首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inward-rectifying potassium channels in plant cells provide important mechanisms for low-affinity K+ uptake and membrane potential control in specific cell types, including guard cells, pulvinus cells, aleurone cells and root hair cells. K+ channel blockers are potent tools for studying the physiological functions and structural properties of K+ channels. In the present study the structural and biophysical mechanisms of Cs+ and TEA+ block of a cloned Arabidopsis inward-rectifying K+ channel (KAT1) were analyzed. Effects of the channel blockers Cs+ and TEA+ were characterized both extracellularly and intracellularly. Both external Cs+ and TEA+ block KAT1 currents. A mutant of KAT1 (``m2KAT1'; H267T, E269V) was produced by site-directed mutagenesis of two amino acid residues in the C-terminal portion of the putative pore (P) domain. This mutant channel was blocked less by external Cs+ and TEA+ than the wild-type K+ channel. Internal TEA+ and Cs+ did not significantly block either m2KAT1 or KAT1 channels. Other properties, such as cation selectivity, voltage-dependence and proton activation did not show large changes between m2KAT1 and KAT1, demonstrating the specificity of the introduced mutations. These data suggest that the amino acid positions mutated in the inward-rectifying K+ channel, KAT1, are accessible to external blockers and may be located on the external side of the membrane, as has been suggested for outward-rectifying K+ channels. Received: 31 July 1995/Revised: 5 January 1996  相似文献   

2.
Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K+ channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K+ channels in maize guard cells is limited. In the present study, we identified two KAT1‐like Shaker K+ channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K+ (Kin) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K+ currents. However, KZM2 can interact with KZM3 forming heteromeric Kin channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2–KZM3 heteromeric channel became slower than the KZM3 channel. Patch‐clamping results showed that the inward K+ currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the Kin channels in maize guard cells. KZM2 and KZM3 may form heteromeric Kin channel and control stomatal opening in maize.  相似文献   

3.
Properties of Shaker-type Potassium Channels in Higher Plants   总被引:2,自引:0,他引:2  
Potassium (K+), the most abundant cation in biological organisms, plays a crucial role in the survival and development of plant cells, modulation of basic mechanisms such as enzyme activity, electrical membrane potentials, plant turgor and cellular homeostasis. Due to the absence of a Na+/K+ exchanger, which widely exists in animal cells, K+ channels and some type of K+ transporters function as K+ uptake systems in plants. Plant voltage-dependent K+ channels, which display striking topological and functional similarities with the voltage-dependent six-transmembrane segment animal Shaker-type K+ channels, have been found to play an important role in the plasma membrane of a variety of tissues and organs in higher plants. Outward-rectifying, inward-rectifying and weakly-rectifying K+ channels have been identified and play a crucial role in K+ homeostasis in plant cells. To adapt to the environmental conditions, plants must take advantage of the large variety of Shaker-type K+ channels naturally present in the plant kingdom. This review summarizes the extensive data on the structure, function, membrane topogenesis, heteromerization, expression, localization, physiological roles and modulation of Shaker-type K+ channels from various plant species. The accumulated results also help in understanding the similarities and differences in the properties of Shaker-type K+ channels in plants in comparison to those of Shaker channels in animals and bacteria.  相似文献   

4.
Voltage-dependent potassium uptake channels represent the major pathway for K+ accumulation underlying guard cell swelling and stomatal opening. The core structure of these Shaker-like channels is represented by six transmembrane domains and an amphiphilic pore-forming region between the fifth and sixth domain. To explore the effect of point mutations within the stretch of amino acids lining the K+ conducting pore of KAT1, an Arabidopsis thaliana guard cell Kin channel, we selected residues deep inside and in the periphery of the pore. The mutations on positions 256 and 267 strongly altered the interaction of the permeation pathway with external Ca2+ ions. Point mutations on position 256 in KAT1 affected the affinity towards Ca2+, the voltage dependence as well as kinetics of the Ca2+ blocking reaction. Among these T256S showed a Ca2+ phenotype reminiscent of an inactivation-like process, a phenomenon unknown for Kin channels so far. Mutating histidine 267 to alanine, a substitution strongly affecting C-type inactivation in Shaker, this apparent inactivation could be linked to a very slow calcium block. The mutation H267A did not affect gating but hastened the Ca2+ block/unblock kinetics and increased the Ca2+ affinity of KAT1. From the analysis of the presented data we conclude that even moderate point mutations in the pore of KAT1 seem to affect the pore geometry rather than channel gating.  相似文献   

