首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introgression of resistance trait Cf-4 from wild tomato species into tomato cultivar MoneyMaker (MM-Cf0) has resulted in the near-isogenic line MM-Cf4 that confers resistance to the fungal tomato pathogen Cladosporium fulvum. At the Cf-4 locus, five homologues of Cladosporium resistance gene Cf-9 (Hcr9s) are present. While Hcr9-4D represents the functional Cf-4 resistance gene matching Avr4, Hcr9-4E confers resistance towards C. fulvum by mediating recognition of the novel avirulence determinant Avr4E. Here, we report the isolation of the Avr4E gene, which encodes a cysteine-rich protein of 101 amino acids that is secreted by C. fulvum during colonization of the apoplastic space of tomato leaves. By complementation we show that Avr4E confers avirulence to strains of C. fulvum that are normally virulent on Hcr9-4E-transgenic plants, indicating that Avr4E is a genuine, race-specific avirulence determinant. Strains of C. fulvum evade Hcr9-4E-mediated resistance either by a deletion of the Avr4E gene or by production of a stable Avr4E mutant protein that carries two amino acid substitutions, Phe(82)Leu and Met(93)Thr. Moreover, we demonstrate by site-directed mutagenesis that the single amino acid substitution Phe(82)Leu in Avr4E is sufficient to evade Hcr9-4E-mediated resistance.  相似文献   

2.
The Cf-2 gene of tomato confers resistance to strains of the biotrophic pathogenic fungus Cladosporium fulvum carrying avirulence gene Avr2. To allow dissection of the biochemical mechanism of perception of AVR2 by Cf-2, we set out to clone the Avr2 gene. Here, we report the functional cloning of Avr2 cDNA, based on the induction of a hypersensitive response (HR) by the encoded AVR2 protein in Cf2 tomato plants. Analysis of strains of C. fulvum that are virulent on Cf2 tomato lines revealed various independent frameshift mutations in the Avr2 open reading frame (ORF) and a point mutation resulting in a premature stop codon. All modifications result in the production of truncated AVR2 proteins. Interestingly, an additional modification involves the insertion of a LINE-like element, Cfl1, in the Avr2 ORF. Cfl1 is the first LINE-like element identified in C. fulvum and provides the first example of loss of avirulence of a plant pathogen caused by insertion of a retrotransposable element in an Avr gene. Rcr3 represents an additional plant protein that is specifically required for Cf-2-mediated resistance. Analysis of two different rcr3 mutant Cf2 tomato plants revealed that their ability to respond to AVR2 with a HR correlates with their degree of resistance to AVR2-producing strains of C. fulvum. These data support a role for Rcr3 in the perception of AVR2 by Cf-2.  相似文献   

3.
The avirulence genes Avr9 and Avr4 from the fungal tomato pathogen Cladosporium fulvum encode extracellular proteins that elicit a hypersensitive response when injected into leaves of tomato plants carrying the matching resistance genes, Cf-9 and Cf-4, respectively. We successfully expressed both Avr9 and Avr4 genes in tobacco with the Agrobacterium tumefaciens transient transformation assay (agroinfiltration). In addition, we expressed the matching resistance genes, Cf-9 and Cf-4, through agroinfiltration. By combining transient Cf gene expression with either transgenic plants expressing one of the gene partners, Potato virus X (PVX)-mediated Avr gene expression, or elicitor injections, we demonstrated that agroinfiltration is a reliable and versatile tool to study Avr/Cf-mediated recognition. Significantly, agroinfiltration can be used to quantify and compare Avr/Cf-induced responses. Comparison of different Avr/Cf-interactions within one tobacco leaf showed that Avr9/Cf-9-induced necrosis developed slower than necrosis induced by Avr4/Cf-4. Quantitative analysis demonstrated that this temporal difference was due to a difference in Avr gene activities. Transient expression of matching Avr/Cf gene pairs in a number of plant families indicated that the signal transduction pathway required for Avr/Cf-induced responses is conserved within solanaceous species. Most non-solanaceous species did not develop specific Avr/Cf-induced responses. However, co-expression of the Avr4/Cf-4 gene pair in lettuce resulted in necrosis, providing the first proof that a resistance (R) gene can function in a different plant family.  相似文献   

