共查询到20条相似文献,搜索用时 15 毫秒
1.
Stomata of many plants have circadian rhythms in responsiveness to environmental cues as well as circadian rhythms in aperture. Stomatal responses to red light and blue light are mediated by photosynthetic photoreceptors; responses to blue light are additionally controlled by a specific blue-light photoreceptor. This paper describes circadian rhythmic aspects of stomatal responsiveness to red and blue light in Vicia faba. Plants were exposed to a repeated light:dark regime of 1.5:2.5 h for a total of 48 h, and because the plants could not entrain to this short light:dark cycle, circadian rhythms were able to "free run" as if in continuous light. The rhythm in the stomatal conductance established during the 1.5-h light periods was caused both by a rhythm in sensitivity to light and by a rhythm in the stomatal conductance established during the preceding 2.5-h dark periods. Both rhythms peaked during the middle of the subjective day. Although the stomatal response to blue light is greater than the response to red light at all times of day, there was no discernible difference in period, phase, or amplitude of the rhythm in sensitivity to the two light qualities. We observed no circadian rhythmicity in net carbon assimilation with the 1.5:2.5 h light regime for either red or blue light. In continuous white light, small rhythmic changes in photosynthetic assimilation were observed, but at relatively high light levels, and these appeared to be attributable largely to changes in internal CO2 availability governed by stomatal conductance. 相似文献
2.
An apparatus to produce continuous gas mixtures for use in measurements of plant gas exchange is described. A wide range of CO 2 and water vapor concentrations can be provided and O 2 concentration can be varied from 0 to 21%. Changes in the concentrations of the components are accomplished conveniently, rapidly, and independently. With occasional adjustments, CO 2 and O 2 concentrations can be maintained to within ± 1 μl/l and ± 0.1%, respectively. Dew point of the gas mixture can be maintained to within ± 0.05 C. 相似文献
3.
Stomatal responses to vapor pressure deficit ( VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid ( ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage.Plants continuously regulate transpiration by controlling the aperture of the stomatal pores on the surface of the leaf. The principal atmospheric determinant of stomatal aperture is the humidity of the air, which can be expressed as the vapor pressure difference between the leaf and the atmosphere. Stomatal responses to atmospheric vapor pressure deficit ( VPD) have been well characterized across the diversity of vascular plant species ( Darwin, 1898; Lange et al., 1971; Turner et al., 1984; Franks and Farquhar, 1999; Oren et al., 1999; Brodribb and McAdam, 2011; Mott and Peak, 2013), with stomata typically closing at high VPD and opening at low VPD. This comprehensive characterization has allowed for the development of highly effective empirical and mechanistic models of leaf gas exchange that provide robust predictions of the responses of transpiration to changes in VPD ( Buckley et al., 2003; Katul et al., 2009; Damour et al., 2010; Medlyn et al., 2011). Despite the success of this modeling, the mechanism for the stomatal response to VPD remains poorly understood ( Damour et al., 2010). Different hypotheses range from one extreme, whereby stomata respond passively through changes in leaf water content induced by the VPD or humidity perturbation ( Lange et al., 1971; Mott and Peak, 2013), to the other extreme, whereby stomata close uniquely in response to the phytohormone abscisic acid ( ABA; Xie et al., 2006; Bauer et al., 2013).From the earliest recognition that stomata open and close by changes in guard cell turgor ( Heath, 1938), there have been many attempts to link the passive changes in water status that occur during VPD or humidity transitions with stomatal responses to VPD or humidity ( Lange et al., 1971; Mott and Peak, 2013). Studies have suggested that changes in atmospheric water content passively drive stomatal responses by changing bulk leaf water status, which in turn changes guard cell turgor ( Oren et al., 1999), or alternatively by changing guard cell turgor directly ( Mott and Peak, 2013). Models based on these entirely passive processes are highly effective in predicting steady-state stomatal conductance ( gs) in response to changes in VPD or humidity in angiosperms ( Mott and Peak, 2013).While hydraulic models provide robust predictions of steady-state gs, they are less effective at predicting the dynamic