首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingomyelin (SM) and cholesterol form microdomains called lipid rafts in cellular membranes. To develop a versatile fluorescent lipid probe, chemical modifications to both the hydrophobic and hydrophilic portions of SM are essential. Few reports describing SM probes with a fluorophore at the polar head group have been published. This study examined the effect of substitution on an ammonium moiety of SM on the membrane properties of SM. Two SM analogs with small propargyl and allyl groups on the quaternary nitrogen atom were synthesized and subjected to analysis using differential scanning calorimetry, fluorescent anisotropy, detergent solubilization, surface pressure, and density measurements. Results demonstrated that the two SM analogs retained the membrane properties of SM, including formation of an ordered phase and the ability to interact with cholesterol. A dansyl-substituted SM was prepared for fluorescent measurements. Dansyl-SM showed less of a propensity to form microdomains. These findings imply the potential application of N-substituted SMs as a raft-specific molecular probe.  相似文献   

2.
Quasielastic neutron scattering (QENS) at two energy resolutions (1 and 14 microeV) was employed to study high-frequency cholesterol motion in the liquid ordered phase (lo-phase) of oriented multilayers of dipalmitoylphosphatidylcholine at three temperatures: T = 20 degrees C, T = 36 degrees C, and T = 50 degrees C. We studied two orientations of the bilayer stack with respect to the incident neutron beam. This and the two energy resolutions for each orientation allowed us to determine the cholesterol dynamics parallel to the normal of the membrane stack and in the plane of the membrane separately at two different time scales in the GHz range. We find a surprisingly high, model-independent motional anisotropy of cholesterol within the bilayer. The data analysis using explicit models of molecular motion suggests a superposition of two motions of cholesterol: an out-of-plane diffusion of the molecule parallel to the bilayer normal combined with a locally confined motion within the bilayer plane. The rather high amplitude of the out-of-plane diffusion observed at higher temperatures (T >/= 36 degrees C) strongly suggests that cholesterol can move between the opposite leaflets of the bilayer while it remains predominantly confined within its host monolayer at lower temperatures (T = 20 degrees C). The locally confined in-plane cholesterol motion is dominated by discrete, large-angle rotational jumps of the steroid body rather than a quasicontinous rotational diffusion by small angle jumps. We observe a significant increase of the rotational jump rate between T = 20 degrees C and T = 36 degrees C, whereas a further temperature increase to T = 50 degrees C leaves this rate essentially unchanged.  相似文献   

3.
4.
5.
Pressure versus fluid spacing relations have been obtained for sphingomyelin bilayers in the gel phase and equimolar sphingomyelin/cholesterol in the liquid-crystalline phase by the use of X-ray diffraction analysis of osmotically stressed aqueous dispersions and oriented multilayers. For interbilayer separations in the range of 5-20 A, the repulsive hydration pressure decays exponentially with increasing fluid spacing. The decay length (lambda) of this repulsive pressure is about 2 A for both bovine brain and N-tetracosanoylsphingomyelin, similar to that previously found for phosphatidylcholine bilayers. However, both the magnitude of the hydration pressure and the magnitude of the dipole potential (V) measured for monolayers in equilibrium with liposomes are considerably smaller for sphingomyelin than for either gel or liquid-crystalline phosphatidylcholine bilayers. Addition of equimolar cholesterol increases both the magnitude of the hydration pressure and the dipole potential. These data suggest that the magnitude of the hydration pressure depends on the electric field at the interface as given by (V/lambda)2. For sphingomyelin bilayers, there is a sharp upward break in the pressure-fluid spacing relation at an interbilayer spacing of about 5 A, indicating the onset of steric hindrance between the head groups of apposing bilayers.  相似文献   