4.
The interaction between the biotrophic fungal pathogen Cladosporium fulvum and tomato complies with the genefor-gene model. Resistance, expressed as a hypersensitive response (HR) followed by other defence responses, is based on recognition of products of avirulence genes from C. fulvum (race-specific elicitors) by receptors (putative products of resistance genes) in the host plant tomato. The AVR9 elicitor is a 28 amino acid (aa) peptide and the AVR4 elicitor a 106 aa peptide which both induce HR in tomato plants carrying the complementary resistance genes Cf9 and Cf4, respectively. The 3-D structure of the AVR9 peptide, as determined by 1H NMR, revealed that AVR9 belongs to a family of peptides with a cystine knot motif. This motif occurs in channel blockers, peptidase inhibitors and growth factors. The Cf9 resistance gene encodes a membrane-anchored extracellular glycoprotein which contains leucine-rich repeats (LRRs). 125I labeled AVR9 peptide shows the same affinity for plasma membranes of Cf9+ and Cf9- tomato leaves. Membranes of solanaceous plants tested so far all contain homologs of the Cf9 gene and show similar affinities for AVR9. It is assumed that for induction of HR, at least two plant proteins (presumably CF9 and one of his homologs) interact directly or indirectly with the AVR9 peptide which possibly initiates modulation and dimerisation of the receptor, and activation of various other proteins involved in downstream events eventually leading to HR. We have created several mutants of the Avr9 gene, expressed them in the potato virus X (PVX) expression system and tested their biological activity on Cf9 genotypes of tomato. A positive correlation was observed between the biological activity of the mutant AVR9 peptides and their affinity for tomato plasma membranes. Recent results on structure and biological activity of AVR4 peptides encoded by avirulent and virulent alleles of the Avr4 gene (based on expression studies in PVX) are also discussed as well as early defence responses induced by elicitors in tomato leaves and tomato cell suspensions.  相似文献   

5.
The gene-for-gene model postulates that for every gene determining resistance in the host plant, there is a corresponding gene conditioning avirulence in the pathogen. On the basis of this relationship, products of resistance (R) genes and matching avirulence (Avr) genes are predicted to interact. Here, we report on binding studies between the R gene product Cf-9 of tomato and the Avr gene product AVR9 of the pathogenic fungus Cladosporium fulvum. Because a high-affinity binding site (HABS) for AVR9 is present in tomato lines, with or without the Cf-9 resistance gene, as well as in other solanaceous plants, the Cf-9 protein was produced in COS and insect cells in order to perform binding studies in the absence of the HABS. Binding studies with radio-labeled AVR9 were performed with Cf-9-producing COS and insect cells and with membrane preparations of such cells. Furthermore, the Cf-9 gene was introduced in tobacco, which is known to be able to produce a functional Cf-9 protein. Binding of AVR9 to Cf-9 protein produced in tobacco was studied employing surface plasmon resonance and surface-enhanced laser desorption and ionization. Specific binding between Cf-9 and AVR9 was not detected with any of the procedures. The implications of this observation are discussed.  相似文献   