responses of stomata to short-term perturbations, particularly with respect to the wrong-way responses that typically occur as transients ( Buckley, 2005), as well as feed-forward behavior ( Farquhar, 1978; Bunce, 1997; Franks et al., 1997; Tardieu and Simonneau, 1998; Ocheltree et al., 2014; compare with Mott and Peak, 2013). Although some of these models provide a pathway for incorporating the effect of ABA ( Buckley, 2005), a lack of knowledge of ABA dynamics or action makes it difficult to integrate the influence of this active regulator of guard cell aperture into models. The stomatal behavior of single gene mutants (most notably the ABA synthesis and signaling mutants of Arabidopsis) strongly supports a role for ABA in mediating standard stomatal responses to changes in VPD. The stomata of these mutants are known to have less pronounced responses to a reduction in relative humidity compared with wild-type plants ( Xie et al., 2006). Recently, molecular work has shown that guard cells express many of the genes required to synthesize ABA ( Okamoto et al., 2009; Bauer et al., 2013), with molecular proxies for ABA level also indicating that the biochemical activity of ABA in the guard cell may increase following short-term exposure of leaves to a reduction in relative humidity ( Waadt et al., 2014). These findings suggest a role for ABA in regulating stomatal responses to VPD and have led some to the conclusion that ABA synthesized autonomously by the guard cells is the predominant mechanism for stomatal responses to increased VPD ( Bauer et al., 2013).Although the experimental evidence from molecular studies presents an argument for the role of ABA in the responses of stomata to changes in VPD, very few studies have quantified changes in ABA level in response to VPD. It is well established that ABA levels in leaves and guard cells can increase following the imposition of turgor loss or water stress ( Pierce and Raschke, 1980; Harris et al., 1988; Harris and Outlaw, 1991). However, only a few studies have reported increases in foliar ABA level in response to high VPD ( Bauerle et al., 2004; Giday et al., 2013), and none have investigated whether these observed dynamic changes or differences in ABA level were functionally relevant for stomatal control. In addition, no study has quantified the levels of ABA in guard cells during a transition in VPD.Here, we investigate the relative importance of ABA for the stomatal response to VPD in whole plants, sampled from across the vascular land plant lineage. We provide, to our knowledge, the first functional assessment of changes in ABA levels driving stomatal responses to VPD as well as critically investigate the recent suggestion that stomatal responses to VPD are driven by an autonomous guard cell synthesis of ABA. 相似文献
4.
Blue light-dependent proton pumping in guard cell protoplastsand light-induced stomatal opening in the epidermis were inhibitedby 1 mM verapamil, a Ca 2+ channel blocker. Proton pumping andstomatal opening induced by fusicoccin, an activator of plasmamembrane proton pump, were not inhibited by verapamil. Theseresults suggest that verapamil inhibits blue light signalingin guard cells without inhibiting the pump. (Received January 6, 1997; Accepted March 26, 1997) 相似文献
5.
These studies were conducted to determine whether ethylene serves as a natural regulator of fruit wall dehiscence, a major visible feature of ripening in some fruits. We employed treatments to inhibit ethylene action or remove ethylene and observed their effect on fruit dehiscence. CO 2 (13%), a competitive inhibitor of ethylene action in many systems, readily delayed dehiscence of detached fruits of cotton ( Gossypium hirsutum L.), pecan ( Carya illinoensis [Wang.] K. Koch), and okra ( Hibiscus esculentus L.). The CO 2 effect was duplicated by placing fruits under reduced pressure (200 millimeters mercury), to promote the escape of ethylene from the tissue. Dehiscence of detached fruits of these species as well as attached cotton fruits was delayed. The delay of dehiscence of cotton and okra by both treatments was achieved with fruit harvested at intervals from shortly after anthesis until shortly before natural dehiscence. Pecan fruits would not dehisce until approximately 1 month before natural dehiscence, and during that time, CO 2 and reduced pressure delayed dehiscence. CO 2 and ethylene were competitive in their effects on cotton fruit dehiscence. All of the results are compatible with a hypothetical role of ethylene as a natural regulator of dehiscence, a dominant aspect of ripening of cotton, pecan, and some other fruits. 相似文献
6.
