共查询到20条相似文献,搜索用时 15 毫秒
1.
Jin L Hill KK Filak H Mogan J Knowles H Zhang B Perraud AL Cambier JC Lenz LL 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(5):2595-2601
Cyclic-di-GMP and cyclic-di-AMP are second messengers produced by bacteria and influence bacterial cell survival, differentiation, colonization, biofilm formation, virulence, and bacteria-host interactions. In this study, we show that in both RAW264.7 macrophage cells and primary bone marrow-derived macrophages, the production of IFN-β and IL-6, but not TNF, in response to cyclic-di-AMP and cyclic-di-GMP requires MPYS (also known as STING, MITA, and TMEM173). Furthermore, expression of MPYS was required for IFN response factor 3 but not NF-κB activation in response to these bacterial metabolites. We also confirm that MPYS is required for type I IFN production by cultured macrophages infected with the intracellular pathogens Listeria monocytogenes and Francisella tularensis. However, during systemic infection with either pathogen, MPYS deficiency did not impact bacterial burdens in infected spleens. Serum IFN-β and IL-6 concentrations in the infected control and MPYS(-/-) mice were also similar at 24 h postinfection, suggesting that these pathogens stimulate MPYS-independent cytokine production during in vivo infection. Our findings indicate that bifurcating MPYS-dependent and -independent pathways mediate sensing of cytosolic bacterial infections. 相似文献
2.
3.
《Critical reviews in biotechnology》2013,33(2):170-185
There is considerable interest in exploiting the novel physical and biological properties of microbial exopolysaccharides in industry and medicine. For economic and scientific reasons, large scale production under carefully monitored and controlled conditions is required. Producing exopolysaccharides in industrial fermenters poses several complex bioengineering and microbiological challenges relating primarily to the very high viscosities of such culture media, which are often exacerbated by the producing organism’s morphology. What these problems are, and the strategies for dealing with them are discussed critically in this review, using pullulan, curdlan, xanthan, and fungal β-glucans as examples of industrially produced microbial exopolysaccharides. The role of fermenter configuration in their production is also examined. 相似文献
4.
There is considerable interest in exploiting the novel physical and biological properties of microbial exopolysaccharides in industry and medicine. For economic and scientific reasons, large scale production under carefully monitored and controlled conditions is required. Producing exopolysaccharides in industrial fermenters poses several complex bioengineering and microbiological challenges relating primarily to the very high viscosities of such culture media, which are often exacerbated by the producing organism's morphology. What these problems are, and the strategies for dealing with them are discussed critically in this review, using pullulan, curdlan, xanthan, and fungal β-glucans as examples of industrially produced microbial exopolysaccharides. The role of fermenter configuration in their production is also examined. 相似文献
5.
Summary Bacterial exopolysaccharides can significantly enhance bio-sorption of cadmium. Exopolysaccharide fromArthrobacter
viscosus has a 2.3 times greater accumulation capacity than the equivalent weight of intact cells and is 13.7 times more effective than the cells ofArthrobacter
globiformis, an organism that does not produce exopolysaccharide. 相似文献
6.
Nitric oxide (NO) signaling in vertebrates is well characterized and involves the heme-nitric oxide/oxygen-binding (H-NOX) domain of soluble guanylate cyclase as a selective NO sensor. In contrast, little is known about the biological role or signaling output of bacterial H-NOX proteins. Here, we describe a molecular pathway for H-NOX signaling in Shewanella oneidensis. NO stimulates biofilm formation by controlling the levels of the bacterial secondary messenger cyclic diguanosine monophosphate (c-di-GMP). Phosphotransfer profiling was used to map the connectivity of a multicomponent signaling network that involves integration from two histidine kinases and branching to three response regulators. A feed-forward loop between response regulators with phosphodiesterase domains and phosphorylation-mediated activation intricately regulated c-di-GMP levels. Phenotypic characterization established a link between NO signaling and biofilm formation. Cellular adhesion may provide a protection mechanism for bacteria against reactive and damaging NO. These results are broadly applicable to H-NOX-mediated NO signaling in bacteria. 相似文献
7.