6.
Here we describe the role of the Cladosporium fulvum nitrogen response factor 1 (Nrf1) gene in regulation of the expression of avirulence gene Avr9 and virulence on tomato. The Nrf1 gene, which was isolated by a polymerase chain reaction-based strategy, is predicted to encode a protein of 918 amino acid residues. The protein contains a putative zinc finger DNA-binding domain that shares 98% amino acid identity with the zinc finger of the major nitrogen regulatory proteins AREA and NIT2 of Aspergillus nidulans and Neurospora crassa, respectively. Functional equivalence of Nrf1 to areA was demonstrated by complementation of an A. nidulans areA loss-of-function mutant with Nrf1. Nrf1-deficient transformants of C. fulvum obtained by homologous recombination were unable to utilize nitrate and nitrite as a nitrogen source. In contrast to what was observed in the C. fulvum wild-type, the Avr9 gene was no longer induced under nitrogen-starvation conditions in Nrf1-deficient strains. On susceptible tomato plants, the Nrf1-deficient strains were as virulent as wild-type strains of C. fulvum, although the expression of the Avr9 gene was strongly reduced. In addition, Nrf1-deficient strains were still avirulent on tomato plants containing the functional Cf-9 resistance gene, indicating that in planta, apparently sufficient quantities of stable AVR9 elicitor are produced. Our results suggest that the NRF1 protein is a major regulator of the Avr9 gene.  相似文献   

7.
The Cladosporium fulvum (Cf)-4 gene of tomato confers resistance to the fungus C. fulvum, expressing the corresponding avirulence (Avr)4 gene, which codes for an elicitor protein. Little is known about how such mechanisms work, but previous studies have shown that elicitor recognition activates Ca(2+) signalling and protein kinases, such as mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK). Here, we provide evidence that a new signalling component, the lipid second messenger phosphatidic acid (PA), is produced within a few minutes of AVR4/Cf-4 interaction. Using transgenic tobacco cells expressing the tomato Cf-4-resistance gene as a model system, phospholipid signalling pathways were studied by pre-labelling the cells with (32)P(i) and assaying for the formation of lipid signals after challenge with the fungal elicitor AVR4. A dramatic rapid response was an increase in (32)P-PA, together with its metabolic product diacylglycerol pyrophosphate (DGPP). AVR4 increased the levels of PA and DGPP in a Cf-4(+)-, time- and dose-dependent manner, while the non-matching elicitor AVR9 did not trigger any response. In general, PA signalling can be triggered by two different pathways: via phospholipase D (PLD), which generates PA directly by hydrolysing structural phospholipids like phosphatidylcholine (PC), or via PLC, which generates diacylglycerol (DAG) that is subsequently phosphorylated to PA by DAG kinase (DGK). To determine the origin of the AVR4-induced PA formation, a PLD-specific transphosphatidylation assay and a differential (32)P-labelling protocol were used. The results clearly demonstrated that most PA was produced via the phosphorylation of DAG. Neomycin and U73122, inhibitors of PLC activity, inhibited AVR4-induced PA accumulation, suggesting that the increase in DGK activity was because of increased PLC activity producing DAG. Lastly, evidence is provided that PLC signalling and, in particular, PA production could play a role in triggering responses, such as the AVR4-induced oxidative burst. For example, PLC inhibitors inhibited the oxidative burst, and when PA was added to cells, an oxidative burst was induced.  相似文献   

8.
Hypersensitive cell death occurs in tomato seedlings that are derived from a cross between plants that express a resistance (Cf) gene against the pathogenic fungus Cladosporium fulvum and plants that contain the matching avirulence (Avr) gene originating from this fungus. The pattern of Cf-9/Avr9- and Cf-4/Avr4-induced necrosis in these F1 seedlings was found to differ significantly. Macroscopic observation revealed that in F1 tomato seedlings containing both Cf-9 and Avr9, numerous necrotic spots developed that were scattered over the entire cotyledon, while the midvein and primary veins remained unaffected. In seedlings containing both Cf-4 and Avr4, however, initially only one or a few necrotic spots developed on each cotyledon, in most cases in the midvein and occasionally in primary veins. Subsequently, these spots turned rapidly into lesions that enlarged along the midvein and primary veins, eventually causing the cotyledons to wilt and abscise. These observations were confirmed by detailed histological studies. Production of the AVR proteins in adult tomato plants carrying the matching Cf gene, employing potato virus X, resulted in similar patterns of necrosis. RNA gel blot analysis demonstrated that both Avr4 and Avr9, controlled by the CaMV 35S promoter, were highly expressed in seedlings already at one day post-emergence, indicating that the distinct necrotic patterns are not due to differences in Avr expression levels. We have analysed the expression of many genes involved in defence signalling pathways and the defence response itself, during the onset of the Cf/Avr-initiated hypersensitive response (HR). Although most of the genes were expressed stronger and faster in Cf-4/Avr4 seedlings than in Cf-9/Avr9 seedlings at the onset of HR, no significant qualitative differences in the expression of genes involved in downstream signalling were observed when Cf-4/Avr4- and Cf-9/Avr9-induced defence responses were compared.  相似文献   