Curcumin is a widely known natural phytochemical from plant Curcuma longa. In recent years, curcumin has received increasing attention because of its capability to induce apoptosis and inhibit cell proliferation as well as its anti-inflammatory properties in different cancer cells. However, the therapeutic benefits of curcumin are severely hampered due to its particularly low absorption via trans-dermal or oral bioavailability. Phototherapy with visible light is gaining more and more support in dermatological therapy. Red light is part of the visible light spectrum, which is able to deeply penetrate the skin to about 6 mm, and directly affect the fibroblast of the skin dermis. Blue light is UV-free irradiation which is fit for treating chronic inflammation diseases. In this study, we show that curcumin at low concentrations (1.25–3.12 μM) has a strong anti-proliferative effect on TNF-α-induced psoriasis-like inflammation when applied in combination with light-emitting-diode devices. The treatment was especially effective when LED blue light at 405 nm was combined with red light at 630 or 660 nm, which markedly amplified the anti-proliferative and apoptosis-inducing effects of curcumin. The experimental results demonstrated that this treatment reduced the viability of human skin keratinocytes, decreased cell proliferation, induced apoptosis, inhibited NF-κB activity and activated caspase-8 and caspase-9 while preserving the cell membrane integrity. Moreover, the combined treatment also down-regulated the phosphorylation level of Akt and ERK. Taken together, our results indicated that the combination of curcumin with LED blue light united red light irradiation can attain a higher efficiency of regulating proliferation and apoptosis in skin keratinocytes. 相似文献
7.
Experiments on a range of species of tree, shrub and herb haveshown that stomatal density and stomatal index increase as thepartial pressure of CO 2 decreases over the range from the currentlevel of 34 Pa to 22.5 Pa. Stomatal density responds to thereduced partial pressure of CO 2 in a simulation of high altitude(3000 m), when the CO 2 mole fraction is unchanged. When the partial pressure of CO 2 is increased from 35 to 70Pa stomatal density decreases slightly, with a response to unitchange in CO 2 which is about 10% of that below 34 Pa. Measurements of gas exchange on leaves which had developed indifferent CO 2 partial pressures, but at low saturation vapourpressure deficits in the range of 0.7 to 0.9 kPa, indicatedlower photosynthetic rates but higher stomatal conductancesat reduced CO 2 partial pressures. Experiments on populations of Nardus stricta originating fromaltitudes of 366 m and 810 m in Scotland, indicated geneticdifferences in the responses of stomatal density to CO 2 in pressuressimulating altitudes of sea level and 2 000 m. Plants from thehigher altitude showed greater declines in stomatal densitywhen the CO 2 partial pressure was increased. Key words: Stomata, CO 2, gas exchange, altitude, atmospheric pressure 相似文献
8.
Photosynthetic rates of outdoor-grown soybean ( Glycine max L.Merr. cv. Bragg) canopies increased with increasing CO 2 concentrationduring growth, before and after canopy closure (complete lightinterception), when measured over a wide range of solar irradiancevalues. Total canopy leaf area was greater as the CO 2 concentrationduring growth was increased from 160 to 990 mm 3 dm 3.Photosynthetic rates of canopies grown at 330 and 660 mm 3 CO 2dm 3 were similar when measured at the same CO 2 concentrationsand high irradiance. There was no difference in ribulose bisphosphatecarboxylase/oxygenase (rubisco) activity or ribulose 1,5- bisphosphate(RuBP) concentration between plants grown at the two CO 2 concentrations.However, photosynthetic rates averaged 87% greater for the canopiesgrown and measured at 660 mm 3 CO 2 dm 3. A 10°C differencein air temperature during growth resulted in only a 4°Cleaf temperature difference, which was insufficient to changethe photosynthetic rate or rubisco activity in canopies grownand measured at either 330 or 660 mm 3 CO 2 dm 3. RuBP concentrationsdecreased as air temperature during growth was increased atboth CO 2 concentrations. These data indicate that the increasedphotosynthetic rates of soybean canopies at elevated CO 2 aredue to several factors, including: more rapid development ofthe leaf area index; a reduction in substrate CO 2 limitation;and no downward acclimation in photosynthetic capacity, as occurin some other species. Key words: CO 2 concentration, soybean, canopy photosynthesis 相似文献
9.
