于荧光基团供体和荧光基团受体间偶极子–偶极子耦合作用的非辐射方式的能量传递现象。基于荧光蛋白的FRET技术已被广泛用于研究细胞信号通路中蛋白质–蛋白质活体相互作用检测、蛋白质构象变化监测以及生物探针的研制中。基于荧光蛋白的荧光共振能量转移探针使得人们可以在时间和空间层面上研究细胞信号的转导过程。该文简要介绍了四大类基于荧光蛋白的FRET生物探针的设计、研制以及其在生物信号分子检测、活细胞成像以及药物筛选中的应用和进展情况。  相似文献   

2.
目的:研究多聚甲醛固定对利用荧光共振能量转移(fluorescence resonance energy transfer, FRET)检测细胞中蛋白质相互作用的影响,解决运动能力较强的细胞中FRET效率检测的问题。方法:选用两个已知能够相互作用的蛋白分子TRA和TRB,将荧光蛋白ECFP和EYFP的编码基因通过融合PCR分别标记在其C端;将两个融合基因共转染靶细胞,一组细胞经低浓度(0.5%)多聚甲醛短时(0.5~1h)固定,另一组不固定,利用激光共聚焦扫描显微镜检测两个融合蛋白之间的FRET效率,比较其在两组细胞之间的差异情况。结果:经过统计学分析,在活细胞和经低浓度多聚甲醛短时间固定的细胞中,ECFP与EYFP之间的FRET效率没有显著差异。结论:低浓度短时间的多聚甲醛固定对于荧光蛋白分子之间的相互作用没有显著的影响,因此对于运动能力过强的细胞可以固定后再进行FRET检测。  相似文献   

3.
目的:探索与Mps1蛋白有相互作用的CENP-E蛋白结构域。方法:将重组质粒pEGFP-CENPE2(674~1085位氨基酸)、pEGFP-CENPE3(1200~2134位氨基酸)转染人胚肾293(HEK293)细胞,采用受体漂白荧光共振能量转移方法(FRET方法),检测EGFP-CENPE2、EGFP-CENPE3和Mps1间的能量转移率(Ef), 进一步用免疫共沉淀方法验证FRET的实验结果。结果:重组质粒转染HEK293细胞后经激光共聚焦显微镜观察重组质粒表达的融合蛋白与Mps1都存在着共定位;FRET检测结果显示EGFP-CENPE3和Mps1间的能量转移率为[(12.63±0.48)%, n=30],pEGFP-CENPE2和Mps1间的能量转移率为[(3.07±0.21)%, n=30],与对照组[(2.96±0.27)%, n=30]比较pEGFP-CENPE3和Mps1间的能量转移率差异存在显著性(p<0.05),免疫共沉淀实验结果显示EGFP-CENPE3与Mps1蛋白间存在相互作用。结论:FRET技术和免疫共沉淀实验证明了EGFP-CENPE3与Mps1间存在着相互作用。  相似文献   

4.
荧光共振能量转移(fluorescence resonance energy transfer,FRET)显微镜技术被广泛应用于在活细胞中研究蛋白质相互作用。随着流式细胞术(fluorescence activated cell sorting,FACS)的发展与应用,FACS-FRET技术不但可以检测活细胞中蛋白质相互作用,还可以进行定量统计分析。由于流式细胞仪价格昂贵、FRET技术对荧光基团发光光谱的特殊要求等原因,目前为止FACS-FRET技术仅仅被应用到一些特殊的科学研究。为了解决这些问题,构建了一对新的FRET荧光基团EGFP-m Cherry,并且在小型流式细胞仪C6上检测了EGFP-m Cherry融合蛋白的FRET信号,最后使用已明确有相互作用关系的p53蛋白和MDM2蛋白做验证,证明了所构建的EGFPm Cherry可以作为检测FRET信号的荧光基团。不仅促进了FACS-FRET技术的发展,还为人类疾病治疗的药物作用靶点研究提供了有利的研究手段。  相似文献   

5.
双分子荧光互补技术   总被引:4,自引:0,他引:4  
双分子荧光互补(bimolecular fluorescence complementation, BiFC)是近年发展起来的用于体内或体外检测蛋白质相互作用的一项新技术.该技术是将荧光蛋白在合适的位点切开形成不发荧光的2个片段,这2个片段借助融合于其上的目标蛋白的相互作用,彼此靠近,重新形成能具有活性的荧光蛋白.BiFC方法简单直观,既可以检测蛋白之间的相互作用,也可以定位相互作用蛋白质的位点.多色BiFC系统共用或与荧光共振能量转移(FRET)技术联用,还可以检测细胞内多个蛋白质的相互作用.  相似文献   

