首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, acidocin 1B, a bacteriocin produced by Lactobacillus acidophilus GP1B, exhibited profound inhibitory activity against a variety of LAB and pathogens, including Gram-negative bacteria, and its mode of action was to destabilize the cell wall, thereby resulting in bactericidal lysis. Acidocin 1B was found to be heat stable, because it lost no activity when it was heated up to 95 degrees C for 60 min. It retained approximately 67% of the initial activity after storage for 30 days at 4 degrees C, and 50% of its initial activity after 30 days at 25 degrees C and 37 degrees C. The molecular mass of acidocin 1B was estimated to be 4214.65 Da by mass spectrometry. Plasmid curing results indicated that a plasmid, designated as pLA1B, seemed to be responsible for both acidocin 1B production and host immunity, and that the pLA1B could be transformed into competent cells of L. acidophilus ATCC 43121 by electroporation. Our findings indicate that the acidocin 1B and its producer strain may have potential value as a biopreservative in food systems.  相似文献   

2.
Lactate dehydrogenase (EC 1.1.1.27) from Vibrio marinus MP-1 was purified 15-fold and ammonium activated. The optimum pH for pyruvate reduction was 7.4. Maximum lactate dehydrogenase activity occurred at 10 to 15 degrees C, and none occurred at 40 degrees C. The crude-extract enzyme was stable between 15 and 20 degrees C and lost 50% of its activity after 60 min at 45 degrees C. The partially purified enzyme was stable between 8 and 15 degrees C and lost 50% of its activity after 60 min at 30 degrees C. The thermal stability of lactate dehydrogenase was increased by mercaptoethanol, with 50% remaining activity at 42 degrees C.  相似文献   

3.
Lactate dehydrogenase (EC 1.1.1.27) from Vibrio marinus MP-1 was purified 15-fold and ammonium activated. The optimum pH for pyruvate reduction was 7.4. Maximum lactate dehydrogenase activity occurred at 10 to 15 degrees C, and none occurred at 40 degrees C. The crude-extract enzyme was stable between 15 and 20 degrees C and lost 50% of its activity after 60 min at 45 degrees C. The partially purified enzyme was stable between 8 and 15 degrees C and lost 50% of its activity after 60 min at 30 degrees C. The thermal stability of lactate dehydrogenase was increased by mercaptoethanol, with 50% remaining activity at 42 degrees C.  相似文献   

4.
The acidic Protease was extracted from the intestine of the grass carp (Ctenopharyngodon idellus) by 0.1 M sodium phosphate buffer, pH 7.0 at 4 degrees C after neat intestine was defatted with acetone, and partially purified by ammonium sulfate precipitation, gel filtration chromatography and ionic exchange chromatography. SDS-PAGE electrophoresis showed that the enzyme was homogeneous with a relative molecular mass of 28,500. Substrate-PAGE at pH7.0 showed that the purified acidic protease has only an active component. Specificity and inhibiting assays showed that it should be a cathepsin D. The optimal pH and optimal temperature of the enzyme were pH2.5 and 37 degrees C, respectively. It retained only 20% of its initial activity after incubating at 50 degrees C for 30 min. The enzyme lost 81% of its activity after incubation with pepstatin A at room temperature, but was not inhibited by soybean trypsin inhibitor or phenylmethylsulfonyl fluoride (PMSF). Its V(max) and K(m) values were determined to be 3.57 mg/mL and 0.75 min(-1), respectively.  相似文献   

5.
6.
The residual activity of enzymes immobilized in the membrane on the basis on 1-vinyl-2-pyrrolidinone as photopolymerizable composition is studied. It is established, that under conditions of the immobilization at 20 degrees C the residual activity glucoseoxidase is about 35% from a initial level, horseredish peroxidase and urease from Jeack beans--42% and 20%, respectively. In case of an immobilization of beta-glucoseoxidase -50 degrees C it reaches almost 50% from a initial level. It was investigated the influence of different sources of UV-radiation and different substances on stability of the enzymes in the composition and in the immobilization matrix at storage. Dynamic of changes of enzyme activity at the photoimmobilization was characterized, and also the requirements for providing of its maximal storage was selected.  相似文献   