6.
Amyloid beta peptide (Abeta) has a key role in the pathological process of Alzheimer's disease (AD), but the physiological function of Abeta and of the amyloid precursor protein (APP) is unknown. Recently, it was shown that APP processing is sensitive to cholesterol and other lipids. Hydroxymethylglutaryl-CoA reductase (HMGR) and sphingomyelinases (SMases) are the main enzymes that regulate cholesterol biosynthesis and sphingomyelin (SM) levels, respectively. We show that control of cholesterol and SM metabolism involves APP processing. Abeta42 directly activates neutral SMase and downregulates SM levels, whereas Abeta40 reduces cholesterol de novo synthesis by inhibition of HMGR activity. This process strictly depends on gamma-secretase activity. In line with altered Abeta40/42 generation, pathological presenilin mutations result in increased cholesterol and decreased SM levels. Our results demonstrate a biological function for APP processing and also a functional basis for the link that has been observed between lipids and Alzheimer's disease (AD).  相似文献   

7.
Lipid rafts are membrane structures enriched in cholesterol, sphingomyelin and glycolipids. In majority raft-mimicking model systems high contents of cholesterol and sphingomyelin (approximately 30 mol%) are used. Existence of raft-like structures was, however, reported also in model and natural membranes containing low levels of cholesterol and sphingomyelin. In the present work differential scanning calorimetry and fluorescence spectroscopy with the use of Laurdan probe was employed to demonstrate the existence of phase separation in model systems containing DPPC with addition of 5 mol% or 10 mol% of both cholesterol and sphingomyelin. Additionally, the influence of three phenothiazine derivatives on phase separation in mixed DPPC/cholesterol/sphingomyelin bilayers was investigated. Chlorpromazine, thioridazine and trifluoperazine were able to induce phase separation in DPPC and DPPC/cholesterol/sphingomyelin bilayers in temperatures below lipid main phase transition. However, only trifluoperazine induced phase separation in temperatures close to or above main phase transition. Trifluoperazine also induced phase separation in bilayers composed of egg yolk PC or DOPC mixed with cholesterol and sphingomyelin. We concluded that presence of lipid domains can be observed in model membranes containing low levels of cholesterol and sphingomyelin. Among three phenothiazine derivatives studied, only trifluoperazine was able to induce a permanent phase separation in phosphatidylcholine/cholesterol/sphingomyelin systems.  相似文献   

8.
Ceramides (Cers) may exert their biological activity through changes in membrane structure and organization. To understand this mechanism, the effect of Cer on the biophysical properties of phosphatidylcholine, sphingomyelin (SM) and SM/cholesterol bilayers was determined using fluorescence probe techniques. The Cers were bovine brain Cer and synthetic Cers that contained a single acyl chain species. The phospholipids were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glyero-3-phosphocholine (DPPC) and bovine brain, egg yolk and bovine erythrocyte SM. The addition of Cer to POPC and DPPC bilayers that were in the liquid-crystalline phase resulted in a linear increase in acyl chain order and decrease in membrane polarity. The addition of Cer to DPPC and SM bilayers also resulted in a linear increase in the gel to liquid-crystalline phase transition temperature (T(M)). The magnitude of the change was dependent upon Cer lipid composition and was much higher in SM bilayers than DPPC bilayers. The addition of 33 mol% cholesterol essentially eliminated the thermal transition of SM and SM/Cer bilayers. However, there is still a linear increase in acyl chain order induced by the addition of Cer. The results are interpreted as the formation of DPPC/Cer and SM/Cer lipid complexes. SM/Cer lipid complexes have higher T(M)s than the corresponding SM because the addition of Cer reduces the repulsion between the bulky headgroup and allows closer packing of the acyl chains. The biophysical properties of a SM/Cer-rich bilayer are dependent upon the amount of cholesterol present. In a cholesterol-poor membrane, a sphingomyelinase could catalyze the isothermal conversion of a liquid-crystalline SM bilayer to a gel phase SM/Cer complex at physiological temperature.  相似文献   