9.
The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in several clusters and evolve mainly through sequence exchange between homologs. To study the evolution of Cf genes, we set out to identify functional Hcr9s that mediate recognition of Avr4 and Avr9 (designated Hcr9-Avr4s and Hcr9-Avr9s) in all wild tomato species. Plants responsive to the Avr4 and Avr9 elicitor proteins were identified throughout the genus Lycopersicon. Open reading frames of Hcr9s from Avr4- and Avr9-responsive tomato plants were polymerase chain reaction-amplified. Several Hcr9s that mediate Avr4 or Avr9 recognition were identified in diverged tomato species by agroinfiltration assays. These Hcr9-Avr4s and Hcr9-Avr9s are highly identical to Cf-4 and Cf-9, respectively. Therefore, we conclude that both Cf-4 and Cf-9 predate Lycopersicon speciation. These results further suggest that C. fulvum is an ancient pathogen of the genus Lycopersicon, in which Cf-4 and Cf-9 have been maintained by selection pressure imposed by C. fulvum.  相似文献   

10.
In many interactions between plants and their pathogens, resistance to infection is specified by plant resistance (R) genes and corresponding pathogen avirulence (Avr) genes. In tomato, the Cf-4 and Cf-9 resistance genes map to the same location but confer resistance to Cladosporium fulvum through recognition of different avirulence determinants (AVR4 and AVR9) by a molecular mechanism that has yet to be determined. Here, we describe the cloning and characterization of Cf-4, which also encodes a membrane-anchored extracellular glycoprotein. Cf-4 contains 25 leucine-rich repeats, which is two fewer than Cf-9. The proteins have > 91% identical amino acids. DNA sequence comparison suggests that Cf-4 and Cf-9 are derived from a common progenitor sequence. Amino acid differences distinguishing Cf-4 and Cf-9 are confined to their N termini, delimiting a region that determines the recognitional specificity of ligand binding. The majority of these differences are in residues interstitial to those of the leucine-rich repeat consensus motif. Many of these residues are predicted to form a solvent-exposed surface that can interact with the cognate ligand. Both Cf-4 and Cf-9 are located within a 36-kb region comprising five tandemly duplicated homologous genes. These results provide further insight into the molecular basis of pathogen perception by plants and the organization of complex R gene loci.  相似文献   

11.
Tomato (Solanum lycopersicum) plants with the Cf-4 resistance gene recognize strains of the pathogenic fungus Cladosporium fulvum that secrete the avirulence protein Avr4. Transgenic tomato seedlings coexpressing Cf-4 and Avr4 mount a hypersensitive response (HR) at 20 degrees C, which is suppressed at 33 degrees C. Within 120 min after a shift from 33 degrees C to 20 degrees C, tomato mitogen-activated protein (MAP) kinase (LeMPK) activity increases in Cf-4/Avr4 seedlings. Searching tomato genome databases revealed at least 16 LeMPK sequences, including the sequence of LeMPK1, LeMPK2, and LeMPK3 that cluster with biotic stress-related MAP kinase orthologs from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). LeMPK1, LeMPK2, and LeMPK3 are simultaneously activated in Cf-4/Avr4 seedlings, and, to reveal whether they are functionally redundant or not, recombinant LeMPKs were incubated on PepChip Kinomics slides carrying peptides with potential phosphorylation sites. Phosphorylated peptides and motifs present in them discriminated between the phosphorylation specificities of LeMPK1, LeMPK2, and LeMPK3. LeMPK1, LeMPK2, or LeMPK3 activity was specifically suppressed in Cf-4-tomato by virus-induced gene silencing and leaflets were either injected with Avr4 or challenged with C. fulvum-secreting Avr4. The results of these experiments suggested that the LeMPKs have different but also overlapping roles with regard to HR and full resistance in tomato.  相似文献   