5.
Voltage-gated potassium channels are formed by the assembly of four identical (homotetramer) or different (heterotetramer) subunits. Tetramerization of plant potassium channels involves the C-terminus of the protein. We investigated the role of the C-terminus of KDC1, a Shaker-like inward-rectifying K+ channel that does not form functional homomeric channels, but participates in the formation of heteromeric complexes with other potassium α-subunits when expressed in Xenopus oocytes. The interaction of KDC1 with KAT1 was investigated using the yeast two-hybrid system, fluorescence and electrophysiological studies. We found that the KDC1-EGFP fusion protein is not targeted to the plasma membrane of Xenopus oocytes unless it is coexpressed with KAT1. Deletion mutants revealed that the KDC1 C-terminus is involved in heteromerization. Two domains of the C-terminus, the region downstream the putative cyclic nucleotide binding domain and the distal part of the C-terminus called KHA domain, contributed to a different extent to channel assembly. Whereas the first interacting region of the C-terminus was necessary for channel heteromerization, the removal of the distal KHA domain decreased but did not abolish the formation of heteromeric complexes. Similar results were obtained when coexpressing KDC1 with the KAT1-homolog KDC2 from carrots, thus indicating the physiological significance of the KAT1/KDC1 characterization. Electrophysiological experiments showed furthermore that the heteromerization capacity of KDC1 was negatively influenced by the presence of the enhanced green fluorescence protein fusion.  相似文献   

6.
KAT1‐type channels mediate K+ influx into guard cells that enables stomatal opening. In this study, a KAT1‐type channel AmKAT1 was cloned from the xerophyte Ammopiptanthus mongolicus. In contrast to most KAT1‐type channels, its activation is strongly dependent on external K+ concentration, so it can be used as a model to explore the mechanism for the K+‐dependent gating of KAT1‐type channels. Domain swapping between AmKAT1 and KAT1 reveals that the S5–pore–S6 region controls the K+ dependence of AmKAT1, and residue substitutions show that multiple residues within the S5–Pore linker and Pore are involved in its K+‐dependent gating. Importantly, complex interactions occur among these residues, and it is these interactions that determine its K+ dependence. Finally, we analyzed the potential mechanism for the K+ dependence of AmKAT1, which could originate from the requirement of K+ occupancy in the selectivity filter to maintain its conductive conformation. These results provide new insights into the molecular basis of the K+‐dependent gating of KAT1‐type channels.  相似文献   

7.
8.
The inward-rectifying K+ channel KAT1 is expressed mainly in Arabidopsis thaliana guard cells. The purification of functional KAT1 has never been reported. We investigated the extraction of the plant K+ channel KAT1 with different detergents, as an example for how to select detergents for purifying a eukaryotic membrane protein. A KAT1-GFP fusion protein was used to screen a library of 46 detergents for the effective solubilization of intact KAT1. Then, a “test set” of three detergents was picked for further analysis, based on their biochemical characteristics and availability. The combination use of the selected detergents enabled the effective purification of functional KAT1 with affinity and gel-filtration chromatography.  相似文献   

