首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trypanocidal activity of catechins on Trypanosoma cruzi bloodstream trypomastigotes has been previously reported. Herein, we present the effect of epigallocatechin gallate (EGCg) on parasitemia and survival in a murine model of acute Chagas' disease as well as on the epimastigote form of the parasite. Upon intraperitoneal administration of daily doses of 0.8 mg/kg/day of EGCg for 45 days, mice survival rates increased from 11% to 60%, while parasitemia diminished to 50%. No side effects were observed in EGCg-treated animals. Fifty percent inhibition of epimastigotes growth was achieved with 311 microM EGCg 120 h after drug addition. No lysis, total culture growth inhibition or morphological changes were observed upon addition of 1-3mM EGCg at 24 h. This treatment also produced oligosomal fragmentation of epimastigotes DNA, suggesting a programmed cell death (PCD)-like process. All these findings point out EGCg as a potential new lead compound for chemotherapy of Chagas' disease.  相似文献   

2.
The intracellular protozoan parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a serious disorder that affects millions of people in Latin America. Despite the development of lifelong immunity following infections, the immune system fails to completely clear the parasites, which persist for decades within host tissues. Cardiomyopathy is one of the most serious clinical manifestations of the disease, and a major cause of sudden death in endemic areas. Despite decades of study, there is still debate about the apparent preferential tropism of the parasites for cardiac muscle, and its role in the pathology of the disease. In this review, we discuss these issues in light of recent observations, which indicate that T. cruzi invades host cells by subverting a highly conserved cellular pathway for the repair of plasma membrane lesions. Plasma membrane injury and repair is particularly prevalent in muscle cells, suggesting that the mechanism used by the parasites for cell invasion may be a primary determinant of tissue tropism, intracellular persistence, and Chagas' disease pathology.  相似文献   

3.
The origin of programmed cell death (PCD) has been linked to the emergence of multicellular organisms. Trypanosoma cruzi, a member of one of the earliest diverging eukaryotes, is a protozoan unicellular parasite that undergoes three major differentiation changes and requires two different hosts. We report that the in vitro differentiation of the proliferating epimastigote stage into the G0/G1 arrested trypomastigote stage is associated with massive epimastigote death that shows the cytoplasmic and nuclear morphological features and DNA fragmentation pattern of apoptosis, the most frequent phenotype of PCD in multicellular organisms. Apoptosis could be accelerated or prevented by modifying culture conditions or cell density, indicating that extracellular signals influenced the epimastigote decision between life and death. Epimastigotes responded to complement-mediated immunological agression by undergoing apoptosis, while undergoing necrosis in response to nonphysiological saponin-mediated damage. PCD may participate into the optimal adaptation of T. cruzi to its different hosts, and the avoidance of a local competition between a G0/G1 arrested stage and its proliferating progenitor. The existence of a regulated cell death programme inducing an apoptotic phenotype in a unicellular eukaryote provides a paradigm for a widespread role for PCD in the control of cell survival, which extends beyond the evolutionary constraints that may be specific to multicellular organisms and raises the question of the origin and nature of the genes involved. Another implication is that PCD induction could represent a target for therapeutic strategies against unicellular pathogens.  相似文献   

4.
Proteins containing tandemly repetitive sequences are present in several immunodominant protein antigens in pathogenic protozoan parasites. The tandemly repetitive Trypanosoma cruzi B13 protein is recognized by IgG antibodies from 98% of Chagas' disease patients. Little is known about the molecular mechanisms that lead to the immunodominance of the repeated sequences, and there is limited information on T cell epitopes in such repetitive antigens. We finely characterized the T cell recognition of the tandemly repetitive, degenerate B13 protein by T cell lines, clones and PBMC from Chagas' disease cardiomyopathy (CCC), asymptomatic T. cruzi infected (ASY) and non-infected individuals (N). PBMC proliferative responses to recombinant B13 protein were restricted to individuals bearing HLA-DQA1*0501(DQ7), -DR1, and -DR2; B13 peptides bound to the same HLA molecules in binding assays. The HLA-DQ7-restricted minimal T cell epitope [FGQAAAG(D/E)KP] was identified with an overlapping combinatorial peptide library including all B13 sequence variants in T. cruzi Y strain B13 protein; the underlined small residues GQA were the major HLA contact residues. Among natural B13 15-mer variant peptides, molecular modeling showed that several variant positions were solvent (TCR)-exposed, and substitutions at exposed positions abolished recognition. While natural B13 variant peptide S15.9 seems to be the immunodominant epitope for Chagas' disease patients, S15.4 was preferentially recognized by CCC rather than ASY patients, which may be pathogenically relevant. This is the first thorough characterization of T cell epitopes of a tandemly repetitive protozoan antigen and may suggest a role for T cell help in the immunodominance of protozoan repetitive antigens.  相似文献   