Chlamydomonas and Chlorella were grown for 10 days in white light. 955 μw/cm 2 blue light (400-500 mμ) or 685 μw/cm 2 red light (above 600 mμ). Rates of growth in blue or red light were initially slow, but increased over a period of 5 days until normal growth rates were reestablished. During this adaptation period in blue light, total chlorophyll per volume of algae increased 20% while the chlorophyll a/b ratio decreased. In red light no change was observed in the total amount of chlorophyll or in the chlorophyll a/b ratio. After adaptation to growth in blue light and upon exposure to 14CO 2 with either blue or white light for 3 to 10 minutes, 30 to 36% of the total soluble fixed 14C accumulated in glycolate- 14C which was the major product. However, with 1 minute experiments, it was shown that phosphate esters of the photosynthetic carbon cycle were labeled before the glycolate. Glycolate accumulation by algae grown in blue light occurred even at low light intensity. After growth of the algae in red light, 14C accumulated in malate, aspartate, glutamate and alanine, whereas glycolate contained less than 3% of the soluble 14C fraction. 相似文献
10.
The responses of steady state CO 2 assimilation rate ( A), transpiration rate ( E), and stomatal conductance ( gs) to changes in leaf-to-air vapor pressure difference (Δ W) were examined on different dates in shoots from Abies alba trees growing outside. In Ecouves, a provenance representative of wet oceanic conditions in Northern France, both A and gs decreased when Δ W was increased from 4.6 to 14.5 Pa KPa −1. In Nebias, which represented the dry end of the natural range of A. alba in southern France, A and gs decreased only after reaching peak levels at 9.0 and 7.0 Pa KPa −1, respectively. The representation of the data in assimilation rate ( A) versus intercellular CO 2 partial pressure ( Ci) graphs allowed us to determine how stomata and mesophyll photosynthesis interacted when Δ W was increased. Changes in A were primarily due to alterations in mesophyll photosynthesis. At high Δ W, and especially in Ecouves when soil water deficit prevailed, A declined, while Ci remained approximately constant, which may be interpreted as an adjustment of gs to changes in mesophyll photosynthesis. Such a stomatal control of gas exchange appeared as an alternative to the classical feedforward interpretation of E versus Δ W responses with a peak rate of E. The gas exchange response to Δ W was also characterized by considerable deviations from the optimization theory of IR Cowan and GD Farquhar (1977 Symp Soc Exp Biol 31: 471-505). 相似文献
11.
Leaves from Paphiopedilum sp. (Orchidaceae) having achlorophyllous stomata, show reduced levels of stomatal conductance when irradiated with red light, as compared with either the related, chlorophyllous genus Phragmipedium or with their response to blue light. These reduced levels of stomatal conductance, and the failure of isolated Paphiopedilum stomata to open under red irradiation indicates that the small stomatal response measured in the intact leaf under red light is indirect. The overall low levels of stomatal conductance observed in Paphiopedilum leaves under most growing conditions and their capacity to increase stomatal conductance in response to blue light suggested that growth and carbon gain in Paphiopedilum could be enhanced in a blue light-enriched environment. To test that hypothesis, plants of Paphiopedilum acmodontum were grown in controlled growth chambers under daylight fluorescent light, with or without blue light supplementation. Total photosynthetic photon flux density was kept constant in both conditions. Blue light enrichment resulted in significantly higher growth rates—of up to 77%—over a 3 to 4 week growing period, with all evidence indicating that the blue light effect was a stomatal response. Manipulations of stomatal properties aimed at long-term carbon gains could have agronomic applications. 相似文献
12.
Calyculin A (CA) and okadaic acid (OA), inhibitors of proteinphosphatases, inhibited blue light (BL)-dependent H +pumpingin Vicia guard cell protoplasts at half-inhibitory concentrationsof 4.5 nM and 400 nM, respectively. Light-induced stomatal openingin Viciaepidermis was completely suppressed by CA at 100 nMand by OA at 1 µM. These results suggest that CA- andOA-sensitive protein phosphatase is involved in the BL responseof stomatal guard cells. (Received June 27, 1997; Accepted September 2, 1997) 相似文献
14.