Summary A laboratory-scale, two-stage continuous process for the production of curdlan-type exopolysaccharide has been operated in steady-state for 500hr. Two continuous flow, constant volume fermenters are connected in series. A stable, curdlan-producing strain of Alcaligenes faecalis var myxogenes ATCC 31749 is grown aerobically in a nitrogen-limited chemostat operating near Dmax at 0.24 hr–1. The effluent is introduced directly into a second larger constant volume fermenter which is being simultaneously fed a glucose solution at a fixed rate. Under sub-optimal conditions associated with curdlan production, the observed Qp was 0.05 g curdlan/g cell/hr. At a biomass level of 4 g/L in the second stage, curdlan was present at 10 g DW/L and the volumetric productivity was 0.2 g/g cell/hr. The substrate (glucose) conversion efficiency was 42%. The process is described in patents applied for on behalf of George Weston Ltd. (Toronto, Canada). 相似文献
8.
《Enzyme and microbial technology》2006,38(1-2):220-222
Exopolysaccharide produced by a marine Enterobacter cloaceae (designated as EPS 71a) emulsified hexane, benzene, xylene, kerosene, paraffin oil, cottonseed oil, coconut oil, jojoba oil, castor oil, groundnut oil and sunflower oil. However, it could form stable emulsions with groundnut oil and hexane at optimal concentration of 1 mg ml−1. Further increase in concentration of EPS 71a did not show noteworthy increase in emulsification indices. Emulsions with groundnut oil and hexane were stable up to 10 days between pH 2 and 10 and in the presence of sodium chloride in the range of 5–50 mg ml−1 at 35–37 °C. EPS 71a formed stable emulsion with xylene as compared to commercial gums such as arabic, tragacanth, karaya and xanthan. 相似文献
9.
10.
Protein tyrosine kinases in bacterial pathogens are associated with virulence and production of exopolysaccharide. 总被引:10,自引:0,他引:10 下载免费PDF全文
In eukaryotes, tyrosine protein phosphorylation has been studied extensively, while in bacteria, it is considered rare and is poorly defined. We demonstrate that Escherichia coli possesses a gene, etk, encoding an inner membrane protein that catalyses tyrosine autophosphorylation and phosphorylation of a synthetic co-polymer poly(Glu:Tyr). This protein tyrosine kinase (PTK) was termed Ep85 or Etk. All the E.coli strains examined possessed etk; however, only a subset of pathogenic strains expressed it. Etk is homologous to several bacterial proteins including the Ptk protein of Acinetobacter johnsonii, which is the only other known prokaryotic PTK. Other Etk homologues are AmsA of the plant pathogen Erwinia amylovora and Orf6 of the human pathogen Klebsiella pneumoniae. These proteins are involved in the production of exopolysaccharide (EPS) required for virulence. We demonstrated that like Etk, AmsA and probably also Orf6 are PTKs. Taken together, these findings suggest that tyrosine protein phosphorylation in prokaryotes is more common than was appreciated previously, and that Etk and its homologues define a distinct protein family of prokaryotic membrane-associated PTKs involved in EPS production and virulence. These prokaryotic PTKs may serve as a new target for the development of new antibiotics. 相似文献
11.
12.
Summary An isolate of Azotobacter vinelandii from the rhizosphere of the rhizomes of lotus produced a novel exopolysaccharide (EPS) having the composition of glucose: galactose: rhamnose (2.5: 1: 1.2). This composition has not been reported previously. The EPS has excellent viscosifying properties and could possibly be pseudoplastic in nature. 相似文献
13.
Myxococcus xanthus fibrils are cell surface-associated structures composed of roughly equal amounts of polysaccharide and protein. The level of M. xanthus polysaccharide production under different conditions in the wild type and in several mutants known to have alterations in fibril production was investigated. Wild-type exopolysaccharide increased significantly as cells entered the stationary phase of growth or upon addition of Ca2+ to growing cells, and the polysaccharide-induced cells exhibited an enhanced capacity for cell-cell agglutination. The activity of the key gluconeogenic pathway enzyme phosphoenolpyruvate carboxykinase (Pck) also increased under these conditions. Most fibril-deficient mutants failed to produce polysaccharide in a stationary-phase- or Ca2+-dependent fashion. However, regulation of Pck activity was generally unimpaired in these mutant strains. In an stk mutant, which overproduces fibrils, polysaccharide production and Pck activity were constitutively high under the conditions tested. Polysaccharide production increased in most fibril-deficient strains when an stk mutant allele was present, indicating that these fibril-deficient mutants retained the basic cellular components required for fibril polysaccharide production. In contrast to other divalent cations tested, Sr2+ effectively replaced Ca2+ in stimulating polysaccharide production, and either Ca2+ or Sr2+ was required for fruiting-body formation by wild-type cells. By using transmission electron microscopy of freeze-substituted log-phase wild-type cells, fibril material was observed as a cell surface-associated layer of uniform thickness composed of filaments with an ordered structure. 相似文献
14.