9.
An angiogenic factor, platelet-derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP), stimulates the chemotaxis of endothelial cells and confers resistance to apoptosis induced by hypoxia. 2-deoxy-D-ribose, a degradation product of thymidine generated by TP enzymatic activity partially prevented hypoxia-induced apoptosis. 2-Deoxy-D-ribose inhibits a number of components of the caspase-mediated hypoxia-induced apoptotic pathway. It inhibits hypoxia-induced caspase 3 activation, mitochondrial cytochrome c release, downregulation of Bcl-2 and Bcl-x(L), upregulation of hypoxia-inducible factor (HIF)-1 alpha, and loss of mitochondrial transmembrane potential in human leukemia HL-60 cell line. These findings suggest a molecular mechanism by which 2-deoxy-d-ribose confers the resistance to apoptosis. Thus 2-deoxy-D-ribose-modulated suppression of HIF-1 alpha expression could prevent the hypoxia-induced decrease of the anti-apoptotic Bcl-2 and Bcl-x(L) on the mitochondria. 2-Deoxy-L-ribose and its analogs may enhance apoptosis and suppress the growth of tumors by competitively inhibiting the activities of 2-deoxy-d-ribose and thus these analogs show promise for anti-tumor therapy.  相似文献   

10.
For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.  相似文献   

11.
Although the free radical-mediated oxidation of free cholesterol (FC) is critical in the generation of regulatory sterols and in atherogenesis, the physiological regulation of this process is poorly understood. We tested the hypothesis that sphingomyelin (SM), a major phospholipid of cell membranes, which is closely associated with FC, protects FC against oxidation, because of its unique structure, and affinity to the sterol. We employed phosphatidylcholine (PC) liposomes containing varying amounts of SM, and either radioactive FC or a fluorescent analog, dehydroergosterol (DHE), and determined the oxidative decay of the sterol in presence of 2,2′-azo-bis(2-amidinopropane hydrochloride) (AAPH). Incorporation of 25 mol% of SM in the liposomes inhibited the oxidation of FC or DHE by up to 50%. This inhibition was specific for SM among phospholipids, and was abolished by sphingomyelinase treatment. SM was not degraded during the oxidation reaction, and its effect was not dependent on the nature of the oxidizing agent, because it also inhibited sterol oxidation by FeSO4/ascorbate, and by cholesterol oxidase. These studies show that SM plays a physiological role in the regulation of cholesterol oxidation by free radicals.  相似文献   

12.
Interaction of cholesterol with various glycerophospholipids and sphingomyelin   总被引:20,自引:0,他引:20  
M B Sankaram  T E Thompson 《Biochemistry》1990,29(47):10670-10675
The influence of cholesterol on the phase behavior of glycerophospholipids and sphingomyelins was investigated by spin-label electron spin resonance (ESR) spectroscopy. 4-(4,4-Dimethyl-3-oxy-2-tridecyl-2-oxazolidinyl)butanoic acid (5-SASL) and 1-stearoyl-2-[4-(4,4-dimethyl-3-oxy-2-tridecyl-2-oxazolidinyl)butanoy l]-sn- glycero-3-phosphocholine (5-PCSL) spin-labels were employed for this purpose. The outer hyperfine splitting constants, Amax, measured from the spin-label ESR spectra as a function of temperature were taken as empirical indicators of cholesterol-induced changes in the acyl chain motions in the fluid state. The Amax values of 5-PCSL exhibit a triphasic dependence on the concentration of cholesterol for phosphatidylcholines and bovine brain sphingomyelin. We interpret this dependence as reflecting the existence of liquid-disordered, ld, liquid-ordered, lo, and coexistence regions, ld + lo. The phase boundary between the ld and the two-phase region and the boundary between the lo and the two-phase region in the phosphatidylcholine-cholesterol systems coalesce at temperatures 25-33 degrees C above the main-chain melting transition temperature of the cholesterol-free phosphatidylcholine bilayers. In the case of bovine brain sphingomyelin, the ld-lo phase coalescence occurs about 47 degrees C above the melting temperature of the pure sphingomyelin. The selectivity of interaction of cholesterol with glycerophospholipids of varying headgroup charge was studied by comparing the cholesterol-induced changes in the Amax values of derivatives of phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylserine spin-labeled at the fifth position of the sn-2 chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
ATP-binding cassette protein G1 (ABCG1) is important for the formation of HDL. However, the biochemical properties of ABCG1 have not been reported, and the mechanism of how ABCG1 is involved in HDL formation remains unclear. We established a procedure to express and purify human ABCG1 using the suspension-adapted human cell FreeStyle293-F. ABCG1, fused at the C terminus with green fluorescent protein and Flag-peptide, was solubilized with n-dodecyl-β-D-maltoside and purified via a single round of Flag-M2 antibody affinity chromatography. The purified ABCG1 was reconstituted in liposome of various lipid compositions, and the ATPase activity was analyzed. ABCG1 reconstituted in egg lecithin showed ATPase activity (150 nmol/min/mg), which was inhibited by beryllium fluoride. The ATPase activity of ABCG1, reconstituted in phosphatidylserine liposome, was stimulated by cholesterol and choline phospholipids (especially sphingomyelin), and the affinity for cholesterol was increased by the addition of sphingomyelin. These results suggest that ABCG1 is an active lipid transporter and possesses different binding sites for cholesterol and sphingomyelin, which may be synergistically coupled.  相似文献   