Facultative CAM plants such as Mesembryanthemum crystallinum(ice plant) possess C3 metabolism when unstressed but developCAM under water or salt stress. When ice plants shift from C3metabolism to CAM, their stomata remain closed during the dayand open at night. Recent studies have shown that the stomatalresponse of ice plants in the C3 mode depends solely on theguard cell response to blue light. Recent evidence for a possiblerole of the xanthophyll, zeaxanthin in blue light photoreceptionof guard cells led to the question of whether changes in theregulation of the xanthophyll cycle in guard cells parallelthe shift from diurnal to nocturnal stomatal opening associatedwith CAM induction. In the present study, light-dependent stomatalopening and the operation of the xanthophyll cycle were characterizedin guard cells isolated from ice plants shifting from C3 metabolismto CAM. Stomata in epidermis detached from leaves with C3 metabolismopened in response to white light and blue light, but they didnot open in response to red light. Guard cells from these leavesshowed light-dependent conversion of violaxan-thin to zeaxanthin.Induction of CAM by NaCI abolished both white light- and bluelight-stimulated stomatal opening and light-dependent zeaxanthinformation. When guard cells isolated from leaves with CAM weretreated with 100 mM ascorbate, pH 5.0 for 1 h in darkness, guardcell zeaxanthin content increased at rates equal to or higherthan those stimulated by light in guard cells from leaves inthe C3 mode. The ascorbate effect indicates that chloroplastsin guard cells from leaves with CAM retain their competenceto operate the xanthophyll cycle, but that zeaxanthin formationdoes not take place in the light. The data suggest that inhibitionof light-dependent zeaxanthin formation in guard cells mightbe one of the regulatory steps mediating the shift from diurnalto nocturnal stomatal opening typical of plants with CAM. (Received July 5, 1996; Accepted December 12, 1996) 相似文献
15.
Unidirectional O 2 fluxes were measured with 18O 2 in a whole plant of wheat cultivated in a controlled environment. At 2 or 21% O 2, O 2 uptake was maximum at 60 microliters per liter CO 2. At lower CO 2 concentrations, it was strongly inhibited, as was photosynthetic O 2 evolution. At 2% O 2, there remained a substantial O 2 uptake, even at high CO 2 level; the O 2 evolution was inhibited at CO 2 concentrations under 330 microliters per liter. The O 2 uptake increased linearly with light intensity, starting from the level of dark respiration. No saturation was observed at high light intensities. No significant change in the gas-exchange patterns occurred during a long period of the plant life. An adaptation to low light intensities was observed after 3 hours illumination. These results are interpreted in relation to the functioning of the photosynthetic apparatus and point to a regulation by the electron acceptors and a specific action of CO 2. The behavior of the O 2 uptake and the study of the CO 2 compensation point seem to indicate the persistence of mitochondrial respiration during photosynthesis. 相似文献
16.
To learn how species differences in stomatal behavior are regulated, the response of epidermal and leaf diffusive resistance to light was investigated in Lycopersicon esculentum Mill., Solanum pennellii Corr., and a periclinal chimera having an S. pennellii epidermis and an L. esculentum mesophyll that was produced from a graft of the two species. S. pennellii has about 23% fewer stomata per square millimeter than does L. esculentum, and the two species have contrasting stomatal sensitivities to light. The abaxial stomata of L. esculentum open in dimmer light and to a greater extent than the adaxial stomata. The abaxial and adaxial stomata of S. pennellii respond similarly to light incident on the adaxial epidermis and are less open at all quantum flux densities than comparable stomata of L. esculentum. The patterns of response to light of the abaxial and adaxial stomata of the chimera were practically identical to those of L. esculentum, and quite unlike those of S. pennellii. Thus, the pattern of stomatal light response in the chimera was regulated by the L. esculentum mesophyll. The reduction in stomatal frequency of the chimera, which was regulated by the epidermis of S. pennellii, contributed to the 40% difference in leaf diffusive resistance between the plants in moderate light. 相似文献
17.
Changes in neutral sugar and organic acid content of guard cells were quantitated by high-performance liquid chromatography during stomatal opening in different light qualities. Sonicated Vicia faba epidermal peels were irradiated with 10 [mu]mol m-2 s-1 of blue light, a fluence rate insufficient for the activation of guard cell photosynthesis, or 125 [mu]mol m-2 s-1 of red light, in the presence of 1 mM KCl, 0.1 mM CaCl2. The low-fluence-rate blue light stimulated an average net stomatal opening of 4.7 [mu]m in 2 h, whereas the saturating fluence rate of red light stimulated an average net opening of 3.8 [mu]m in 2 h. Under blue light, the malate content of guard cells increased to 173% of the initial level during the first 30 min of opening and declined as opening continued. Sucrose levels continuously rose throughout the blue light-stimulated opening, reaching 215% of the initial level after 2 h. The starch hydrolysis products maltose and maltotriose remained elevated at all times. Under red light, guard cells showed very little increase in organic acid or maltose levels, whereas sucrose levels increased to 208% of the initial level after 2 h. Total measured organic metabolite concentrations were correlated with stomatal apertures in all cases except where substantial malate increases occurred. These results support the hypothesis that light quality modulates alternative mechanisms of osmotic accumulation in guard cells, including potassium uptake, photosynthetic sugar production, and starch breakdown. 相似文献
18.
