首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The Na+, K+-ATPase or Na+, K+-pump plays a critical role in ion homeostasis and many cellular events. The Na+, K+-pump activity is regulated by serine/threonine phosphorylation, the role of tyrosine kinases in the regulation, however, is obscure. We now present novel evidence showing that tyrosine phosphorylation activates the Na+, K+-pump in cortical neurons. The electrogenic activity of the Na+, K+-pump was measured using whole-cell voltage clamp. A tonic activity was revealed by an inward current induced by the specific inhibitor ouabain or strophanthidin; an outward current due to activation of the pump was triggered by raising extracellular K+. The inward and outward currents were attenuated by the tyrosine kinase inhibitor genistein, herbimycin A, or lavendustin A, while blocking tyrosine phosphatases increased the pump current. Down-regulation of the pump current was also seen with the Src inhibitor PP1 and intracellularly applied anti-Lyn or anti-Yes antibody. Consistently, intracellular application of Lyn kinase up-regulated the pump current. Immunoprecipitation and western blotting showed tyrosine phosphorylation and a direct interaction between Lyn and the alpha3 subunit of the Na+, K+-pump. The tyrosine phosphorylation of the alpha3 subunit was reduced by serum deprivation. These data suggest that the Na+, K+-ATPase activity in central neurons is regulated by specific Src tyrosine kinases via a protein-protein mechanism and may play a role in apoptosis.  相似文献   

3.
Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.  相似文献   

4.
目的:研究孤啡肽(N/OFQ)对大鼠顶叶皮层神经元瞬时外向钾电流(IA)的影响,初步探讨其作用的通道动力学机制。方法:采用全细胞膜片钳技术,观察N/OFQ对急性分离的大鼠顶叶皮层神经元IA的作用。结果:①0.1μmol/L N/OFQ使IA幅值由给药前的(5356.1±361.6)pA下降为(4113.3±312.7)pA,抑制率为23.20%±2.17%(P〈0.01,n=10)。②0.1μmol/L N/OFQ使IA的电流-电压(I-V)曲线降低(P〈0.01,n=10)。③0.1μmol/L N/OFQ使,IA激活曲线的半数激活电压(V1/2)和斜率因子(κ)分别由给药前的(-9.2±2.5)mV和(20.4±2.3)mV变为给药后的(30.6±3.7)mV(P〈0.01,n=8)和(22.6±2.1)mV(P〉0.05,n=8)。④0.1μmol/L N/OFQ使IA失活曲线的半数失活电压(V1/2)和斜率因子(κ)分别由给药前的(-64.1±3.2)mV和(21.5±2.1)mV变为给药后的(-55.9±1.9)mV(P〈0.05,n=5)和(19.6±2.2)mV(P〉0.05,n=5)。结论:N/OFQ可抑制大鼠顶叶皮层神经元IA,使其激活曲线、失活曲线均右移。  相似文献   

5.
Summary A study of the temperature dependence of gramicidin A conductance of K+ in diphytanoyllecithin/n-decane membranes shows the plot of In (single channel conductance) as a function of reciprocal temperature to be nonlinear for the most probable set of conductance, states. These results are considered in terms of a series of barriers, of the dynamics of channel conformation,vis-a-vis the peptide libration mechanism, and of the effect of lipid viscosity on side chain motions again as affecting the energetics of peptide libration.  相似文献   

6.
Multiple cytokines are secreted in the brain during pro-inflammatory conditions and likely affect neuron survival. Previously, we demonstrated that glutamate and tumor necrosis factor alpha (TNFalpha) kill neurons via activation of the N-methyl-d-aspartate (NMDA) and TNFalpha receptors, respectively. This report continues characterizing the signaling cross-talk pathway initiated during this inflammation-related mechanism of death. Stimulation of mouse cortical neuron cultures with TNFalpha results in a transient increase in NMDA receptor-dependent calcium influx that is additive with NMDA stimulation and inhibited by pre-treatment with the NMDA receptor antagonist, DL-2-amino-5-phosphonovaleric acid, or the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione. Pre-treatment with N-type calcium channel antagonist, omega-conotoxin, or the voltage-gated sodium channel antagonist, tetrodotoxin, also prevents the TNFalpha-stimulated calcium influx. Combined TNFalpha and NMDA stimulation results in a transient increase in activity of extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Specific inhibition of ERKs but not JNKs is protective against TNFalpha and NMDA-dependent death. Death is mediated via the low-affinity TNFalpha receptor, TNFRII, as agonist antibodies for TNFRII but not TNFRI stimulate NMDA receptor-dependent calcium influx and death. These data demonstrate how microglial pro-inflammatory secretions including TNFalpha can acutely facilitate glutamate-dependent neuron death.  相似文献   