9.
We have investigated the electrophysiological basis of potassium inward rectification of the KAT1 gene product from Arabidopsis thaliana expressed in Xenopus oocytes and of functionally related K+ channels in the plasma membrane of guard and root cells from Vicia faba and Zea mays. The whole-cell currents passed by these channels activate, following steps to membrane potentials more negative than –100 mV, with half activation times of tens of milliseconds. This voltage dependence was unaffected by the removal of cytoplasmic magnesium. Consequently, unlike inward rectifier channels of animals, inward rectification of plant potassium channels is an intrinsic property of the channel protein itself. We also found that the activation kinetics of KAT1 were modulated by external pH. Decreasing the pH in the range 8.5 to 4.5 hastened activation and shifted the steady state activation curve by 19 mV per pH unit. This indicates that the activity of these K+ channels and the activity of the plasma membrane H+-ATPase may not only be coordinated by membrane potential but also by pH. The instantaneous current-voltage relationship, on the other hand, did not depend on pH, indicating that H+ do not block the channel. In addition to sensitivity towards protons, the channels showed a high affinity voltage dependent block in the presence of cesium, but were less sensitive to barium. Recordings from membrane patches of KAT1 injected oocytes in symmetric, Mg2+-free, 100 mM-K+, solutions allowed measurements of the current-voltage relation of single open KAT1 channels with a unitary conductance of 5 pS. We conclude that the inward rectification of the currents mediated by the KAT1 gene product, or the related endogenous channels of plant cells, results from voltage-modulated structural changes within the channel proteins. The voltage-sensing or the gating-structures appear to interact with a titratable acidic residue exposed to the extracellular medium. Correspondence to: R. Hedrich  相似文献   

10.
Potassium channels in plants play a variety of important physiological roles including K+ uptake into roots, stomatal and leaf movements, and release of K+ into the xylem. This review summarizes current knowledge about a class of plant genes whose products are K+ channel-forming proteins. Potassium channels of this class belong to a superfamily characterized by six membrane-spanning domains (S1-6), a positively charged S4 domain and a region between the S5 and S6 segments that forms the channel selectivity filter. These channels are voltage dependent, which means the membrane potential modifies the probability of opening (Po). However, despite these channels sharing the same topology as the outward-rectifying K+ channels, which are activated by membrane depolarization, some plant K+ channels such as KAT1/2 and KST1 open with hyperpolarizing voltages. In outward-rectifying K+ channels, the change in Po is achieved through a voltage sensor formed by the S4 segment that detects the voltage transferring its energy to the gate that controls pore opening. This coupling is achieved by an outward displacement of the charges contained in S4. In KAT1, most of the results indicate that S4 is the voltage sensor. However, how the movement of S4 leads to opening remains unanswered. On the basis of recent data, we propose here that in plant-inward rectifiers an inward movement of S4 leads to channel opening and that the difference between it and outward-rectifying channels resides in the mechanism that couples gating charge displacement with pore opening.  相似文献   

11.
The Arabidopsis thaliana cDNA, KAT1 encodes a hyperpolarization-activated K+ (K+ in ) channel. In the present study, we identify and characterize dominant negative point mutations that suppress K+ in channel function. Effects of two mutations located in the H5 region of KAT1, at positions 256 (T256R) and 262 (G262K), were studied. The co-expression of either T256R or G262K mutants with KAT1 produced an inhibition of K+ currents upon membrane hyperpolarization. The magnitude of this inhibition was dependent upon the molar ratio of cRNA for wild-type to mutant channel subunits injected. Inhibition of KAT1 currents by the co-expression of T256R or G262K did not greatly affect the ion selectivity of residual currents for Rb+, Na+, Li+, or Cs+. When T256R or G262K were co-expressed with a different K+ channel, AKT2, an inhibition of the channel currents was also observed. Voltage-dependent Cs+ block experiments with co-expressed wild type, KAT1 and AKT2, channels further indicated that KAT1 and AKT2 formed heteromultimers. These data show that AKT2 and KAT1 are able to co-assemble and suggest that suppression of channel function can be pursued in vivo by the expression of the dominant negative K + in channel mutants described here. Received: 2 July 1998/Revised: 23 October 1998  相似文献   

