首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Increased oxidative stress and decreased life span of erythrocytes (RBCs) are repeatedly reported in diabetes. In the aim to elucidate the mechanism of the latter, i.e. the events leading to erythrocyte ageing, this study determined in RBCs from diabetic patients iron release in a free desferrioxamine-chelatable form (DCI), methemoglobin (MetHb) formation, binding of autologous IgG to membrane proteins and in plasma non-protein-bound iron (NPBI), F2-Isoprostanes (F2-IsoPs) and advanced oxidation protein products (AOPP). DCI and MetHb were higher in diabetic RBCs than in controls and autologous IgG binding occurred in a much higher percentage of diabetic patients than controls. A significant correlation between DCI and IgG binding was found in diabetic RBCs. Plasma NPBI, esterified F2-IsoPs and AOPP were higher in diabetic patients and a significant correlation was found between plasma NPBI and intra-erythrocyte DCI. The increased DCI and autologous IgG binding appear to be important factors in the accelerated removal of RBCs from the blood stream in diabetes and the increase in plasma NPBI could play an important role in the increased oxidative stress.  相似文献   

2.
Iron is released in a desferrioxamine (DFO)-chelatable form (DCI) when erythrocytes are challenged by an oxidative stress. In β-thalassemic erythrocytes, both DCI content and release (after aerobic incubation for 24 h) are increased and correlated with the fetal hemoglobin (HbF) levels. Since erythrocytes from newborns have an extremely high content of HbF and are exposed to conditions of oxidative stress, the release of iron in these erythrocytes was investigated. The erythrocyte DCI content was increased in preterm but not in term newborns as compared to adults, while the release was increased in both preterm and term erythrocytes. The level of plasma non protein-bound iron (NPBI), which was not detectable in adults, was much higher in preterm than in term newborns. When term plus preterm newborns were divided in two groups, normoxic and hypoxic, according to cord blood pH, it was found that both iron release and NBPI were markedly higher in the hypoxic newborns compared to normoxic ones. Similar results were also obtained when the preterm and term infants were considered separately on the basis of cord blood pH. Therefore, iron release and NPBI are higher when conditions of hypoxia occur. In fact, when the values for iron release and NPBI were separately plotted against cord blood pH values, significant negative correlations were seen in both cases. NPBI was correlated with iron release seen in all the newborns and a significant part of the released iron could be recovered into the incubation medium at the end of the incubation.  相似文献   

3.
Iron is released in a desferrioxamine (DFO)-chelatable form (DCI) when erythrocytes are challenged by an oxidative stress. In &#103 -thalassemic erythrocytes, both DCI content and release (after aerobic incubation for 24 h) are increased and correlated with the fetal hemoglobin (HbF) levels. Since erythrocytes from newborns have an extremely high content of HbF and are exposed to conditions of oxidative stress, the release of iron in these erythrocytes was investigated. The erythrocyte DCI content was increased in preterm but not in term newborns as compared to adults, while the release was increased in both preterm and term erythrocytes. The level of plasma non protein-bound iron (NPBI), which was not detectable in adults, was much higher in preterm than in term newborns. When term plus preterm newborns were divided in two groups, normoxic and hypoxic, according to cord blood pH, it was found that both iron release and NBPI were markedly higher in the hypoxic newborns compared to normoxic ones. Similar results were also obtained when the preterm and term infants were considered separately on the basis of cord blood pH. Therefore, iron release and NPBI are higher when conditions of hypoxia occur. In fact, when the values for iron release and NPBI were separately plotted against cord blood pH values, significant negative correlations were seen in both cases. NPBI was correlated with iron release seen in all the newborns and a significant part of the released iron could be recovered into the incubation medium at the end of the incubation.  相似文献   

4.
Abstract

Objectives

Rett syndrome (RTT) is an X-linked autism spectrum disorder caused by mutations in the MeCP2 gene in the great majority of cases. Evidence suggests a potential role of oxidative stress (OS) in its pathogenesis. Here, we investigated the potential value of OS markers (non-protein-bound iron (NPBI) and F2-isoprostanes (F2-IsoPs)) in explaining natural history, genotype-phenotype correlation, and clinical heterogeneity of RTT, and gauging the response to omega-3 polyunsaturated fatty acids (ω-3 PUFAs).