6.
基于GFP的FRET应用   总被引:1,自引:0,他引:1  
绿色荧光蛋白(GFP)是一种活性荧光标记,已被用来研究基因表达、分子定位,蛋白质折叠和转运;荧光共振能量转移(FRET)是一种无损伤的光学检测方法,能检测到小于纳米的距离变化。将GFP的活性定位标记功能与FRET的高分辨率相结合。为活体研究生物分子的功能和命运开创了新的篇章。作者在介绍GFP和FRET原理的基础上,综述了基于GFP的FRET在蛋白酶活性,蛋白质间相互作用 构象改变研究中的应用。  相似文献   

7.
FRET技术在受体信号转导研究中的应用   总被引:1,自引:0,他引:1  
张峰  何成 《生命科学》2008,20(1):46-52
细胞信号传导是细胞生物学方面的重要内容之一,涉及生命过程的各个方面,包括生长、分化发育、增殖、凋亡、迁移等等,对维持细胞功能及机体生存至关重要。目前对细胞信号转导研究的技术手段多种多样,其中荧光共振能量转移技术(FRET)是研究细胞信号转导较为常用的一种技术,可以实现活细胞内蛋白质之间相互作用的实时检测。本文中我们以受体酪氨酸激酶为例,介绍FRET技术在受体介导细胞信号传导中的应用及进展情况。  相似文献   

8.
分别采用两种不同绿色荧光蛋白(green fluorescent prote in,GFP)突变体作为荧光共振能量转移(fluo-rescence resonance energy transfer,FRET)对的供体和受体,并利用分子生物学技术将供体和受体分子分别与特定的生物分子融合,这种技术已经成为在单个活细胞中实时长时间检测蛋白质间的动态相互作用的主要技术。主要介绍了基于GFPs的FRET技术在单个活细胞中实时长时间研究生物分子动态行为的应用。  相似文献   

9.
存活蛋白(survivin)是重要的肿瘤相关抗原基因,在肿瘤的发生发展中 起着重要的作用. 除了标准的剪接形式外,它至少还编码2种变异剪接产物—存活蛋白-2B 和存活蛋白-ΔEx3,这2个变异剪接体所编码的蛋白具有不同的生物学功能.为研究这2个变 异剪接体在肿瘤细胞中的相互作用情况,本实验利用增强型青色荧光蛋白(enhanced cyan fluorescent protein, ECFP)和增强型黄色荧光蛋白(enhanced yellow fluorescent protein, EYFP)分别标记存活蛋白-2B 和存活蛋白-ΔEx3.首先通过激光共聚焦扫描显微镜观 察它们的细胞定位;同时利用荧光共振能量转移(fluorescence resonance energy transf er, FRET)技术研究两者在细胞内的相互作用情况.研究结果表明, 存活蛋白-2B主要分布 在细胞质中,而存活蛋白-ΔEx3则主要分布在细胞核内,少量分布在细胞质中;FRET分析结 果显示,两者仅在细胞质中存在着很弱的相互作用,表明两者很可能是通过某种间接的方式发 挥功能上的相互调节作用.本研究为进一步探讨存活蛋白变异剪接体的生物学功能及相互作用 机制奠定了基础.  相似文献   

10.
珊瑚和海葵来源红荧光蛋白的研究和应用   总被引:1,自引:0,他引:1  
绿色荧光蛋白作为标记蛋白和报告蛋白在生物学研究中应用越来越广。但在荧光共振能量转移(fluorescenceresonanceenergytransfer,FRET)等技术中存在一些缺陷,需要更大波长范围的荧光蛋白。最近研究发现了多种来源于珊瑚和海葵的红荧光蛋白,这些长波长的荧光蛋白对绿色荧光蛋白是一种很好的代替和补充,可以实现细胞内多荧光标记,提供更理想的FRET荧光对。经随机突变和定点突变等方法改建获得的红荧光蛋白变种显示出更高的荧光强度,成熟时间也更短。目前应用较多的是来源于香菇珊瑚(Discosomasp.)的红荧光蛋白DsRed。  相似文献   

11.
Intracellular Ca2+ acts as a second messenger that regulates numerous physiological cellular phenomena including development, differentiation and apoptosis. Cameleons, a class of fluorescent indicators for Ca2+ based on green fluorescent proteins (GFPs) and calmodulin (CaM), have proven to be a useful tool in measuring free Ca2+ concentrations in living cells. Traditional cameleons, however, have a small dynamic range of fluorescence resonance energy transfer (FRET), making subtle changes in Ca2+ concentrations difficult to detect and study in some cells and organelles. Using the NMR structure of CaM bound to the CaM binding peptide derived from CaM-dependent kinase kinase (CKKp), we have rationally designed a new cameleon that displays a two-fold increase in the FRET dynamic range within the physiologically significant range of cytoplasmic Ca2+ concentration of 0.05-1 microM.  相似文献   