12.
The extracellular AVR4 elicitor of the pathogenic fungus Cladosporium fulvum induces defense responses in the tomato genotype Cf-4. Here, the four disulfide bonds of AVR4 were identified as Cys-11-41, Cys-21-27, Cys-35-80, and Cys-57-72 by partial reduction with Tris-(2-carboxyethyl)-phosphine hydrochloride, subsequent cyanylation, and base-catalyzed chain cleavage. The resulting peptide fragments were analyzed by mass spectrometry. Sequence homology and the disulfide bond pattern revealed that AVR4 contains an invertebrate (inv) chitin-binding domain (ChBD). Binding of AVR4 to chitin was confirmed experimentally. The three disulfide bonds encompassing the inv ChBD motif are also required for protein stability of AVR4. Independent disruption of each of the three conserved disulfide bonds in AVR4 resulted in a protease-sensitive protein, whereas the fourth disulfide bond appeared not to be required for protein stability. Most strains of C. fulvum virulent on Cf-4 tomato contain Cys to Tyr substitutions in AVR4 involving two (Cys-11-41, Cys-35-80) of the three disulfide bonds present in the inv ChBD motif. These natural Cys to Tyr mutant AVR4 proteins did retain their chitin binding ability and when bound to chitin were less sensitive to proteases. Thus, the widely applied tomato Cf-4 resistance gene is circumvented by C. fulvum by amino acid substitutions affecting two disulfide bonds in AVR4 resulting in the absence of the corresponding AVR4 isoforms in apoplastic fluid. However, these natural isoforms of AVR4 appear to have retained their intrinsic function, i.e. binding to chitin present in the cell wall of C. fulvum, most likely to protect it against the deleterious effects of plant chitinases.  相似文献   

13.
The race-specific Cladosporium fulvum peptide elicitor AVR9, which specifically induces a hypersensitive response in tomato genotypes carrying the Cf-9 resistance gene, was labeled with iodine-125 at the N-terminal tyrosine residue and used in binding studies. 125I-AVR9 showed specific, saturable, and reversible binding to plasma membranes isolated from leaves of tomato cultivar Moneymaker without Cf resistance genes (MM-Cf0) or from a near-isogenic genotype with the Cf-9 resistance gene (MM-Cf9). The dissociation constant was found to be 0.07 nM, and the receptor concentration was 0.8 pmol/mg microsomal protein. Binding was highly influenced by pH and the ionic strength of the binding buffer and by temperature, indicating the involvement of both electrostatic and hydrophobic interactions. Binding kinetics and binding capacity were similar for membranes of the MM-Cf0 and MM-Cf9 genotypes. In all solanaceous plant species tested, an AVR9 binding site was present, whereas in the nonsolanaceous species that were analyzed, such a binding site could not be identified. The ability of membranes isolated from different solanaceous plant species to bind AVR9 seems to correlate with the presence of members of the Cf-9 gene family, but whether this correlation is functional remains to be determined.  相似文献   