Methods

RTT patients (n = 113) and healthy controls were assayed for plasma NPBI and F2-IsoPs, and intraerythrocyte NPBI. Forty-two patients with typical RTT were randomly assigned to ω-3 PUFAs supplementation for 12 months. NPBI was measured by HPLC and F2-IsoPs using a gas chromatography/negative ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) technique.

Results

F2-IsoPs were significantly higher in the early stages as compared with the late natural progression of classic RTT. MeCP2 mutations related to more severe phenotypes exhibited higher OS marker levels than those of milder phenotypes. Higher OS markers were observed in typical RTT and early seizure variant as compared with the preserved speech and congenital variants. Significant reduction in OS markers levels and improvement of severity scores were observed after ω-3 PUFAs supplementation.

Discussion

OS is a key modulator of disease expression in RTT.  相似文献   

5.
Since birth-induced oxidative stress (OS) results in the removal of erythrocytes from the blood stream, we studied the binding of autologous IgG to erythrocyte band 3 dimers (the 170-kDa band, which marks the erythrocytes for removal) in preterm and term newborns and in adults. The 170-kDa band was present in as much as 74% of preterm, in 21% of term newborns, and in 10% of adults. During erythrocyte ageing "in vitro" (0, 24, and 48 h aerobic incubation), the appearance of the band occurred much faster with erythrocytes from newborns (particularly preterm) than with those from adults. When the blots for the 170-kDa band were quantified by scanning densitometry, it was seen that the 0 time values were significantly higher in preterm compared to term and adult values. After aerobic incubation a progressive increase in the optical density was observed in each group and the densities were higher in preterm than in the other groups. The course of iron release during the various incubations was analogous to that of the 170-kDa band blots, and significant correlations were found at 0 and 48 h. Methemoglobin formation roughly paralleled iron release. Esterified F(2)-isoprostanes (markers of OS) and O(2)(-) production in the nonincubated (0 time) erythrocytes were much higher in newborn (preterm and term) than in adult erythrocytes. Plasma free F(2)-isoprostanes were significantly higher in preterms than in terms and in terms than in adults. Plasma non-protein-bound iron (NPBI) was higher in preterm than in term newborns and not detectable in adults. In conclusion dimers of band 3 with autologous IgG are found under conditions in which OS can be detected in erythrocytes or in plasma: namely in newborns or in aged erythrocytes.  相似文献   

6.
Subarachnoid hemorrhage (SAH) resulting from aneurysmal rupture is the major cause of nontraumatic SAH. We hypothesized that oxidative stress could be increased following aneurysmal SAH due to hemoglobin release and ischemia-reperfusion injury and that may further contribute to poor outcome. We collected plasma and cerebrospinal fluid (CSF) samples from 11 non-SAH controls and 15 aneurysmal SAH patients for up to 10 days after surgery and investigated status of oxidative stress in patients. Results showed that mean or peak levels of F(2)-isoprostanes (F(2)-IsoPs), a specific marker of lipid peroxidation, and total nitrate/nitrite, metabolites of nitric oxide and peroxynitrite, in CSF and plasma were significantly higher in SAH patients than in controls. First-day levels were also higher in CSF, but not in plasma, in SAH patients. Moreover, mean and peak levels of CSF F(2)-IsoPs were positively correlated with poor outcome or severity of clinical conditions in patients. Furthermore, levels of retinol, delta-tocopherol, beta+gamma-tocopherol, lutein, beta-carotene, and coenzyme Q(10) in plasma were significantly lower in SAH patients than in controls. Our results indicate that oxidative damage may play important roles in the severity and complications of aneurysmal SAH and suggest that means to suppress lipid peroxidation may be beneficial in improving the outcome of aneurysmal SAH.  相似文献   