12.
KAT1 is a cloned voltage-gated K+ channel from the plant Arabidopsis thaliana L., which displays an inward rectification reminiscent of `anomalous' rectification of the i f pacemaker current recorded in animal cells. Macroscopic conductance of KAT1 expressed in Xenopus oocytes was 5-fold less in pure Rb+ solution than in pure K+ solution, and negligible in pure Na+ solution. Experiments in different K+/Na+ or K+/Rb+ mixtures revealed deviations from the principle of independence and notably two anomalous effects of the K+/Rb+ mole fraction (i.e., the ratio [K+]/([K+]+[Rb+])). First, the KAT1 deactivation time constant was both voltage- and mole fraction-dependent (a so-called `foot in the door' effect was thus observed in KAT1 channel). Second, when plotted against the K+/Rb+ mole fraction, KAT1 conductance values passed through a minimum. This minimum is more important for two pore mutants of KAT1 (T259S and T260S) that displayed an increase in PRb/PK. These results are consistent with the idea that KAT1 conduction requires several ions to be present simultaneously within the pore. Therefore, this atypical `green' member of the Shaker superfamily of K+ channels further shows itself to be an interesting model as well for permeation as for gating mechanism studies. Received: 9 February 1998/Revised: 28 July 1998  相似文献   

13.
The cellular mechanisms that regulate potassium (K+) channels in guard cells have been the subject of recent research, as K+ channel modulation has been suggested to contribute to stomatal movements. Patch clamp studies have been pursued on guard cell protoplasts of Vicia faba to analyze the effects of physiological cytosolic free Ca2+ concentrations, Ca2+ buffers and GTP-binding protein modulators on inward-rectifying K+ channels. Ca2+ inhibition of inward-rectifying K+ currents depended strongly on the concentration and effectiveness of the Ca2+ buffer used, indicating a large Ca2+ buffering capacity and pH increases in guard calls. When the cytosolic Ca2+ concentration was buffered to micromolar levels using BAPTA, inward-rectifying K+ channels were strongly inhibited. However, when EGTA was used as the Ca2+ buffer, much less inhibition was observed, even when pipette solutions contained 1 µM free Ca2+. Under the imposed conditions, GTPγS did not significantly inhibit inward-rectifying K+ channel currents when cytosolic Ca2+ was buffered to low levels or when using EGTA as the Ca2+ buffer. Furthermore, GDPβS reduced inward K+ currents at low cytosolic Ca2+, indicating a novel mode of inward K+ channel regulation by G-protein modulators, which is opposite in effect to that from previous reports. On the other hand, when Ca2+ was effectively elevated in the cytosol to 1 µM using BAPTA, GTPγS produced an additional inhibition of the inward-rectifying K+ channel currents in a population of cells, indicating possible Ca2+-dependent action of GTP-binding protein modulators in K+ channel inhibition. Assays of stomatal opening show that 90% inhibition of inward K+ currents does not prohibit, but slows, stomatal opening and reduces stomatal apertures by only 34% after 2 h light exposure. These data suggest that limited K+ channel down-regulation alone may not be rate-limiting, and it is proposed that the concerted action of proton-pump inhibition and additional anion channel activation is likely required for inhibition of stomatal opening. Furthermore, G-protein modulators regulate inward K+ channels in a more complex and limited, possibly Ca2+-dependent, manner than previously proposed.  相似文献   

14.
The Arabidopsis K+ channel KAT1 complements in K+-limited medium the growth of the K+ uptake defective Saccharomyces cerevisiae mutant strain CY162, while another K+ channel, AKT2, does not. To gain insight into the structural basis for this difference, we constructed 12 recombinant chimeric channels from these two genes. When expressed in CY162, only three of these chimeras fully rescued the growth of CY162 under K+-limited conditions. We conclude that the transmembrane core region of KAT1 is important for its activity in S. cerevisiae. This involves not only the pore region but also parts of its voltage-sensor domain.  相似文献   