14.
A theoretical model is proposed to describe the heat capacity function and the phase behavior of binary mixtures of phospholipids and cholesterol. The central idea is that the liquid-ordered state (Lo) is a thermodynamic state or an ensemble of conformations of the phospholipid, characterized by enthalpy and entropy functions that are intermediate between those of the solid and the liquid-disordered (Ld) states. The values of those thermodynamic functions are such that the Lo state is not appreciably populated in the pure phospholipid, at any temperature, because either the solid or the Ld state have much lower free energies. Cholesterol stabilizes the Lo state by nearest-neighbor interactions, giving rise to the appearance of the Lo phase. The model is studied by Monte Carlo simulations on a lattice with nearest-neighbor interactions, which are derived from experiment as much as possible. The calculated heat capacity function closely resembles that obtained by calorimetry. The phase behavior produced by the model is also in agreement with experimental data. The simulations indicate that separation between solid and Lo phases occurs below the melting temperature of the phospholipid (Tm). Above Tm, small Ld and Lo domains do exist, but there is no phase separation.  相似文献   

15.
Erythrocyte ghosts were incubated with sonicated vesicles and the uptake of cholesterol by vesicles allowed to proceed to equilibrium. The experiments were carried out for a series of phospholipids at different temperatures. The equilibrium partition of cholesterol between ghosts and single shelled vesicles provided a measure of the relative affinities of cholesterol for the different phospholipids studied. It was found that the affinity of cholesterol for dipalmitoyl phosphatidylcholine was the same as that for N-palmitoyl sphingomyelin both at temperatures above and below the gel to liquid crystalline transition temperature of these phospholipids.  相似文献   

16.
17.
Although sphingomyelin (SM) is the most abundant phospholipid in the plasma, next to phosphatidylcholine (PC), its physiological function in plasma is unclear. Here we employed plasma from various genetic models of mice which naturally differ in their plasma SM/PC ratios, to study the role of SM as a modulator of LCAT, the enzyme responsible for HDL maturation and the synthesis of cholesteryl esters (CE) in normal plasma. Serine palmitoyltransferase deficient mice, and SM synthase deficient mice, both of which have below normal SM/PC ratios, showed significantly elevated LCAT activities when assayed with the endogenous substrates. On the other hand, LDL receptor knockout mice, and apo E knockout mice, both of which have high SM/PC ratios, had markedly reduced (-80%) LCAT activities. The LCAT levels in plasma, as assayed with an exogenous substrate, were similar in all groups, except for a 45% decrease in apo E knockout mice. Plasma samples with high SM/PC ratios had lower percentage of 20:4, 22:5, and 22:6 CE all of which are formed by LCAT, and a higher percentage of the atherogenic 18:1 CE which is mainly derived from the action of liver ACAT, showing that in vivo, the contribution of LCAT to plasma CE is reduced while that of liver ACAT is increased. These results show that SM is a physiological modulator of LCAT activity as well as plasma CE composition, and this may contribute to the previously reported pro-atherogenic effect of high plasma SM levels.  相似文献   