7.
F2-isoprostanes (F2-IsoPs) are well-established sensitive and specific markers of oxidative stress in vivo. Isofurans (IsoFs) are also products of lipid peroxidation, but in contrast to F2-IsoPs, their formation is favored when oxygen tension is increased in vitro or in vivo. Mitochondrial dysfunction in Parkinson's disease (PD) may not only lead to oxidative damage to brain tissue but also potentially result in increased intracellular oxygen tension, thereby influencing relative concentrations of F2-IsoPs and IsoFs. In this study, we attempted to compare the levels of F2-IsoPs and IsoFs esterified in phospholipids in the substantia nigra (SN) from patients with PD to those of age-matched controls as well as patients with other neurodegenerative diseases, including dementia with Lewy body disease (DLB), multiple system atrophy (MSA), and Alzheimer's disease (AD). The results demonstrated that IsoFs but not F2-IsoPs in the SN of patients with PD and DLB were significantly higher than those of controls. Levels of IsoFs and F2-IsoPs in the SN of patients with MSA and AD were indistinguishable from those of age-matched controls. This preferential increase in IsoFs in the SN of patients with PD or DLB not only indicates a unique mode of oxidant injury in these two diseases but also suggests different underlying mechanisms of dopaminergic neurodegeneration in PD and DLB from those of MSA.  相似文献   

8.
Soluble RAGE in type 2 diabetes: association with oxidative stress   总被引:1,自引:0,他引:1  
Advanced glycation end products (AGEs) contribute to diabetic vascular complications by engaging the AGE receptor (RAGE). A soluble RAGE form (sRAGE) acts as a decoy domain receptor, thus decreasing AGE cellular binding. A cross-sectional comparison of sRAGE, asymmetric dimethylarginine (ADMA) plasma levels (index of endothelial dysfunction), and urinary 8-iso-prostaglandin (PG)F(2alpha) (marker of oxidative stress) was performed between 86 diabetic patients and 43 controls. Plasma sRAGE levels were significantly lower and ADMA levels were significantly higher in diabetic patients as compared to controls (P<0.0001). HbA1c and urinary 8-iso-PGF(2alpha) were correlated inversely with sRAGE and directly with ADMA. On multivariate analysis HbA1c was independently related to sRAGE levels in diabetic patients. Twenty-four of 86 patients with newly diagnosed diabetes and 12 patients in poor metabolic control were reevaluated after treatment with a hypoglycemic agent or insulin, respectively. Improvement in metabolic control by oral agents or insulin resulted in a significant increase in sRAGE and decrease in ADMA levels (P<0.0001). Thus, poor glycemic control reduces sRAGE levels, in association with enhanced oxidative stress and endothelial dysfunction in diabetes. These abnormalities are susceptible to modulation by improvement in metabolic control.  相似文献   

9.
《Free radical research》2013,47(12):1419-1430
Several events occurring during the secondary damage of traumatic brain injury (TBI) can cause oxidative stress. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NPs) are specific lipid peroxidation markers generated from arachidonic acid and docosahexaenoic acid, respectively. In this study, we evaluated oxidative stress in patients with moderate and severe TBI. Since sedatives are routinely used to treat TBI patients and propofol has been considered an antioxidant, TBI patients were randomly treated with propofol or midazolam for 72 h postoperation. We postoperatively collected cerebrospinal fluid (CSF) and plasma from 15 TBI patients for 6–10 d and a single specimen of CSF or plasma from 11 controls. Compared with the controls, the TBI patients exhibited elevated levels of F2-IsoPs and F4-NPs in CSF throughout the postsurgery period regardless of the sedative used. Compared with the group of patients who received midazolam, those who received propofol exhibited markedly augmented levels of plasma F2-IsoPs, which were associated with higher F4-NPs levels and lower total nitrate/nitrite levels in CSF early in the postsurgery period. Furthermore, the higher CSF F2-IsoPs levels correlated with 6-month and 12-month worse outcomes, which were graded according to the Glasgow Outcome Scale. The results demonstrate enhanced oxidative damage in the brain of TBI patients and the association of higher CSF levels of F2-IsoPs with a poor outcome. Moreover, propofol treatment might promote lipid peroxidation in the circulation, despite possibly suppressing nitric oxide or peroxynitrite levels in CSF, because of the increased loading of the lipid components from the propofol infusion.  相似文献   