15.
Dihydropyridines (DHPs) are well known for their effects on L-type voltage-dependent Ca2+ channels. However, these drugs also affect other voltage-dependent ion channels, including Shaker K+ channels. We examined the effects of DHPs on the Shaker K+ channels expressed in Xenopus oocytes. Intracellular applications of DHPs quickly and reversibly induced apparent inactivation in the Shaker K+ mutant channels with disrupted N- and C-type inactivation. We found that DHPs interact with the open state of the channel as evidenced by the decreased mean open time. The DHPs effects are voltage-dependent, becoming more effective with hyperpolarization. A model which involves binding of two DHP molecules to the channel is consistent with the results obtained in our experiments.  相似文献   

16.
We measured unidirectional K+ in- and efflux through an inward rectifier K channel (IRK1) expressed in Xenopus oocytes. The ratio of these unidirectional fluxes differed significantly from expectations based on independent ion movement. In an extracellular solution with a K+ concentration of 25 mM, the data were described by a Ussing flux-ratio exponent, n′, of ∼2.2 and was constant over a voltage range from −50 to −25 mV. This result indicates that the pore of IRK1 channels may be simultaneously occupied by at least three ions. The IRK1 n′ value of 2.2 is significantly smaller than the value of 3.5 obtained for Shaker K channels under identical conditions. To determine if other permeation properties that reflect multi-ion behavior differed between these two channel types, we measured the conductance (at 0 mV) of single IRK1 channels as a function of symmetrical K+ concentration. The conductance could be fit by a saturating hyperbola with a half-saturation K+ activity of 40 mM, substantially less than the reported value of 300 mM for Shaker K channels. We investigated the ability of simple permeation models based on absolute reaction rate theory to simulate IRK1 current–voltage, conductance, and flux-ratio data. Certain classes of four-barrier, three-site permeation models are inconsistent with the data, but models with high lateral barriers and a deep central well were able to account for the flux-ratio and single channel data. We conclude that while the pore in IRK1 and Shaker channels share important similarities, including K+ selectivity and multi-ion occupancy, they differ in other properties, including the sensitivity of pore conductance to K+ concentration, and may differ in the number of K+ ions that can simultaneously occupy the pore: IRK1 channels may contain three ions, but the pore in Shaker channels can accommodate four or more ions.  相似文献   

17.
Abstract

The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The homology models reveal that the T1 domains of these Kv channels exhibit similar folds as those of Shaker K+ channel. These models also show that each T1 monomer consists of three distinct layers, with N-terminal layer 1 and C- terminal layer 3 facing the cytoplasm and the membrane, respectively. Layer 2 exhibits the highest structural conservation because it is located around the central hydrophobic core. For each Kv channel, four identical subunits assemble into the homotetramer architecture around a four-fold axis through the hydrogen bonds and salt bridges formed by 15 highly conserved polar residues. The narrowest opening of the pore is formed by the four conserved residues corresponding to R115 of the Shaker T1 domain. The homology models of these Kv T1 domains provide particularly attractive targets for further structure-based studies.  相似文献   