14.
The tomato resistance genes Cf-4 and Cf-9 confer specific, hypersensitive response-associated recognition of Cladosporium carrying the avirulence genes Avr4 and Avr9, respectively. Cf-4 and Cf-9 encode type I transmembrane proteins with extracellular leucine-rich repeats (LRRs). Compared with Cf-9, Cf-4 lacks two LRRs and differs in 78 amino acid residues. To investigate the relevance of these differences for specificity, we exchanged domains between Cf-4 and Cf-9, and mutant constructs were tested for mediating the hypersensitive response by transient coexpression with either Avr4 or Avr9. We show that the number of LRRs is essential for both Cf-4 and Cf-9 function. In addition, Cf-9 specificity resides entirely in the LRR domain and appears to be distributed over several distant LRRs. In contrast, Cf-4 specificity determinants reside in the N-terminal LRR-flanking domain and three amino acid residues in LRRs 13, 14, and 16. These residues are present at putative solvent-exposed positions, and all are required for full Cf-4 function. Finally, we show that Cf-9 carrying the specificity determinants of Cf-4 has recognitional specificity for AVR4. The data indicate that diversifying selection of solvent-exposed residues has been a more important factor in the generation of Cf-4 specificity than has sequence exchange between Cf-4 progenitor genes. The fact that most variant residues in Cf-4 are not essential for Cf-4 specificity indicates that the diverse decoration of R proteins is not fully adapted to confer recognition of a certain avirulence determinant but likely provides a basis for a versatile, adaptive recognition system.  相似文献   

15.
Disease resistance in plants is commonly activated by the product of an avirulence (Avr) gene of a pathogen after interaction with the product of a matching resistance (R) gene in the host. In susceptible plants, Avr products might function as virulence or pathogenicity factors. The AVR9 elicitor from the fungus Cladosporium fulvum induces defense responses in tomato plants carrying the Cf-9 resistance gene. This 28-residue beta-sheet AVR9 peptide contains three disulfide bridges, which were identified in this study as Cys2-Cys16, Cys6-Cys19, and Cys12-Cys26. For this purpose, AVR9 was partially reduced, and the thiol groups of newly formed cysteines were modified to prevent reactions with disulfides. After HPLC purification, the partially reduced peptides were sequenced to determine the positions of the modified cysteines, which originated from the reduced disulfide bridge(s). All steps involving molecules with free thiol groups were performed at low pH to suppress disulfide scrambling. For that reason, cysteine modification by N-ethylmaleimide was preferred over modification by iodoacetamide. Upon (partial) reduction of native AVR9, the Cys2-Cys16 bridge opened selectively. The resulting molecule was further reduced to two one-bridge intermediates, which were subsequently completely reduced. The (partially) reduced cysteine-modified AVR9 species showed little or no necrosis-inducing activity, demonstrating the importance of the disulfide bridges for biological activity. Based on peptide length and cysteine spacing, it was previously suggested that AVR9 isa cystine-knotted peptide. Now, we have proven that the bridging pattern of AVR9 is indeed identical to that of cystine-knotted peptides. Moreover, NMR data obtained for AVR9 show that it is structurally closely related to the cystine-knotted carboxypeptidase inhibitor. However, AVR9 does not show any carboxypeptidase inhibiting activity, indicating that the cystine-knot fold is a commonly occurring motif with varying biological functions.  相似文献   

16.
The RXLR cytoplasmic effector AVR3a of Phytophthora infestans confers avirulence on potato plants carrying the R3a gene. Two alleles of Avr3a encode secreted proteins that differ in only three amino acid residues, two of which are in the mature protein. Avirulent isolates carry the Avr3a allele, which encodes AVR3aKI (containing amino acids C19, K80 and I103), whereas virulent isolates express only the virulence allele avr3a, encoding AVR3aEM (S19, E80 and M103). Only the AVR3aKI protein is recognized inside the plant cytoplasm where it triggers R3a-mediated hypersensitivity. Similar to other oomycete avirulence proteins, AVR3aKI carries a signal peptide followed by a conserved motif centered on the consensus RXLR sequence that is functionally similar to a host cell-targeting signal of malaria parasites. The interaction between Avr3a and R3a can be reconstructed by their transient co-expression in Nicotiana benthamiana. We exploited the N. benthamiana experimental system to further characterize the Avr3a-R3a interaction. R3a activation by AVR3aKI is dependent on the ubiquitin ligase-associated protein SGT1 and heat-shock protein HSP90. The AVR3aKI and AVR3aEM proteins are equally stable in planta, suggesting that the difference in R3a-mediated death cannot be attributed to AVR3aEM protein instability. AVR3aKI is able to suppress cell death induced by the elicitin INF1 of P. infestans, suggesting a possible virulence function for this protein. Structure-function experiments indicated that the 75-amino acid C-terminal half of AVR3aKI, which excludes the RXLR region, is sufficient for avirulence and suppression functions, consistent with the view that the N-terminal region of AVR3aKI and other RXLR effectors is involved in secretion and targeting but is not required for effector activity. We also found that both polymorphic amino acids, K80 and I103, of mature AVR3a contribute to the effector functions.  相似文献   