10.
The aims of the study were to ascertain the potential role of oxidative stress in the onset of disease-related pathophysiological complications in young type 1 diabetes patients. Indicative parameters of lipoperoxidation, protein oxidation, and changes in antioxidant defense system status were measured in blood samples from 26 young diabetic patients with recently diagnosed (< 6 months) microangiopathy (+DC), 28 diabetic patients without complications (−DC), and 40 healthy age-matched controls (CR). Both diabetic groups presented similar fructosamine and glycated hemoglobin (HbA1c) values. Results showed erythrocyte glutathione peroxidase activity, glutathione content, and plasma β-carotene to be significantly lower in diabetic patients compared with control subjects, but with no significant differences between −DC and +DC groups. Antioxidant enzyme superoxide dismutase activity was significantly higher in the erythrocytes of diabetic patients independently of the presence of microvascular complications. However, the plasma -tocopherol/total lipids ratio was significantly diminished in +DC group compared with −DC (p = .008). Lipid peroxidation indices measured in plasma included malondialdehyde, lipid hydroperoxides, and lipoperoxides, which were significantly elevated in our diabetic patients regardless of the presence of complications. Evidence of oxidative damage to proteins was shown both through the quantification of plasma protein carbonyl levels, which were significantly higher in −DC (0.61 ± 0.09 mmol/mg prot), and higher still in the +DC patients (0.75 ± 0.09 mmol/mg prot) compared with those of controls (0.32 ± 0.03 mmol/mg prot; p < .01) and immunoblot analysis of protein-bound carbonyls. Additionally, a marked increase in protein oxidation was observed in +DC patients through assessment of advanced oxidation protein products (AOPP) considered to be an oxidized albumin index; AOPP values were significantly higher in +DC than in −DC patients (p < .01) and CR (p < .0001). These results point to oxidatively modified proteins as a differential factor possibly related to the pathogenesis of diabetic complications.  相似文献   

11.
Iron is released in a desferrioxamine (DFO)-chelatable form when erythrocytes are challenged by an oxidative stress. The release is increased when an accelerated removal of erythrocytes occurs such as in perinatal period, in which iron release is greater in hypoxic than in non-hypoxic newborns. This suggests that an hypoxic environment at birth promotes iron release. To test this possibility, iron release in a model of hypoxia, hypoxia-reoxygenation and normoxia was studied in newborn and adult erythrocytes. In newborn erythrocytes, hypoxia induced a much greater iron release compared to an equal period of normoxia. In adult erythrocytes, hypoxia also induced a greater iron release as compared to normoxia, but it was much lower than that seen with newborn erythrocytes. Methemoglobin (MetHb) formation roughly paralleled iron release. The phenylhydrazine-promoted superoxide anion (O(2)?(-)) production was greater with normoxic but lower with hypoxic erythrocytes from newborns as compared to that from adults. This discrepancy between iron release and O(2)?(-) production may be explained by the shift towards MetHb in hemoglobin autoxidation. Iron diffusion out of the erythrocytes was much higher with hypoxic erythrocytes from newborns as compared to that from adults. Also the binding of autologous IgG to band 3 dimers (AIgGB) is much greater with hypoxic erythrocytes from newborns as compared to that from adults, suggesting that the level of iron release is related to the extent of band 3 clustering and that hypoxia accelerates removal of erythrocytes from bloodstream in in vivo condition.  相似文献   

12.
Abstract

Objectives

We studied erythrocyte (RBC) caspase-3 activity and oxidative status in plasma and RBCs of 33 patients with type 2 diabetes at first clinical onset and 23 age-matched non-diabetes control subjects.

Methods

Caspase-3 activity was assayed during the life span of RBCs; lipid peroxides and total antioxidant capacity (TEAC) were assessed in plasma and RBCs as indicators of oxidative stress and non-enzymatic antioxidant defense; and superoxide dismutase, catalase, and glutathione peroxidase activity were measured in RBCs as enzymatic antioxidants.

Results

We found that, compared to controls, RBCs caspase-3 is activated early in type 2 diabetes (P < 0.05); TEAC and malondialdehyde increased in plasma of patients with early diabetes, even when hypertension and macroangiopathy were present (P < 0.01); and RBCs TEAC, malondialdehyde (P < 0.01), superoxide dismutase, and glutathione peroxidase (P < 0.05) exhibited similar behavior in patients with diabetes and hypertensive patients with diabetes.