5.
The protozoan responsible for Chagas' disease, Trypanosoma cruzi , expresses on its surface an unusual trans -sialidase enzyme thought to play an important role in host–parasite interactions. Trans -sialidase is the product of a multigene family encoding both active and inactive proteins. We have demonstrated that despite lacking enzymatic activity due to a single mutation, Tyr342-His, inactive trans -sialidase displays sialic acid binding activity, with identical specificity to that of its active analogue. In this work we demonstrate that binding of a recombinant inactive trans -sialidase to molecules containing α2,3-linked sialic acid on endothelial cell surface triggers NF-κB activation, expression of adhesion molecules and upregulation of parasite entry into host cells. Furthermore, inactive recombinant trans -sialidase blocks endothelial cell apoptosis induced by growth factor deprivation. These results suggest that inactive members of the trans -sialidase family play a role in endothelial cell responses to T. cruzi infection.  相似文献   

6.
Dihydroorotate dehydrogenase (DHOD) is the fourth enzyme in the de novo pyrimidine biosynthetic pathway and is essential in Trypanosoma cruzi, the parasitic protist causing Chagas' disease. T. cruzi and human DHOD have different biochemical properties, including the electron acceptor capacities and cellular localization, suggesting that T. cruzi DHOD may be a potential chemotherapeutic target against Chagas' disease. Here, we report nucleotide sequence polymorphisms of T. cruzi DHOD genes and the kinetic properties of the recombinant enzymes. T. cruzi Tulahuen strain possesses three DHODgenes: DHOD1 and DHOD2, involved in the pyrimidine biosynthetic (pyr) gene cluster on an 800 and a 1000 kb chromosomal DNA, respectively, and DHOD3, located on an 800 kb DNA. The open reading frames of all three DHOD genes are comprised of 942 bp, and encode proteins of 314 amino acids. The three DHOD genes differ by 26 nucleotides, resulting in replacement of 8 amino acid residues. In contrast, all residues critical for constituting the active site are conserved among the three proteins. Recombinant T. cruzi DHOD1 and DHOD2 expressed in E. coli possess similar enzymatic properties, including optimal pH, optimal temperature, Vmax, and Km for dihydroorotate and fumarate. In contrast, DHOD3 had a higher Vmax and Km for both substrates. Orotate competitively inhibited all three DHOD enzymes to a comparable level. These results suggest that, despite their genetic variations, kinetic properties of the three T. cruziDHODs are conserved. Our findings facilitate further exploitation of T. cruzi DHOD inhibitors, as chemotherapeutic agents against Chagas' disease.  相似文献   

7.
8.
Despite the neuronal degeneration in the chronic stage of Chagas' disease, neuron counts actually increase in the preceding, asymptomatic stage, in contrast to the age-related decrease in neuron counts in age-matched normal individuals. Relevant to this observation, we found that the trans-sialidase (TS) of Trypanosoma cruzi, the etiologic agent of Chagas' disease, induces neurite outgrowth and rescues PC12 cells from apoptotic death caused by growth factor deprivation. These properties, novel for a parasite protein, were independent of catalytic activity and were mapped to the C terminus of the catalytic domain of TS. TS activated protein kinase Akt in a phosphoinositide-3 kinase-inhibitable manner, suggesting a molecular mechanism for the TS-induced neuroprotection. TS also triggered bcl-2 gene expression in growth factor-deprived cells, an effect consistent with TS protecting against apoptosis. Ciliary neurotrophic factor and leukemia inhibitory factor, two cytokines critical to the repair of injured motor neurons, specifically potentiated the TS action. The results suggest that TS acts in synergy with host ciliary neurotrophic factor or leukemia inhibitory factor to promote neuronal survival in T. cruzi-infected individuals.  相似文献   

9.
The karyotype and ploidy of Trypanosoma cruzi.   总被引:9,自引:1,他引:8       下载免费PDF全文
Little is known of the number or organization of chromosomes in Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease in man in the New World. Straightforward cytogenetic analysis is precluded because trypanosome chromosomes fail to condense during the cell cycle. We have size-fractionated the chromosome-sized DNA molecules of representative T. cruzi strains by pulsed field gradient (PFG) gel electrophoresis and located several housekeeping genes by Southern blotting using cDNA probes from the related trypanosome T. brucei. We show that DNA molecules from homologous chromosomes of T. cruzi migrate differently in the PFG system and infer that T. cruzi epimastigotes are at minimum diploid. In contrast to T. brucei, mini-chromosomes are absent in T. cruzi. All the housekeeping genes studied hybridize to DNA molecules which can be resolved in the PFG system, suggesting that T. cruzi may have no chromosomes larger than a few megabase pairs.  相似文献   