17.
To promote host colonization, many plant pathogens secrete effector proteins that either suppress or counteract host defences. However, when these effectors are recognized by the host's innate immune system, they trigger resistance rather than promoting virulence. Effectors are therefore key molecules in determining disease susceptibility or resistance. We show here that Avr2, secreted by the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici ( Fol ), shows both activities: it is required for full virulence in a susceptible host and also triggers resistance in tomato plants carrying the resistance gene I-2 . Point mutations in AVR2 , causing single amino acid changes, are associated with I-2 -breaking Fol strains. These point mutations prevent recognition by I-2 , both in tomato and when both genes are co-expressed in leaves of Nicotiana benthamiana . Fol strains carrying the Avr2 variants are equally virulent, showing that virulence and avirulence functions can be uncoupled. Although Avr2 is secreted into the xylem sap when Fol colonizes tomato, the Avr2 protein can be recognized intracellularly by I-2, implying uptake by host cells.  相似文献   

18.
The avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum encodes a race-specific peptide elicitor that induces a hypersensitive response in tomato plants carrying the complementary resistance gene Cf9. The avr9 gene is highly expressed when C. fulvum is growing in the plant and the elicitor accumulates in infected leaves as a 28-amino acid (aa) peptide. In C. fulvum grown in vitro, the peptide elicitor is not produced in detectable amounts. To produce significant amounts of the AVR9 elicitor in vitro, the coding and termination sequences of the avr9 gene were fused to the constitutive gpd-promoter (glyceraldehyde 3-phosphate dehydrogenase) of Aspergillus nidulans. Transformants of C. fulvum were obtained that highly expressed the avr9 gene in vitro and produced active AVR9 peptide elicitors. These peptides were partially sequenced from the N terminus and appeared to consist of 32, 33, and 34 aa's, respectively, and are the precursors of the mature 28-aa AVR9 peptide. We demonstrated that plant factors process the 34-aa peptide into the mature 28-aa peptide. We present a model for the processing of AVR9 involving cleavage of a signal peptide during excretion and further maturation by fungal and plant proteases into the stable 28-aa peptide elicitor.  相似文献   

19.
The tomato Cf-4 and Cf-9 genes confer resistance to the leaf mould pathogen Cladosporium fulvum and map at a complex locus on the short arm of chromosome 1. It was previously shown that the gene encoding Cf-4, which recognizes the Avr4 avirulence determinant, is one of five tandemly duplicated homologous genes (Hcr9-4s) at this locus. Cf-4 was identified by molecular analysis of rare Cf-4/Cf-9 disease-sensitive recombinants and by complementation analysis. The analysis did not exclude the possibility that an additional gene(s) located distal to Cf-4 may also confer resistance to C. fulvum. We demonstrate that a number of Dissociation-tagged Cf-4 mutants, identified on the basis of their insensitivity to Avr4, are still resistant to infection by C. fulvum race 5. Molecular analysis of 16 Cf-4 mutants, most of which have small chromosomal deletions in this region, suggested the additional resistance specificity is encoded by Hcr9-4E. Hcr9-4E recognizes a novel C. fulvum avirulence determinant that we have designated Avr4E.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号