Discussion

Increased antioxidant defense in plasma and RBCs of early type 2 diabetes patients is a potential mechanism that can overcome oxidative damage induced by reactive oxygen species overproduction, and occurs even in RBCs with a decreased life span. This observation could provide a possible explanation for the controversial effects of antioxidant supplementation in diabetes patients.  相似文献   

13.
Interest in the pro-oxidative nature of non-protein-bound-iron (NPBI) led to the development of an assay for its detection. The aim was to set up a reliable method of detecting NPBI in small samples of biological fluids and tissue. The method was based on preferential chelation of NPBI by a large excess of the low-affinity ligand nitrilotriacetic acid. To separate NPBI, a two-step filtration procedure was used. All glassware and plasticware were treated to minimize iron contamination. Measurements were performed in plasma, amniotic fluid, bronchoalveolar lavage, and brain tissues. The analytic system detected iron as ferric nitrate standard down to a concentration of 0.01 μM. The 1,2-dimethyl-3-hydroxy-4(1H)-pyridone-Fe(DHP-Fe) complex eluted with a retention time of about 2.6 min. The standard curve for the DHP-Fe complex was linear between 0.01 and 400 μM in water as well as in plasma, bronchoalveolar lavage, brain tissue, and amniotic fluid. The detection limit was 0.01 μM for all biological fluids and brain tissue. The data show that reliable measurements of NPBI are possible in studies on oxidative stress under experimental and clinical conditions. The possibility of investigating NPBI involvement in free-radical injury might be useful in all human diseases in which oxidative stress occur.  相似文献   

14.
F2-isoprostanes are not just markers of oxidative stress   总被引:1,自引:0,他引:1  
F(2)-isoprostanes are not just markers of oxidative stress. The discovery of F(2)-isoprostanes (F(2)-IsoPs) as specific and reliable markers of oxidative stress in vivo is briefly summarized here. F(2)-IsoPs are also agonists of important biological effects, such as the vasoconstriction of renal glomerular arterioles, the retinal vessel, and the brain microcirculature. In addition to the F(2)-IsoPs, E(2)- and D(2)-IsoPs can be formed by rearrangement of H(2)-IsoP endoperoxides and can give rise to cyclopentenone IsoPs, which are very reactive alpha,beta-unsaturated aldehydes. The same type of reactivity is also shown by acyclic gamma-ketoaldehydes formed as products of the IsoP pathway. Because previous studies suggested a relation between oxidative stress and collagen hyperproduction, it was investigated whether collagen synthesis is induced by F(2)-IsoPs, the most proximal products of lipid peroxidation. In contrast to aldehydes, F(2)-IsoPs act through receptors able to elicit definite signal transduction pathways. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma F(2)-IsoPs were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of smooth muscle alpha-actin) and then treated with F(2)-IsoPs in the concentration range found in the in vivo studies (10(-9) to 10(-8) M), a striking increase in DNA synthesis, cell proliferation, and collagen synthesis was observed. Total collagen content was similarly increased. All these stimulatory effects were reversed by the specific antagonist of the thromboxane A(2) receptor, SQ 29 548, whereas the receptor agonist, I-BOP, also had a stimulatory effect. Therefore F(2)-IsoPs generated by lipid peroxidation in hepatocytes may mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