18.
The Kv-like (potassium voltage-dependent) K+ channels at the plasma membrane, including the inward-rectifying KAT1 K+ channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K+ homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K+ channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.Plant cells utilize the potassium ion (K+) to maintain hydrostatic (turgor) pressure, to drive irreversible cell expansion for growth, and to facilitate reversible changes in cell volume during stomatal movements. Potassium uptake and its circulation throughout the plant relies both on high-affinity, H+-coupled K+ transport (Quintero and Blatt, 1997; Rubio et al., 2008) and on K+ channels to facilitate K+ ion transfer across cell membranes. Uptake via K+ channels is thought to be responsible for roughly 50% of the total K+ content of the plant under most field conditions (Spalding et al., 1999; Rubio et al., 2008; Amtmann and Blatt, 2009). K+ channels confer on the membranes of virtually every tissue distinct K+ conductances and regulatory characteristics (Véry and Sentenac, 2003; Dreyer and Blatt, 2009). Their characteristics are thus of interest for engineering directed to manipulating K+ flux in many aspects of plant growth and cellular homeostasis. The control of K+ channel gating has been identified as the most promising target for the genetic engineering of stomatal responsiveness (Lawson and Blatt, 2014; Wang et al., 2014a), based on the recent development of quantitative systems models of guard cell transport and metabolism (Chen et al., 2012b; Hills et al., 2012; Wang et al., 2012). By contrast, modifying the expression and, most likely, the population of native K+ channels at the membrane was found to have no substantial effect on stomatal physiology (Wang et al., 2014b).The Kv-like K+ channels of the plant plasma membrane (Pilot et al., 2003; Dreyer and Blatt, 2009) share a number of structural features with the Kv superfamily of K+ channels characterized in animals and Drosophila melanogaster (Papazian et al., 1987; Pongs et al., 1988). The functional channels assemble from four homologous subunits and surround a central transmembrane pore that forms the permeation pathway (Daram et al., 1997). Each subunit comprises six transmembrane α-helices, designated S1 to S6, and both N and C termini are situated on the cytosolic side of the membrane (Uozumi et al., 1998). The pore or P loop between the S5 and S6 α-helices incorporates a short α-helical stretch and the highly conserved amino acid sequence TxGYGD, which forms a selectivity filter for K+ (Uozumi et al., 1995; Becker et al., 1996; Nakamura et al., 1997). The carbonyl oxygen atoms of these residues in all four K+ channel subunits face inward to form coordination sites for K+ ions between them (Doyle et al., 1998; Jiang et al., 2003; Kuo et al., 2003; Long et al., 2005) and a multiple-ion pore (Thiel and Blatt, 1991) such that K+ ions pass through the selectivity filter as if in free solution. The plant channels are also sensitive to a class of neurotoxins that exhibit high specificity in binding around the mouth of the channel pore (Obermeyer et al., 1994).These K+ channels also share a common gating mechanism. Within each subunit, the first four α-helices form a quasiindependent unit, the voltage sensor domain (VSD), with the S4 α-helix incorporating positively charged (Arg or Lys) residues regularly positioned across the lipid bilayer and transmembrane electric field. Voltage displaces the S4 α-helix within the membrane and couples rotation of the S5 and S6 α-helices lining the pore, thereby opening or closing the channel (Sigworth, 2003; Dreyer and Blatt, 2009). For outward-rectifying channels, such as the mammalian Kv1.2 and the D. melanogaster Shaker K+ channels, an inside-positive electric field drives the positively charged, S4 α-helix outward (the up position), which draws on the S4-S5 linker to open the pore. This simple expedient of a lever and string secures current flow in one direction by favoring opening at positive, but not negative, voltages. This same model applies to the Arabidopsis (Arabidopsis thaliana) Kv-like K+ channels, including outward rectifiers that exhibit sensitivity to external K+ concentration (Blatt, 1988; Blatt and Gradmann, 1997; Johansson et al., 2006), and it serves equally in the gating of inward-rectifying K+ channels such as KAT1, which gates open at negative voltages (Dreyer and Blatt, 2009).Studies of KAT1 gating (Latorre et al., 2003; Lai et al., 2005) have indicated that the S4 α-helix of the channel most likely undergoes very similar conformational changes with voltage as those of the mammalian and Shaker K+ channels. These findings conform with the present understanding of the evolution of VSD structure (Palovcak et al., 2014) and the view of a common functional dynamic to its molecular design. It is likely, therefore, that a similar electrostatic network occurs in KAT1 to stabilize the VSD. Crucially, however, experimental evidence in support of such a network has yet to surface. Electrostatic countercharges and the hydration of amino acid side chains between the α-helices within the VSDs of mammalian and Shaker K+ channel models are important for the latch-like stabilization of the so-called down and up states of these channels (Tao et al., 2010; Pless et al., 2011). Nonetheless, some studies (Gajdanowicz et al., 2009; Riedelsberger et al., 2010) have pointed to subtle differences in the structure of KAT1 that relate to the VSD.We have explored the electrostatic network of the KAT1 VSD through site-directed mutagenesis to manipulate the voltage dependence of KAT1, combining these studies with molecular dynamic simulations previously shown to accommodate the plant VSDs and their hydration during gating transitions (Gajdanowicz et al., 2009; Garcia-Mata et al., 2010). We report here that gating of KAT1 is sensitive to manipulations affecting a set of electrostatic charge transfer centers. These findings conform in large measure to the mammalian and Shaker models. However, virtually all manipulations affecting a highly conserved, central Phe favor the up state of the VSD and the closed KAT1 channel, whereas mutations affecting the electrostatic networks on either side of this Phe favor the down state of the VSD and the open channel. These and additional observations suggest that hydration within the VSD is a major determinant of KAT1 gating.  相似文献   