10.
Trypanosoma cruzi is the etiologic agent of Chagas' disease, a parasitic disease of enormous importance in Latin America. Herein we review the studies that revealed the receptors from innate immunity that are involved in the recognition of this protozoan parasite. We showed that the recognition of T. cruzi and its components occurs through Toll-like receptors (TLR) 2/CD14. Further, we showed in vivo the importance of the myeloid differentiation factor (MyD88), an adapter protein essential for the function of TLRs, in determining the parasitemia and mortality rate of mice infected with T. cruzi. We also discuss the implications of these findings in the pathophysiology of Chagas' disease.  相似文献   

11.
Chagas' disease, produced by Trypanosoma cruzi and transmitted by hematophagous triatomine bugs, exists in the Western Hemisphere from the south-western United States to central Chile and Argentina. It exists in rural and periurban sections of the northern half of Chile, with a prevalence of 16.9%. Constant rural-urban migrations have contributed to its spreading to urban sections. In order to investigate the impact of these migrations on the population susceptible of being blood donors and the probable increasing of the risk of T. cruzi transmission by blood transfusion, epidemiological surveys were carried out in donors from 22 hospitals located in the northern half of Chile. By means of an indirect hemagglutination test for Chagas' disease 16,841 blood donors were examined, arising a 2.7% of positivity, percentage that permitted to estimate that 126,477 potential blood donors infected with T. cruzi should be in the urban sections studied. These facts strengthen the need that serology for Chagas' disease must be routinely performed in endemic regions of the country, to adopt or reinforce the pertinent preventive measures.  相似文献   

12.
Polyclonal antibodies obtained against antigenic proteins encoded by six recombinant DNA clones of Trypanosoma cruzi were used for the ultrastructural localization of the respective antigens in thin sections of parasites (epimastigote, amastigote and trypomastigote forms of T. cruzi) embedded at low temperature in Lowicryl K4M resin. Antigens of high molecular weight containing tandemly repeated amino acid sequence motifs and recognized by sera from patients with Chagas' disease, were located only in the flagellum, where it contacts the parasite cell body. Other antigens were located on the surface of the parasite while still others were found within the flagellar pocket, as is the case with an antigen released during the acute phase of Chagas' disease. Thus, we conclude that some of the T. cruzi proteins which are antigenic in human infections are located in defined regions of the parasite. Some of the antigens were not expressed to the same extent in the three different developmental stages of the parasite.  相似文献   

13.
Little is known about the risks associated with Trypanosoma cruzi infection in non-pregnant and pregnant women. From a limited number of studies it appears that in rural areas, parasite rates and rates of serological positivity are similar in both sexes. Abnormal ECG tracings are consistently more frequent in men suggesting that immunity to T. cruzi may be different in females. Complications arising from Chagas' disease in pregnancy are only infrequently reported. Evidence for increased risk of abortion or prematurity is inconclusive except in cases of congenital infection. Most cases of congenital Chagas' disease have been reported from non-endemic areas and there is a suggestion that parasitemic episodes during pregnancy may influence pregnancy outcome. Preliminary evidence indicates that chronic infection can result in in-utero sensitization via passively acquired maternal antibodies. The review concludes that maternal T. cruzi infection carries risks for the child and these warrant systematic research because of their public health significance.  相似文献   