15.
ObjectiveWe aimed to assess whether oxidative stress is a predictor of mortality in HIV-infected patients.MethodsWe conducted a nested case-control study in CoRIS, a contemporary, multicentre cohort of HIV-infected patients, antiretroviral-naïve at entry, launched in 2004. Cases were patients who died with available stored plasma samples collected. Two age and sex-matched controls for each case were selected. We measured F2-isoprostanes (F2-IsoPs) and malondialdehyde (MDA) plasma levels in the first blood sample obtained after cohort engagement.Results54 cases and 93 controls were included. Median F2-IsoPs and MDA levels were significantly higher in cases than in controls. When adjustment was performed for age, HIV-transmission category, CD4 cell count and HIV viral load at cohort entry, and subclinical inflammation measured with highly-sensitive C-reactive protein (hsCRP), the association of F2-IsoPs with mortality remained significant (adjusted OR per 1 log10 increase, 2.34 [1.23–4.47], P = 0.009). The association of MDA with mortality was attenuated after adjustment: adjusted OR (95% CI) per 1 log10 increase, 2.05 [0.91–4.59], P = 0.080. Median hsCRP was also higher in cases, and it also proved to be an independent predictor of mortality in the adjusted analysis: OR (95% CI) per 1 log10 increase, 1.39 (1.01–1.91), P = 0.043; and OR (95% CI) per 1 log10 increase, 1.46 (1.07–1.99), P = 0.014, respectively, when adjustment included F2-IsoPs and MDA.ConclusionOxidative stress is a predictor of all-cause mortality in HIV-infected patients. For plasma F2-IsoPs, this association is independent of HIV-related factors and subclinical inflammation.  相似文献   

16.

Aims

Oxidative stress is involved in the pathophysiology of diabetic nephropathy. Manganese superoxide dismutase (SOD2) catalyses the dismutation of superoxide, regulates the metabolism of reactive oxygen species in the mitochondria and is highly expressed in the kidney. Plasma concentration of advanced oxidation protein products (AOPP), a marker of oxidative stress, was found to be increased in patients with kidney disease. We investigated associations of SOD2 allelic variations, plasma SOD activity and AOPP concentration with diabetic nephropathy in type 1 diabetic subjects.

Methods

Eight SNPs in the SOD2 region were analysed in 1285 Caucasian subjects with type 1 diabetes from the SURGENE prospective study (n = 340; 10-year follow-up), GENESIS (n = 501) and GENEDIAB (n = 444) cross-sectional studies. Baseline plasma concentration of AOPP and SOD activity were measured in GENEDIAB participants. Hazard ratio (HR) and odds ratio (OR) were determined for incidence and prevalence of nephropathy. Analyses were adjusted or stratified by retinopathy stages.

Results

In the SURGENE cohort, the T-allele of rs4880 (V16A) was associated with the incidence of renal events (new cases, or the progression to a more severe stage of nephropathy; HR 1.99, 95% CI 1.24–3.12, p = 0.004) and with the decline in estimated glomerular filtration rate (eGFR) during follow-up. Similar associations were observed for rs2758329 and rs8031. Associations were replicated in GENESIS/GENEDIAB cohorts, in the subset of participants without proliferative retinopathy, and were confirmed by haplotype analyses. Risk allele and haplotype were also associated with higher plasma AOPP concentration and lower SOD activity.

Conclusions

SOD2 allelic variations were associated with the incidence and the progression of diabetic nephropathy, with a faster decline in eGFR and with plasma AOPP concentration and SOD activity in subjects with type 1 diabetes. These results are consistent with a role for SOD2 in the protection against oxidative stress and kidney disease in type 1 diabetes.  相似文献   

17.
The liver has been central to our understanding of the physiology and biology of the F2-isoprostanes. The discovery of F2-IsoPs and the initial demonstration that they could be used to localize oxidative stress was first demonstrated in a rat model of oxidative liver injury (carbon tetrachloride), and the first demonstration that plasma concentrations are increased in a human disease was in patients with liver failure and the hepatorenal syndrome [J. Clin. Invest. 90 (6) (1992b) 2502; J. Lipid Mediat. 6 (1/3) (1993) 417]. This article will cover the measurement of F2-IsoPs as markers of lipid peroxidation in vivo in liver disease, and review their biological activity as mediators of disease.  相似文献   