18.
There is ample evidence from experimental models and human metabolic disorders indicating that cholesterol and sphingomyelin (SM) levels are coordinately regulated. Generally it has been observed that altering the cellular content of sphingomyelin or cholesterol results in corresponding changes in mass and/or synthesis of the other lipid. In the case of cholesterol synthesis and trafficking, SM regulates the capacity of membranes to absorb cholesterol and thereby controls sterol flux between the plasma membrane and regulatory pathways in the endoplasmic reticulum. This relationship exemplifies the importance of cholesterol/sphingolipid-rich domains in cholesterol homeostasis, as well as other aspects of cell signaling and transport. Evidence for regulation of sphingomyelin metabolism by cholesterol is less convincing and dependent on the model system under study. Sphingomyelin biosynthetic rates are not dramatically affected by alterations in cholesterol balance suggesting that sphingomyelin or its metabolites serve other indispensable functions in the cell. A notable exception is the robust and specific regulation of both SM and cholesterol synthesis by 25-hydroxycholesterol. This finding is reviewed in the context of the role of oxysterol binding protein and its putative role in cholesterol and SM trafficking between the plasma membrane and Golgi apparatus.  相似文献   

19.
Thermal, structural, and cohesive measurements have been obtained for both bovine brain sphingomyelin (BSM) and N-tetracosanoylsphingomyelin (C24-SM) in the presence and absence of cholesterol. A goal of these experiments has been to clarify the mechanisms responsible for the strong interaction between sphingomyelin and cholesterol. Differential scanning calorimetry shows that fully hydrated bilayers of BSM and C24-SM have main endothermic phase transitions at 39 and 46 degrees C, respectively, that reflect the melting of the acyl chains from a gel to a liquid-crystalline phase. For each lipid, the addition of cholesterol monotonically reduces the enthalpy of this transition, so that at equimolar cholesterol the transition enthalpy is zero. The addition of equimolar cholesterol to either BSM or C24-SM coverts the wide-angle X-ray diffraction reflection at 4.15 A to a broad band centered at 4.5 A. Electron density profiles of gel-phase C24-SM bilayers contain two terminal methyl dips in the center of the bilayer, indicating that the lipid hydrocarbon chains partially interdigitate so that the long saturated 24-carbon acyl chains in one monolayer cross the bilayer center and appose the shorter sphingosine chains from the other monolayer. The incorporation of cholesterol adds electron density to the hydrocarbon chain region near the head group and removes the double terminal methyl dip. These wide- and low-angle X-ray data indicate that cholesterol packs into the hydrocarbon chain region near the sphingomyelin head group, fluidizes the methylene chains near the center of the bilayer compared to the gel phase, and reduces the extent of methylene chain interdigitation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The putative specific interaction and complex formation by sphingomyelin and cholesterol was investigated. Accordingly, low contents (1 mol % each) of fluorescently labeled derivatives of these lipids, namely 1-palmitoyl-2[10-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PyrPC), n-[10-(1-pyrenyl)decanoyl]sphingomyelin (PyrSM), and increasing concentrations of cholesterol (up to 5 mol %), were included in large unilamellar vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-dinervonoyl-sn-glycero-3-phosphocholine (DNPC), and the excimer/monomer fluorescence emission ratio (I(e)/I(m)) was measured. In DNPC below the main phase transition, the addition of up to 5 mol % cholesterol reduced I(e)/I(m) significantly. Except for this, cholesterol had only a negligible effect in both matrices and for both probes. We then compared the efficiency of resonance energy transfer from PyrPC and PyrSM to 22-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBDchol). An augmenting colocalization of the latter resonance energy transfer pair with temperature was observed in a DMPC matrix below the main phase transition. In contrast, compared to PyrSM the colocalization of PyrPC with NBDchol was more efficient in the longer DNPC matrix. These results could be confirmed using 5,6-dibromo-cholestan-3beta-ol as a collisional quencher for the pyrene-labeled lipids. The results indicate lack of a specific interaction between sphingomyelin and cholesterol, and further imply that hydrophobic mismatch between the lipid constituents could provide the driving force for the cosegregation of sphingomyelin and cholesterol in fluid phospholipid bilayers of thicknesses comparable to those found for biomembranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号