7.
Liu Q  Wang H  Ng TB 《Biochimica et biophysica acta》2006,1760(12):1914-1919
From fresh fruiting bodies of the wild ascomycete mushroom (Xylaria hypoxylon) a lectin with N-terminal sequence resemblance to a part of Aspergillus oryzae genome and only slight similarity to fungal immunomodulatory protein from the mushroom Flammulina velutipes was isolated. The protocol comprised extraction with water, precipitation from the aqueous extract using 80% saturated (NH(4))(2)SO(4), ion exchange chromatography on DEAE-cellulose and CM-cellulose, and then gel filtration by fast protein liquid chromatography on Superdex 75. Lectin activity was adsorbed on DEAE-cellulose and unadsorbed on CM-cellulose. The lectin appeared as a single band with a molecular mass of 14.4 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a single 28.8-kDa peak in gel filtration on Superdex 75. The lectin exhibited highly potent antiproliferative activity toward tumor cell lines, and exerted a potent anti-mitogenic action on mouse splenocytes. The hemagglutinating activity of the lectin was inhibited by inulin and xylose. It was stable up to 35 degrees C. At 40 degrees C its hemagglutinating activity was reduced by 50%, and it dwindled to 12.5% of the original activity at 50 degrees C. The hemagglutinating activity was also sensitive to NaOH and HCl solutions. The hemagglutinating activity was unaffected by CaCl(2) and ZnCl(2), and was potentiated substantially in the presence of AlCl(3) and FeCl(3). The distinctive features of this lectin comprise a unique sugar specificity, and highly potent hemagglutinating, antiproliferative and anti-mitogenic activities. X. hypoxylon lectin differs in molecular mass, N-terminal sequence and sugar specificity from previously reported ascomycete mushroom lectins.  相似文献   

8.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:7,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

9.
Bacillus pumilus PS213 secretes an alpha-L-arabinofuranosidase (AF) when grown in the presence of arabinogalactan or oat meal. The enzyme has been purified to homogeneity and characterised. Its molecular mass, as determined by gel filtration, is 220 kDa, while sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a single band of approximately 60 kDa. According to the result of the mass spectrometry analysis showing a molecular mass of 56 kDa, the enzyme should be a homotetramer. The isoelectric point was found to be 5.2, the enzyme activity was optimal at 55 degrees C and pH 7.0. The enzyme retained 80% of its activity after 2 h at 65 degrees C and lost 50% of activity at 75 degrees C after 135 min. The Michaelis constant K(m) and V(max) for p-nitrophenylarabinofuranoside at 37 degrees C were 1.7 mM and 52.9 U mg(-1), respectively. N-terminal sequence analysis and internal peptide fragments showed homology with glycosyl hydrolases of family 51.  相似文献   

10.
Cho JH  Na BK  Kim TS  Song CY 《IUBMB life》2000,50(3):209-214
An extracellular proteinase of Acanthamoeba castellanii was purified and its biochemical and pathological properties were characterized. The molecular mass of the purified enzyme was approximately 42 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Sephacryl S-200 HR gel-filtration chromatography. Therefore, its structure seemed to be monomeric with a single polypeptide. Its activity was inhibited by the serine proteinase inhibitors diisopropyl fluorophosphate and phenylmethanesulfonyl fluoride. Its activity was optimum at 30 to 50 degrees C with a maximum at 50 degrees C; optimal pH was 8.0. As much as 70% of the enzyme activity was maintained at 50 degrees C for at least 12 h but was rapidly inactivated thereafter. The purified enzyme degraded collagen and rabbit corneal extract. Furthermore, it exhibited strong cytopathic effects on human corneal epithelial cells and fibroblast cells. These suggest the possible role of this enzyme in the pathogenesis of Acanthamoeba.  相似文献   

11.
Thermostable amylolytic enzymes are currently being investigated to improve industrial processes of starch degradation. A thermostable extracellular glucoamylase (exo-1, 4-alpha-D-glucanohydrolase, E.C.3.2.1.3) from the culture supernatant of a thermophilic fungus Chaetomium thermophilum was purified to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) homogeneity by using ammonium sulfate fraction, DEAE-Sepharose Fast Flow chromatography, and Phenyl-Sepharose Fast Flow chromatography. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 64 kDa. The glucoamylase exhibited optimum catalytic activity at pH 4.0 and 65 degrees C. It was thermostable at 50 degrees C and 60 degrees C, and retained 50% activity after 60 min at 65 degrees C. The half-life of the enzyme at 70 degrees C was 20 min. N-terminal amino acid sequencing (15 residues) was AVDSYIERETPIAWN. Different metal ions showed different effects on the glucoamylase activity. Ca2+, Mg2+, Na+, and K+ enhanced the enzyme activity, whereas Fe2+, Ag+, and Hg2+ cause obvious inhibition. These properties make it applicable to other biotechnological purposes.  相似文献   