《Process Biochemistry》2014,49(10):1587-1594
Boza is a non-alcoholic beverage obtained from fermented cereals. Thirteen lactic acid bacteria (LAB), previously isolated from boza were identified and evaluated to determine the various technological properties for selecting appropriate strains as adjunct culture in boza. Each isolate was checked for purity, Gram-stained and tested for the catalase and oxidase activity and then subjected to identification by polymerase chain reaction (PCR) with partial 16S rRNA gene sequencing. The tests for carbohydrate fermentation and enzyme profiles were carried out with the API 50 CHL and API ZYM galleries, respectively. Exopolysaccharide (EPS) production of strains was determined by Fourier transform infrared spectroscopy (FT-IR) and quantified by the phenol sulphuric acid method. To our best knowledge, this is the first study reporting on Lactococcus garvieae (E32), Pediococcus parvulus (E42) and Streptococcus macedonicus (A15) in boza. All strains, except S. macedonicus (A15) produced EPS. Leuconostoc citreum (E55) and Lactococcus lactis (A47) were the highest EPS producing strains, yielding 2.39 ± 0.49 and 1.98 ± 0.23 g/L of EPS, respectively. Lactobacillus paracasei (D41), Lactobacillus plantarum (B2), Lactococcus lactis (F39) and among low-EPS producing strains Lactobacillus coryniformis (C55), L. paracasei (E8), and P. parvulus (E42) were evaluated to be promising candidates as potential adjunct culture in boza. The variety of enzyme production was also concern. Lc. garvieae (E32) was found to produce the largest variety of enzymes among the strains. FT-IR spectroscopy can be used for the assessment of EPS production by microorganisms reliably and accurately. 相似文献
15.
IL-4 receptor signaling in Clara cells is required for allergen-induced mucus production 总被引:4,自引:0,他引:4
Kuperman DA Huang X Nguyenvu L Hölscher C Brombacher F Erle DJ 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(6):3746-3752
Excessive mucus production is an important pathological feature of asthma. The Th2 cytokines IL-4 and IL-13 have both been implicated in allergen-induced mucus production, inflammation, and airway hyperreactivity. Both of these cytokines use receptors that contain the IL-4Ralpha subunit, and these receptors are expressed on many cell types in the lung. It has been difficult to determine whether allergen-induced mucus production is strictly dependent on direct effects of IL-4 and IL-13 on epithelial cells or whether other independent mechanisms exist. To address this question, we used a cell type-specific inducible gene-targeting strategy to selectively disrupt the IL-4Ralpha gene in Clara cells, an airway epithelial cell population that gives rise to mucus-producing goblet cells. Clara cell-specific IL-4Ralpha-deficient mice and control mice developed similar elevations in serum IgE levels, airway inflammatory cell numbers, Th2 cytokine production, and airway reactivity following OVA sensitization and challenge. However, compared with control mice, Clara cell-specific IL-4Ralpha-deficient mice were nearly completely protected from allergen-induced mucus production. Because only IL-13 and IL-4 are thought to signal via IL-4Ralpha, we conclude that direct effects of IL-4 and/or IL-13 on Clara cells are required for allergen-induced mucus production in the airway epithelium. 相似文献
16.