19.
GORK is the only outward‐rectifying Kv‐like K+ channel expressed in guard cells. Its activity is tightly regulated to facilitate K+ efflux for stomatal closure and is elevated in ABA in parallel with suppression of the activity of the inward‐rectifying K+ channel KAT1. Whereas the population of KAT1 is subject to regulated traffic to and from the plasma membrane, nothing is known about GORK, its distribution and traffic in vivo. We have used transformations with fluorescently‐tagged GORK to explore its characteristics in tobacco epidermis and Arabidopsis guard cells. These studies showed that GORK assembles in puncta that reversibly dissociated as a function of the external K+ concentration. Puncta dissociation parallelled the gating dependence of GORK, the speed of response consistent with the rapidity of channel gating response to changes in the external ionic conditions. Dissociation was also suppressed by the K+ channel blocker Ba2+. By contrast, confocal and protein biochemical analysis failed to uncover substantial exo‐ and endocytotic traffic of the channel. Gating of GORK is displaced to more positive voltages with external K+, a characteristic that ensures the channel facilitates only K+ efflux regardless of the external cation concentration. GORK conductance is also enhanced by external K+ above 1 mm . We suggest that GORK clustering in puncta is related to its gating and conductance, and reflects associated conformational changes and (de)stabilisation of the channel protein, possibly as a platform for transmission and coordination of channel gating in response to external K+.  相似文献   

20.
The functionally diverse cyclic nucleotide binding domain (CNBD) superfamily of cation channels contains both depolarization-gated (e.g., metazoan EAG family K+ channels) and hyperpolarization-gated channels (e.g., metazoan HCN pacemaker cation channels and the plant K+ channel KAT1). In both types of CNBD channels, the S4 transmembrane helix of the voltage sensor domain (VSD) moves outward in response to depolarization. This movement opens depolarization-gated channels and closes hyperpolarization-gated channels. External divalent cations and protons prevent or slow movement of S4 by binding to a cluster of acidic charges on the S2 and S3 transmembrane domains of the VSD and therefore inhibit activation of EAG family channels. However, a similar divalent ion/proton binding pocket has not been described for hyperpolarization-gated CNBD family channels. We examined the effects of external Cd2+ and protons on Arabidopsis thaliana KAT1 expressed in Xenopus oocytes and found that these ions strongly potentiate voltage activation. Cd2+ at 300 µM depolarizes the V50 of KAT1 by 150 mV, while acidification from pH 7.0 to 4.0 depolarizes the V50 by 49 mV. Regulation of KAT1 by Cd2+ is state dependent and consistent with Cd2+ binding to an S4-down state of the VSD. Neutralization of a conserved acidic charge in the S2 helix in KAT1 (D95N) eliminates Cd2+ and pH sensitivity. Conversely, introduction of acidic residues into KAT1 at additional S2 and S3 cluster positions that are charged in EAG family channels (N99D and Q149E in KAT1) decreases Cd2+ sensitivity and increases proton potentiation. These results suggest that KAT1, and presumably other hyperpolarization-gated plant CNBD channels, can open from an S4-down VSD conformation homologous to the divalent/proton-inhibited conformation of EAG family K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号