12.
A thermoactive and thermostable levansucrase was purified from a newly isolated thermophilic Bacillus sp. from Thailand soil. The purification was achieved by alcohol precipitation, DEAE-Cellulose and gel filtration chromatographies. The enzyme was purified to homogeneity as determined by SDS-PAGE, and had a molecular mass of 56 kDa. This levansucrase has some interesting characteristics regarding its optimum temperature and heat stability. The optimum temperature and pH were 60 degrees C and 6.0, respectively. The enzyme was completely stable after treatment at 50 degrees C for more than 1 h, and its activity increased four folds in the presence of 5 mM Fe(2+). The optimum temperature for levan production was 50 degrees C. Contrary to other levansucrases, the one presented in this study is able to produce high molecular weight levan at 50 degrees C.  相似文献   

13.
AIMS: A simple single step technique of gel filtration was developed for the purification of chitinase from Serratia marcescens NK1. METHODS AND RESULTS: Chitinase from Ser. marcescens NK1 was purified to homogeneity by gel filtration chromatography with 9.2% recovery. The enzyme had a pH optimum of 6.2 and a temperature optimum of 47 degrees C. It was stable in a wide pH range of 3.0 to 10.0, retaining 60% activity at pH 3.0 and 65% activity at pH 10.5. It retained 70% activity at 28 degrees C after 72 h and nearly 50% activity at 50 degrees C up to 24 h. CONCLUSION: The chitinase from Ser. marcescens NK1 can be efficiently purified in a single step by gel filtration chromatography. The chitinase of Ser. marcescens NK1, a soil isolate, is highly stable and as active as that of other reported isolates of Ser. marcescens. SIGNIFICANCE AND IMPACT OF THE STUDY: This purification scheme is advantageous because of its simplicity and can therefore be applied for the purification of other enzymes. The yield is sufficient for initial characterization studies of the enzyme, and an improved resolution can be obtained if the chromatography is done under fast flow systems.  相似文献   

14.
A thermophilic microorganism, Bacillus thermoleovorans ID-1, isolated from hot springs in Indonesia, showed extracellular lipase activity and high growth rates on lipid substrates at elevated temperatures. On olive oil (1.5%, w/v) as the sole carbon source, the isolate ID-1 grew very rapidly at 65 degrees C with its specific growth rate (2.50 h(-1)) and its lipase activity reached the maximum value of 520 U l(-1) during the late exponential phase and then decreased. In addition to this, isolate ID-1 could grow on a variety of lipid substrates such as oils (olive oil, soybean oil and mineral oil), triglycerides (triolein, tributyrin) and emulsifiers (Tween 20, 40). The excreted lipase of ID-1 was purified 223-fold to homogeneity by ammonium sulfate precipitation, DEAE-Sephacel ion-exchange chromatography and Sephacryl S-200 gel filtration chromatography. As a result, the relative molecular mass of the lipase was determined to be 34 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed optimal activity at 70-75 degrees C and pH 7.5 and exhibited 50% of its original activity after 1 h incubation at 60 degrees C and 30 min at 70 degrees C and its catalytic function was activated in the presence of Ca(2+) or Zn(2+).  相似文献   

15.
A novel laccase from the ascomycete Melanocarpus albomyces was purified and characterised. The enzyme was purified using anion exchange chromatography, hydrophobic interaction chromatography and gel filtration, and the purified laccase was biochemically characterised. It had activity towards typical substrates of laccases including 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate), dimethoxyphenol, guaiacol, and syringaldazine. The laccase showed good thermostability and it had a pH optimum at neutral pH, both unusual properties for most known fungal laccases. The activity of the laccase from M. albomyces was highest at 60-70 degrees C. With guaiacol and syringaldazine the pH optima were rather broad: 5-7.5 and 6-7, respectively. It retained 50% of its activity after 5 h incubation at 60 degrees C. The molecular weight of the laccase was about 80 kDa and the isoelectric point 4.0. The ultraviolet-visible absorption and electron paramagnetic resonance spectra of the purified laccase indicated that the typical three types of copper were present.  相似文献   

16.
17.
A gene (tap) encoding a thermostable alkaline phosphatase from the thermophilic bacterium Thermus thermophilus XM was cloned and sequenced. It is 1506 bp long and encodes a protein of 501 amino acid residues with a calculated molecular mass of 54.7 kDa. Comparison of the deduced amino acid sequence with other alkaline phosphatases showed that the regions in the vicinity of the phosphorylation site and metal binding sites are highly conserved. The recombinant thermostable alkaline phosphatase was expressed as a His6-tagged fusion protein in Escherichia coli and its enzymatic properties were characterized after purification. The pH and temperature optima for the recombinant thermostable alkaline phosphatases activity were pH 12 and 75 ℃. As expected, the enzyme displayed high thermostability, retaining more than 50% activity after incubating for 6 h at 80 ℃. Its catalytic function was accelerated in the presence of 0.1 mM Co^2+, Fe^2+, Mg^2+, or Mn^2+ but was strongly inhibited by 2.0 mM Fe^2+. Under optimal conditions, the Michaelis constant (Kin) for cleavage of p-nitrophenyl-phosphate was 0.034 mM. Although it has much in common with other alkaline phosphatases, the recombinant thermostable alkaline phosphatase possesses some unique features, such as high optimal pH and good thermostability.  相似文献   