A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence 总被引:15,自引:0,他引:15
Vuong C Kocianova S Voyich JM Yao Y Fischer ER DeLeo FR Otto M 《The Journal of biological chemistry》2004,279(52):54881-54886
Biofilms play an important role in many chronic bacterial infections. Production of an extracellular mixture of sugar polymers called exopolysaccharide is characteristic and critical for biofilm formation. However, there is limited information about the mechanisms involved in the biosynthesis and modification of exopolysaccharide components and how these processes influence bacterial pathogenesis. Staphylococcus epidermidis is an important human pathogen that frequently causes persistent infections by biofilm formation on indwelling medical devices. It produces a poly-N-acetylglucosamine molecule that emerges as an exopolysaccharide component of many bacterial pathogens. Using a novel method based on size exclusion chromatography-mass spectrometry, we demonstrate that the surface-attached protein IcaB is responsible for deacetylation of the poly-N-acetylglucosamine molecule. Most likely due to the loss of its cationic character, non-deacetylated poly-acetylglucosamine in an isogenic icaB mutant strain was devoid of the ability to attach to the bacterial cell surface. Importantly, deacetylation of the polymer was essential for key virulence mechanisms of S. epidermidis, namely biofilm formation, colonization, and resistance to neutrophil phagocytosis and human antibacterial peptides. Furthermore, persistence of the icaB mutant strain was significantly impaired in a murine model of device-related infection. This is the first study to describe a mechanism of exopolysaccharide modification that is indispensable for the development of biofilm-associated human disease. Notably, this general virulence mechanism is likely similar for other pathogenic bacteria and constitutes an excellent target for therapeutic maneuvers aimed at combating biofilm-associated infection. 相似文献
17.
18.
蛹虫草是重要的药食兼用两用真菌,具有较高的医用及经济价值。本文通过单因素和正交试验的方法研究了不同酶系统、酶解温度、酶解时间、渗透压稳定剂、菌龄对蛹虫草原生质体形成的影响,并对蛹虫草原生质体进行紫外诱变,以生物量和胞外多糖产量为指标选育胞外多糖高产菌株。结果表明:在30℃、1%溶壁酶+0.5%蜗牛酶+0.5%纤维素酶条件下,以甘露醇为渗透压稳定剂对4日龄蛹虫草菌丝酶解2h,原生质体产量可达到9.2×10^6个/mL。从150株诱变株中筛选出1株最佳正诱变株,编号为44#,经深层培养其生物量比出发菌株提高10%,胞外多糖产量提高84.3%,继代培养10代后,遗传稳定性良好。 相似文献
19.
AIMS: To study the effect of different fermentation conditions and to model the effect of temperature and pH on different biokinetic parameters of bacterial growth and exopolysaccharides (EPS) production of Streptococcus thermophilus ST 111 in milk-based medium. METHODS AND RESULTS: The influence of temperature and pH was studied through fermentation and modelling. Fermentations under non-pH controlled conditions with S. thermophilus ST 111 indicated that the EPS production was low in milk medium, even if additional nitrogen sources were supplemented. Under pH-controlled conditions, addition of whey protein hydrolysate to the milk medium resulted in a fivefold increase of the EPS production. This medium did not contain polysaccharides interfering with EPS isolation. Primary and secondary modelling of different fermentations revealed an optimum temperature and pH of 40 degrees C and constant pH 6.2, respectively, for growth in milk medium supplemented with whey protein hydrolysate. Maximum EPS production was observed in the range of 32-42 degrees C and constant pH 5.5-6.6. Whereas growth and maximum EPS production were clearly influenced by temperature and pH, the specific EPS production was only affected by stress conditions (T = 49 degrees C). CONCLUSIONS: Addition of whey protein hydrolysate to milk medium resulted in an increased growth and EPS production of S. thermophilus ST 111 under pH-controlled conditions. A modelling approach allowed studying the influence of temperature and pH on the kinetics of both growth and EPS production. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of an appropriate milk-based medium and a combined model of temperature and pH can be of practical importance for the production of yoghurt or other fermented milks as well as for process optimization of the large-scale production of starter strains to be used for their EPS production. 相似文献
20.
Rhizobium meliloti chromosomal loci required for suppression of exopolysaccharide mutations by lipopolysaccharide. 总被引:5,自引:4,他引:1 下载免费PDF全文
M N Williams R I Hollingsworth P M Brzoska E R Signer 《Journal of bacteriology》1990,172(11):6596-6598
Mutants of alfalfa symbiont Rhizobium meliloti SU47 that fail to make extracellular polysaccharide (exo mutants) induce the formation of nodules that are devoid of bacteria and consequently do not fix nitrogen. This Fix- phenotype can be suppressed by an R. meliloti Rm41 gene that affects lipopolysaccharide structure. Here we describe mutations preventing suppression that map at two new chromosomal loci, lpsY and lpsX, present in both strains. Two other lps mutations isolated previously from SU47 also prevented suppression. 相似文献