7.
NMDA receptor function is modulated by both G-protein-coupled receptors and receptor tyrosine kinases. In acutely isolated rat hippocampal neurons, direct activation of the platelet-derived growth factor (PDGF) receptor or transactivation of the PDGF receptor by D4 dopamine receptors inhibits NMDA-evoked currents in a phospholipase C (PLC)-dependent manner. We have investigated further the ability of D2-class dopamine receptors to modulate NMDA-evoked currents in isolated rat prefrontal cortex (PFC). We have demonstrated that, similar to isolated hippocampal neurons, the application of PDGF-BB or quinpirole to isolated PFC neurons induces a slow-onset and long-lasting inhibition of NMDA-evoked currents. However, in contrast to hippocampal neurons, the inhibition of NMDA-evoked currents by quinpirole in PFC neurons is dependent upon D2/3, rather than D4, dopamine receptors. In PFC slices, application of both PDGF-BB and quinpirole induced a phosphorylation of the PDGF receptor at the PLCgamma binding and activation site, Tyr1021. The PDGF receptor kinase inhibitor, tyrphostin A9, and the D2/3 dopamine receptor antagonist, raclopride, inhibited quinpirole-induced Tyr1021 phosphorylation. These finding suggest that quinpirole treatment inhibits NMDAR signaling via PDGF receptor transactivation in both the hippocampus and the PFC, and that the effects of quinpirole in these regions are mediated by D4 and D2/3 dopamine receptors, respectively.  相似文献   

8.
The mammalian brain undergoes rapid cell death during anoxia that is characterized by uncontrolled Ca(2+) entry via N-methyl-D-aspartate receptors (NMDARs). In contrast, the western painted turtle is extremely anoxia tolerant and maintains close-to-normal [Ca(2+)](i) during periods of anoxia lasting from days to months. A plausible mechanism of anoxic survival in turtle neurons is the regulation of NMDARs to prevent excitotoxic Ca(2+) injury. However, studies using metabolic inhibitors such as cyanide (NaCN) as a convenient method to induce anoxia may not represent a true anoxic stress. This study was undertaken to determine whether turtle cortical neuron whole-cell NMDAR currents respond similarly to true anoxia with N(2) and to NaCN-induced anoxia. Whole-cell NMDAR currents were measured during a control N(2)-induced anoxic transition and a control NaCN-induced transition. During anoxia with N(2) normalized, NMDAR currents decreased to 35.3%+/-10.8% of control values. Two different NMDAR current responses were observed during NaCN-induced anoxia: one resulted in a 172%+/-51% increase in NMDAR currents, and the other was a decrease to 48%+/-14% of control. When responses were correlated to the two major neuronal subtypes under study, we found that stellate neurons responded to NaCN treatment with a decrease in NMDAR current, while pyramidal neurons exhibited both increases and decreases. Our results show that whole-cell NMDAR currents respond differently to NaCN-induced anoxia than to the more physiologically relevant anoxia with N(2).  相似文献   

9.
Light-activated single channel currents were measured in Limulus ventral photoreceptors in the cell-attached configuration at 14°C. The results show three channel types with conductances of 6.2, 10.4 and 28.7 pS. The most active channels have the 10 pS conductance; the open time histograms of these channels could be best fitted by the sum of two exponentials with time constants (and weights) of 0.58 ms (0.78) and 4.32 ms (0.22), suggesting two populations of channels or two open states. The mean open time was 1.38 ms. The open time histogram of the channels with the 29 pS conductance could be best fitted by a single exponential with a time constant of 3.35 ms. First latencies of the 10 pS channels were between 40 and 280 ms but those of the 29 pS conductance channels were 300 ms. These findings suggest that the two channel types are gated by two different intracellular transmitters or mechanisms. Offprint requests to: K. Nagy  相似文献   

10.
11.
目的: 建立新生大鼠大脑皮层、海马细胞及交感神经元细胞的培养方法及其钠、钾和钙通道的膜片钳全细胞记录技术.方法: 取出生1~3 d的大鼠大脑皮层、海马及交感神经节,用胰蛋白酶(0.125%)消化组织并分离出神经细胞,种植在涂有多聚赖氨酸的35 mm培养皿中,用高糖的DMEM培养液培养,一周后,镜下可见神经细胞壁光滑、完整,周围有明亮的光润,在高倍倒置显微镜下可见到完整的细胞核及均匀的胞浆,细胞间形成良好的突触连接,可用于细胞膜片钳记录.结果: 用胰蛋白酶消化分离培养的神经细胞,功能状态良好,在膜片钳全细胞记录中,易形成细胞与记录电极间的高阻抗封接,可分别记录到INa、IA、IK和ICa.结论:在神经系统电生理学研究中,此方法可应用于中枢神经系统不同脑区培养以及钠、钾和钙通道电流的记录.  相似文献   

12.
Summary A quantitative analysis of the time and voltage dependence of outward-rectifying K+ currents ( ) in guard cells fromVicia faba is described using the whole-cell patch-clamp technique. After step depolarizations from –75 mV to potentials positive to –40 mV, time-dependent outward currents were produced, which have recently been identified as K+ channel currents. This K+ current was characterized according to its time dependence and its steady-state activation. could be described in terms of a Hodgkin-Huxley type conductance. Activation of the current in time was sigmoid and was well fitted by raising the activation variable to the second power. Deactivating tail currents were single exponentials, which suggests that only one conductance underlies this slow outward K+ current. Rates of channel closing were strongly dependent on the membrane potential, while rates of channel opening showed only limited voltage dependence leading to a highly asymmetric voltage dependence for channel closing and opening. The presented analysis provides a quantitative basis for the understanding of channel gating and channel functions in plant cells.  相似文献   