18.
Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo   总被引:33,自引:0,他引:33  
In 1990 we discovered the formation of prostaglandin F(2)-like compounds, F(2)-isoprostanes (F(2)-IsoPs), in vivo by nonenzymatic free radical-induced peroxidation of arachidonic acid. F(2)-IsoPs are initially formed esterified to phospholipids and then released in free form. There are several favorable attributes that make measurement of F(2)-IsoPs attractive as a reliable indicator of oxidative stress in vivo: (i) F(2)-IsoPs are specific products of lipid peroxidation; (ii) they are stable compounds; (iii) levels are present in detectable quantities in all normal biological fluids and tissues, allowing the definition of a normal range; (iv) their formation increases dramatically in vivo in a number of animal models of oxidant injury; (v) their formation is modulated by antioxidant status; and (vi) their levels are not effected by lipid content of the diet. Measurement of F(2)-IsoPs in plasma can be utilized to assess total endogenous production of F(2)-IsoPs whereas measurement of levels esterified in phospholipids can be used to determine the extent of lipid peroxidation in target sites of interest. Recently, we developed an assay for a urinary metabolite of F(2)-IsoPs, which should provide a valuable noninvasive integrated approach to assess total endogenous production of F(2)-IsoPs in large clinical studies.  相似文献   

19.
Two important consequences of hyperglycemia in diabetes are development of oxidative stress and formation of advanced glycation end products (AGE) which are known to be associated with diabetic complications. Relationship between AGE formation and development of oxidative stress (OS) is yet to be established. In the present study, the involvement of AGE in PMN-mediated ROS generation and the associated OS were investigated in type 2 diabetic mellitus (DM) patients. We assessed OS parameters (serum MDA, FRAP and GSH), PMN oxidative functions (respiratory burst and superoxide production) and total serum AGE in 90 subjects divided equally in three groups--control group, Group I consisting of type 2 diabetic patients without microvascular complications and Group II consisting of type 2 diabetic patients with microvascular complications. PMNs isolated from both groups (I and II) exhibited higher level of respiratory burst (RB) and produced increased amount of superoxide anion as compared to the controls. The increase was more pronounced in diabetes with complications, as compared to those without. Serum malondialdehyde (MDA) level was elevated, whereas glutathione (GSH) and ferric reducing ability of plasma (FRAP) levels were significantly reduced in diabetes as compared to the controls, suggesting the presence of oxidative stress in DM. A positive correlation between PMN oxidative function and OS parameters suggested the involvement of PMN in the development of OS in DM. Serum AGE level was also elevated in diabetic groups as compared to the controls. Further, the positive correlation between serum AGE level and PMN oxidative function suggested the involvement of AGE in increased RB and generation of reactive oxygen species (ROS) by resting diabetic PMN. The results of the study indicate that AGE-PMN interaction possibly upregulates NADPH oxidase, leading to enhanced ROS generation and thus contributes to the pathogenesis in diabetes.  相似文献   

20.
Abstract Objectives: The aim of the present study was to investigate the potential importance of oxidative stress, measured by isoprostanes-related compounds, as non-traditional risk factor for cardiovascular disease. We planned to examine the relationship between concentrations of plasma F(2)-isoprostanes (F(2)-IsoPs), isofurans (IsoFs), measures of obesity and various cardiometabolic risk factors. Materials and methods: Cross-sectional study using a sub-sample from the population of a survey conducted in the summer and fall 2007 and 2008 by Canadian Coastguard Ship Amundsen in 36 Canadian Arctic Inuit communities. Subjects included a subset (n =?233) of a total study population (n =?2595) with a mean age 42.56 ± 15.39 years and body mass index 27.78 ± 5.65 kg/m(2). Plasma levels of F(2)-IsoPs and IsoFs was determined by gas chromatography/negative ion chemical ionization/mass spectrometry (GC/NICI/MS) method; and their relationships to waist circumference (WC), blood pressure C reactive proteins (CRP), blood lipids and fasting glucose were assessed by multivariate analyses. Results: Plasma F(2)-IsoPs correlated positively with CRP (r =.132, P =.048) and systolic blood pressure (SBP) (r =.157, P =.024) after adjustment for age, sex and body mass index. IsoFs correlated with WC (r =.190, P =.005) and SBP (r =.137, P =.048). F2-IsoPs were not found elevated in smokers (P =.034), whereas IsoFs were decreased in smokers (P =.001). WC, SBP and sex were found to be major correlates of oxidative stress in Canadian Inuit. Conclusions: Plasma measures of F(2)-IsoPs and IsoFs increase with increased obesity and associated cardiometabolic risk factors, including CRP and blood pressure. Simultaneous measurement of IsoFs provides an advantageous mechanistic insight into oxidative stress not captured by F(2)-IsoPs alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号