The partial pressure of CO 2 inside leaves of several species was measured directly. Small gas exchange chambers were clamped above and below the same section of an amphistomatous leaf. A flowing gas stream through one chamber allowed normal CO 2 and water vapor exchange. The other chamber was in a closed circuit consisting of the chamber, an infrared gas analyzer, and a peristaltic pump. The CO 2 in the closed system rapidly reached a steady pressure which it is believed was identical to the CO 2 pressure inside the leaf, because there was no flux of CO 2 across the epidermis. This measured partial pressure was in close agreement with that estimated from a consideration of the fluxes of CO 2 and vapor at the other surface. 相似文献
19.
Rumex palustris, a flooding-tolerant plant, elongates its petioles in response to complete submergence. This response can be partly mimicked by enhanced ethylene levels and low O2 concentrations. High levels of CO2 do not markedly affect petiole elongation in R. palustris. Experiments with ethylene synthesis and action inhibitors demonstrate that treatment with low O2 concentrations enhances petiole extension by shifting sensitivity to ethylene without changing the rate of ethylene production. The expression level of the R. palustris gene coding for the putative ethylene receptor (RP-ERS1) is up-regulated by 3% O2 and increases after 20 min of exposure to a low concentration of O2, thus preceding the first significant increase in elongation observable after 40 to 50 min. In the flooding-sensitive species Rumex acetosa, submergence results in a different response pattern: petiole growth of the submerged plants is the same as for control plants. Exposure of R. acetosa to enhanced ethylene levels strongly inhibits petiole growth. This inhibitory effect of ethylene on R. acetosa can be reduced by both low levels of O2 and/or high concentrations of CO2. 相似文献
20.
Blue light-dependent proton extrusion in guard cell protoplastsfrom Vicia faba and light-dependent stomatal opening in theepidermis of Commelina benghalensis are inhibited by the calmodulin(CaM) antagonist, N-(6-aminohexyl)-5-chloro-l-naphthalenesulfononamide(W-7) and the myosin light chain kinase (MLCK) inhibitor, 1-(5-iodonaphthalene-1-sulfonyl)-l H-hexahydro-1,4-diazepine (ML-7) [Shimazaki, K., Kinoshita, T.and Nishimura, M. (1992) Plant Physiol. 99: 1416]. We now suggestthat the inhibition occurs in the blue light signaling pathwaywithout affecting the proton pump. Addition of fusicoccin (FC),an activator of H +-ATPase, to the protoplasts and the epidermiswhose blue light-dependent proton extrusion and light-dependentstomatal opening had been inhibited by W-7 and ML-7, inducedboth proton extrusion and stomatal opening, respectively. Bluelight-dependent proton extrusion was inhibited by K-252a, awide-range inhibitor of protein kinases, and KT5926, a selectiveinhibitor of MLCK. FC induced proton extrusion in the presenceof K-252a and KT5926. In contrast, phenylmercuric acetate (PMA),carbonyl cyanide- m-chlorophenylhydrazone (CCCP) and N, N'-dicyclohexylcarbodiimide(DCCD) inhibited both the proton extrusion and stomatal opening,but FC did not induce the responses. These results suggest thatW-7, ML-7, K-252a and KT5926 inhibit the signal transductionprocess by which the perception of blue light is transducedinto activation of the proton pump in guard cells, and thatMLCK or MLCK-like protein is involved in the blue light responseof stomata. The possibility that calcium-dependent, calmodulinindependent protein kinase [Harper, J.F. et al. (1991) Science252: 951] functions rather than MLCK in the blue light responseof stomata should be noted, however. (Received July 23, 1993; Accepted September 30, 1993) 相似文献
|