18.
We have screened 766 strains of fungi from the BIOTEC Culture Collection (BCC) for xylanases working in extreme pH and/or high temperature conditions, the so-called extreme xylanases. From a total number of 32 strains producing extreme xylanases, the strain BCC7928, identified by using the internal transcribed spacer (ITS) sequence of rRNA to be a Marasmius sp., was chosen for further characterization because of its high xylanolytic activity at temperature as high as 90 degrees C. The crude enzyme possessed high thermostability and pH stability. Purification of this xylanase was carried out using an anion exchanger followed by hydrophobic interaction chromatography, yielding the enzyme with >90% homogeneity. The molecular mass of the enzyme was approximately 40 kDa. The purified enzyme retained broad working pH range of 4-8 and optimal temperature of 90 degrees C. When using xylan from birchwood as substrate, it exhibits Km and Vmax values of 2.6 +/- 0.6 mg/ml and 428 +/- 26 U/mg, respectively. The enzyme rapidly hydrolysed xylans from birchwood, beechwood, and exhibited lower activity on xylan from wheatbran, or celluloses from carboxymethylcellulose and Avicel. The purified enzyme was highly stable at temperature ranges from 50 to 70 degrees C. It retained 84% of its maximal activity after incubation in standard buffer containing 1% xylan substrate at 70 degrees C for 3 h. This thermostable xylanase should therefore be useful for several industrial applications, such as agricultural, food and biofuel.  相似文献   

19.
The estA gene encoding a novel cytoplasmic carboxylesterase from Arthrobacter nitroguajacolicus Rü61a was expressed in Escherichia coli. Sequence analysis and secondary structure predictions suggested that EstA belongs to the family VIII esterases, which are related to class C beta-lactamases. The S-x-x-K motif that in beta-lactamases contains the catalytic nucleophile, and a putative active-site tyrosine residue are conserved in EstA. The native molecular mass of hexahistidine-tagged (His6) EstA, purified by metal chelate affinity chromatography, was estimated to be 95 kDa by gel filtration, whereas the His6EstA peptide has a calculated molecular mass of 42.1 kDa. The enzyme catalyzes the hydrolysis of short-chain phenylacyl esters and triglycerides, and shows weak activity toward 2-hydroxy- and 2-nitroacetanilide. Its catalytic activity was inhibited by the serine-specific effector phenylmethylsulfonyl fluoride, and by Cd2+ and Hg2+ ions. Maximum activity of His6EstA was observed at a pH of 9.5 and a temperature of 50 degrees C to 60 degrees C. The enzyme was fairly thermostable. After 19 days at 50 degrees C and after 24 hours at 60 degrees C, its residual relative esterase activity toward phenylacetate was still 53% and 30%, respectively. Exposure of His6EstA to buffer-solvent mixtures showed that the enzyme was inactivated by several high log P (hydrophobic) solvents, whereas it showed remarkable stability and activity in up to 30% (by volume) of polar (low log P) organic solvents such as dimethylsulfoxide, methanol, acetonitrile, acetone, and propanol.  相似文献   

20.
Extracellular alpha-galactosidase, a glycoprotein from the extracellular culture fluid of Aspergillus ficuum grown on glucose and raffinose in a batch culture system, was purified to homogeneity in five steps by ion exchange and hydrophobic interaction chromatography. The molecular mass of the enzyme was 70.8 Kd by SDS polyacrylamide gel electrophoresis and 74.1 Kd by gel permeation HPLC. On the basis of a molecular mass of 70.7 Kd, the molar extinction coefficient of the enzyme at 279 nm was estimated to be 6.1 X10(4) M-1 cm-1. The purified enzyme was remarkably stable at 0 degrees C. It had a broad temperature optimum and maximum catalytic activity was at 60 degrees C. It retained 33% of its activity after 10 min. at 65 degrees C. It had a pH optimum of 6.0. It retained 62% of its activity after 12 hours at pH 2.3. The Kms for p-nitrophenyl-alpha-D-galactopyranoside, o-nitrophenyl-alpha-D-galactopyranoside and m-nitrophenyl-alpha-D-galactopyranoside are: 1462, 839 and 718 microM. The enzyme was competitively inhibited by mercury (19.8 microM), silver (21.5 microM), copper (0.48 mM), zinc (0.11 mM), galactose (64.0 mM) and fructose (60.3 mM). It was inhibited non-competitively by glucose (83.2 mM) and uncompetitively by mannose (6.7 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号