14.
Growth factor-dependent neurons die when they are deproved of their specific growth factor. This “programmed” cell death (PCD) requires macromolecular synthesis and is distinct from necrotic cell death. To investigate the mechanisms involved in neuronal PCD, we have studied the sequence of events that occur when a neuronal cell line (F-11: Mouse neuroblastoma X rat dorsal root ganglia) is deprived of serum in a manner analogous to growth factor deprivation from neurons. Protein synthesis was inhibited within the first 8 h of serum deprivation, while DNA cleavage into nucleosome ladders was prominent by 24 h. The DNA cleavage could be inhibited by cycloheximide, consistent with a requirement for protein synthesis. In contrast, mitochondrial function was not compromised by serum deprivation. Rather, the cells appeared to be metabolically activated after serum removal as shown by an increased reduction of MTT by mitochondrial dehydrogenases and an increase in cellular autofluorescence, which is thought to be due to elevated levels of NADH and flavoproteins. Assessment of cell viability by propidium iodide staining showed no indication of cell death within 24 h. After 48 h of serum deprivation, cells decreased in size and increased propidium iodide uptake. Thus, serum deprivation activates PCD in F-11 cells and may be a useful model to study the intracellular events responsible for PCD. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Chagas' disease affects 16-18 million patients in South America and heart involvement is the major cause of morbidity and mortality. Heart failure is the most severe clinical manifestation of the chronic phase of infection with Trypanosoma cruzi. The intensity and nature of the immune response is associated with the clinical outcome of the disease. In murine models, a low proliferative response and T-cell apoptosis have been observed during acute infection. In the present study the immune response of patients in the chronic phase of infection was analyzed. Patients were divided into: (a) asymptomatic, i.e., without involvement of the heart or digestive system; and (b) with heart failure. Patients with heart failure presented a significantly lower peripheral blood mononuclear cell (PBMC) proliferative response to T. cruzi antigens compared to asymptomatic patients. This low response was associated with antigen-induced apoptosis. Apoptosis of PBMC and a low proliferative response were also associated with double Fas/Fas-L expression and high production of TNF-alpha, a cytokine known to induce programmed cell death. These results suggest that apoptosis of PBMC, probably triggered by double expression of Fas/Fas-L and TNF-alpha, is implicated in the immune regulatory mechanism during the chronic phase of Chagas' disease.  相似文献   

16.
A glycoprotein of 25,000 daltons (G25) purified from T. cruzi extracts is recognized by serum antibodies of Chagas' disease patients. These human antibodies were isolated by affinity chromatography and were used to demonstrate that G25 antigenic determinants are i) represented at the parasite surface, and ii) are expressed in all developmental stages of the parasite's life cycle, as well as in several T. cruzi strains. This antigen-antibody system may be useful for the diagnosis of Chagas' disease because antibodies to radiolabeled G25 are found in the serum of 96.5% of 173 chagasic patients from different endemic areas, but are not found in the serum from other individuals. Taken collectively, the data suggest that antibodies to G25 define highly conserved determinants of the species T. cruzi. Moreover, its remarkable immunogenicity to infected humans offers an opportunity to investigate the role of specific immunologic responses in the pathogenicity of Chagas' disease.  相似文献   

17.
Prostaglandins are known to be produced by macrophages when challenged with Trypanosoma cruzi, the etiological agent of Chagas' disease. It is not known whether these lipid mediators play a role in oxidative stress in host defenses against this important protozoan parasite. In this study, we demonstrated that inducible cyclooxygenase-mediated prostaglandin production is a key chemical mediator in the control of parasite burden and erythrocyte oxidative stress during T. cruzi infection in C57BL/6 and BALB/c mice, prototype hosts for the study of resistance and susceptibility in murine Chagas' disease. The results suggested the existence of at least two mechanisms of oxidative stress, dependent or independent with regard to the nitric oxide and cyclooxygenase pathway, where one or the other is more evident depending on the mouse strain.  相似文献   

18.
Trypanosoma cruzi, the etiological agent of Chagas' disease, is the only eukaryotic cell which lacks the ability to synthesize polyamines de novo. In this work, we describe for the first time the molecular and biochemical properties of a high-affinity spermidine transporter from T. cruzi. The transporter gene TcPAT12 was functionally expressed in Xenopus laevis oocytes, showing high levels of spermidine uptake. Similar apparent affinity constants for spermidine uptake were obtained when comparing T. cruzi epimastigotes and heterologous expressed TcPAT12 in X. laevis. In addition, TcPAT12 also transports putrescine and the amino acid l-arginine at lower rates than spermidine.  相似文献   

19.
PCD (programmed cell death) is important mechanism for development, homeostasis and disease. To analyze the gene expression pattern in brain cells undergoing PCD in response to serum deprivation, we analyzed the cDNA microarray consisting of 2,300 genes and 7 housekeeping genes of cortical cells derived from mouse embryonic brain. Cortical cells were induced apoptosis by serum deprivation for 8 hours. We identified 69 up-regulated genes and 21 down-regulated genes in apoptotic cells. Based on the cDNA microarray data four genes were selected and analyzed by RT-PCR and northern blotting. To characterize the role of UNC-51-like kinase (ULK2) gene in PCD, we investigated cell death effect by ULK2. And we examined expression of several genes that related with PCD. Especially GAPDH was increased by ULK2. Theses findings indicated that ULK2 is involved in apoptosis through p53 pathway.  相似文献   

20.
Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ~P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号