12.
Regulators of G-protein signaling (RGS) are a family of proteins which accelerate intrinsic GTP-hydrolysis on heterotrimeric G-protein-alpha-subunits. Although it has been suggested that the function of RGS4 is reciprocally regulated by competitive binding of the membrane phospholipid, phosphatidylinositol-3,4,5,-trisphosphate(PtdIns(3,4,5)P(3)), and Ca(2+)/calmodulin (CaM), it remains to be shown that these interactions occur in vivo. Here, using fluorescence resonance energy transfer (FRET) techniques, we show that an elevation of intracellular Ca(2+) concentration by ionomycin increased the FRET efficiency from ECFP (a variant of cyan fluorescent protein)-labeled calmodulin to Venus (a variant of yellow fluorescent protein)-labeled RGS4. The increase in FRET efficiency was greatly attenuated by pre-treating the cells with methyl-beta-cyclodextrin, which depletes membrane cholesterol and thus disrupts lipid rafts. These results provide the first demonstration of a Ca(2+)-dependent interaction between RGS4 and CaM in vivo and show that association in lipid rafts of the plasma membrane might be involved in this physiological regulation of RGS proteins.  相似文献   

13.
A variety of fluorescent proteins with different spectral properties have been created by mutating green fluorescent protein. When these proteins are split in two, neither fragment is fluorescent per se, nor can a fluorescent protein be reconstituted by co-expressing the complementary N- and C-terminal fragments. However, when these fragments are genetically fused to proteins that associate with each other in cellulo, the N- and C-terminal fragments of the fluorescent protein are brought together and can reconstitute a fluorescent protein. A similar protein complementation assay (PCA) can be performed with two complementary fragments of various luciferase isoforms. This makes these assays useful tools for detecting the association of two proteins in living cells. Bioluminescence resonance energy transfer (BRET) or fluorescence resonance energy transfer (FRET) occurs when energy from, respectively, a luminescent or fluorescent donor protein is non-radiatively transferred to a fluorescent acceptor protein. This transfer of energy can only occur if the proteins are within 100 Å of each other. Thus, BRET and FRET are also useful tools for detecting the association of two proteins in living cells. By combining different protein fragment complementation assays (PCA) with BRET or FRET it is possible to demonstrate that three or more proteins are simultaneous parts of the same protein complex in living cells. As an example of the utility of this approach, we show that as many as four different proteins are simultaneously associated as part of a G protein-coupled receptor signalling complex.  相似文献   

14.
FRET-based analysis of TRPC subunit stoichiometry   总被引:3,自引:0,他引:3  
Amiri H  Schultz G  Schaefer M 《Cell calcium》2003,33(5-6):463-470
By analogy to other cation channel subunits with six transmembrane-spanning domains, the seven members of the "classical" or "canonical" transient receptor potential channels (TRPC) family are believed to assemble into homo- or heterotetrameric complexes. These complexes have been verified by classical methods such as coimmunoprecipitation, crosslinking analysis or functional assays applying dominant negative pore mutants. More recently, fluorescence resonance energy transfer (FRET)-a measure for the close proximity of fluorescent molecules-has become instrumental in monitoring protein assembly in living cells. Here we demonstrate further possibilities and verification procedures of the FRET technology to test the assembly of ion channel subunits. Temporally and spatially resolved FRET imaging demonstrates an early assembly of TRPC subunits in the endoplasmic reticulum and the Golgi apparatus. Confocal FRET imaging verifies FRET signals over the plasma membrane at high spatial resolution. Taking advantage of the quantitative analysis of digital video imaging, we demonstrate that FRET between TRPC subunits is only poorly concentration-dependent. Moreover, a correlation between the efficiency of energy transfer and the molar ratio of the FRET donor to the acceptor was exploited to verify the tetrameric stoichiometry of TRPC complexes. Finally, we introduce a competition-FRET assay to test the ability of wild-type TRPC subunits to recruit fluorescent TRPC subunits into separate channel complexes.  相似文献   

15.
Kim J  Lee J  Kwon D  Lee H  Grailhe R 《Molecular bioSystems》2011,7(11):2991-2996
Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) are extensively used to analyze protein interactions occurring in living cells. Although these two techniques are broadly applied in cellular biology, comparative analysis of their strengths and limitations is lacking. To this end, we analyzed a small network of proteins involved in the amyloidogenic processing of the Alzheimer β-amyloid precursor using FRET based cytometry, BRET, and fluorescence lifetime imaging microscopy (FLIM). Using all three methods, we were able to detect the interactions of the amyloid precursor protein with APBB1, APBB2, and APP itself. And we found an unreported interacting pair, APP-APH1A. In addition, we show that these four interacting pairs exhibit a strong FRET correlation with the acceptor/donor expression ratios. Overall the FRET based cytometry was the most sensitive and reliable approach to screen for new interacting proteins. Therefore, we applied FRET based cytometry to study competitive binding of two proteins, APBB1 and APBB2, with the same APP target.  相似文献   

16.
The cell cycle is controlled by regulators functioning at the right time and at the right place. We have found that calmodulin (CaM) has specific distribution patterns during different cell-cycle stages. Here, we identify cell-cycle-specific binding proteins of CaM and examine their function during cell-cycle progression. We first applied immunoprecipitation methods to isolate CaM-binding proteins from cell lysates obtained at different cell-cycle phases and then identified these proteins using mass spectrometry methods. A total of 41 proteins were identified including zinc finger proteins, ribosomal proteins, and heat shock proteins operating in a Ca2+-dependent or independent manner. Fifteen proteins were shown to interact with CaM in a cell-phase-specific manner. The association of the selected proteins and CaM were confirmed with in vitro immunoprecipitation and immunostaining methods. One of the identified proteins, heat shock protein 70 (Hsp70), was further studied with respect to its cell-cycle-related function. In vivo fluorescence resonance energy transfer (FRET) analysis showed that the interaction of CaM and Hsp70 was found in the nucleus during the S phase. Overexpression of Hsp70 is shown to arrest cells at S phase and, thus, induce cell apoptosis. When we disrupted the CaM-Hsp70 association with HSP70 truncation without the CaM-binding domain, we found that S-phase arrest and apoptosis could be rescued. The results suggest that the spatial and temporal association of CaM and Hsp70 can regulate cell-cycle progression and cell apoptosis.  相似文献   

17.
Xia Z  Liu Y 《Biophysical journal》2001,81(4):2395-2402
Green fluorescence protein (GFP)-based fluorescence resonance energy transfer (FRET) is increasingly used in investigation of inter- and intramolecular interactions in living cells. In this report, we present a modified method for FRET quantification in cultured cells using conventional fluorescence microscopy. To reliably measure FRET, three positive control constructs in which a cyan fluorescence protein and a yellow fluorescence protein were linked by peptides of 15, 24, or 37 amino acid residues were prepared. FRET was detected using a spectrofluorometer, a laser scanning confocal microscope, and an inverted fluorescence microscope. Three calculation methods for FRET quantification using fluorescence microscopes were compared. By normalization against expression levels of GFP fusion proteins, the modified method gave consistent FRET values that could be compared among different cells with varying protein expression levels. Whole-cell global analysis using this method allowed FRET measurement with high spatial resolutions. Using such a procedure, the interaction of synaptic proteins syntaxin and the synaptosomal associated protein of 25 kDa (SNAP-25) was examined in PC12 cells, which showed strong FRET on plasma membranes. These results demonstrate the effectiveness of the modified method for FRET measurement in live cell systems.  相似文献   

18.
Among the most intriguing forms of Ca(2+) channel modulation is the regulation of L-type and P/Q-type channels by intracellular Ca(2+), acting via unconventional channel-calmodulin (CaM) interactions. In particular, overexpressing Ca(2+)-insensitive mutant CaM abolishes Ca(2+)-dependent modulation, hinting that Ca(2+)-free CaM may "preassociate" with these channels to enhance detection of local Ca(2+). Despite the far-reaching consequences of this proposal, in vitro experiments testing for preassociation provide conflicting results. Here, we develop a three filter-cube fluorescence resonance energy transfer method (three-cube FRET) to directly probe for constitutive associations between channel subunits and CaM in single living cells. This FRET assay detects Ca(2+)-independent associations between CaM and the pore-forming alpha(1) subunit of L-type, P/Q-type, and, surprisingly, R-type channels. These results now definitively demonstrate channel-CaM preassociation in resting cells and underscore the potential of three-cube FRET for probing protein-protein interactions.  相似文献   

19.
Kinesin motor proteins drive the transport of cellular cargoes along microtubule tracks. How motor protein activity is controlled in cells is unresolved, but it is likely coupled to changes in protein conformation and cargo association. By applying the quantitative method fluorescence resonance energy transfer (FRET) stoichiometry to fluorescent protein (FP)-labeled kinesin heavy chain (KHC) and kinesin light chain (KLC) subunits in live cells, we studied the overall structural organization and conformation of Kinesin-1 in the active and inactive states. Inactive Kinesin-1 molecules are folded and autoinhibited such that the KHC tail blocks the initial interaction of the KHC motor with the microtubule. In addition, in the inactive state, the KHC motor domains are pushed apart by the KLC subunit. Thus, FRET stoichiometry reveals conformational changes of a protein complex in live cells. For Kinesin-1, activation requires a global conformational change that separates the KHC motor and tail domains and a local conformational change that moves the KHC motor domains closer together.  相似文献   

20.
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号