13.
Kang M  Akbarali HI 《FEBS letters》2008,582(20):3033-3036
Tyrosine nitration results in altered function of selective proteins, including human smooth muscle L-type calcium channel, hCa(v)1.2b. We report here that Ca(v)1.2 is also subject to "denitration". Cell lysates from activated macrophage-like cell line, RAW264.7 cells, reversed peroxynitrite-induced nitration of the carboxy terminus of Ca(v)1.2 in a 1D gel assay. Tyrosine phosphorylation of the calcium channel by c-src kinase was blocked by nitration but reversed by pretreatment with RAW264.7 cell lysates. These findings indicate that denitration may be a physiological mechanism to restore cellular excitability during inflammation.  相似文献   

14.
The Na(v)1.6 voltage-gated sodium channel has been implicated in the generation of resurgent currents in cerebellar Purkinje neurons. Our data show that resurgent sodium currents are produced by some large diameter dorsal root ganglion (DRG) neurons from wild-type mice, but not from Na(v)1.6-null mice; small DRG neurons do not produce resurgent currents. Many, but not all, DRG neurons transfected with Na(v)1.6 produce resurgent currents. These results demonstrate for the first time the intrinsic ability of Na(v)1.6 to produce a resurgent current, and also show that cell background is critical in permitting the generation of these currents.  相似文献   

15.
Intracellular and patch clamp recordings were made from embryonic mouse spinal cord neurons growing in primary cell culture. Outside-out membrane patches obtained from these cells usually showed spontaneous single channel currents when studied at the resting potential (-56 +/- 1.5 mV). In 18 out of 30 patches tested, spontaneous single channel activity was abolished by making Tris+ the major cation on both sides of the membrane. The remaining patches continued to display spontaneous single channel currents under these conditions. These events reversed polarity at a patch potential of 0 mV and displayed a mean single channel conductance of 24 +/- 1.2 pS. Application of the putative inhibitory transmitter gamma-aminobutyric acid (0.5-10 microM) to outside-out patches of spinal cord cell membrane induced single channel currents in 10 out of 15 patches tested. These channels had a primary conductance of 29 +/- 2.8 pS in symmetrical 145 mM Cl- solutions. Frequency distributions for the open times of these channels were well fit by the sum of a fast exponential term ("of") with a time constant tau of = 4 +/- 1.3 ms and a slow exponential term ("os") with a time constant tau os = 24 +/- 8.1 ms. Frequency distributions for channel closed times were also well fit by a double exponential equation, with time constants tau cf = 2 +/- 0.2 ms and tau cs = 62 +/- 20.9 ms.  相似文献   

16.
Shim JW  Yang M  Gu LQ 《FEBS letters》2007,581(5):1027-1034
Chlorella virus-encoded membrane protein Kcv represents a new class of potassium channel. This 94-amino acids miniature K(+) channel consists of two trans-membrane alpha-helix domains intermediated by a pore domain that contains a highly conserved K(+) selectivity filter. Therefore, as an archetypal K(+) channel, the study of Kcv may yield valuable insights into the structure-function relationships underlying this important class of ion channel. Here, we report a series of new properties of Kcv. We first verified Kcv can be synthesized in vitro. By co-synthesis and assembly of wild-type and the tagged version of Kcv, we were able to demonstrate a tetrameric stoichiometry, a molecular structure adopted by all known K(+) channels. Most notably, the tetrameric Kcv complex retains its functional integrity in SDS (strong detergent)-containing solutions, a useful feature that allows for direct purification of protein from polyacrylamide gel. Once purified, the tetramer can form single potassium-selective ion channels in a lipid bilayer with functions consistent to the heterologously expressed Kcv. These finding suggest that the synthetic Kcv can serve as a model of virus-encoded K(+) channels; and its newly identified properties can be applied to the future study on structure-determined mechanisms such as K(+) channel functional stoichiometry.  相似文献   

17.
Homeostasis of neuronal activity is crucial to neuronal physiology. In dendrites, hyperpolarization-activated cyclic nucleotide-gated channel (HCN) 1 is considered to play critical roles in this process. While electrophysiological studies have demonstrated the dynamic modulation of Ih current mediated by HCN1 proteins, little is known about the underlying molecular and cellular mechanisms. In this study, we utilized cortical cultured neurons and biochemical methods to identify molecular and cellular mechanisms that mediate the physiological regulation of HCN1 channel functions in cortical neurons. Pharmacological manipulations of neuronal activity resulted in changes in the expression level of HCN1. In addition, the surface expression of HCN1 was dynamically regulated by neuronal activity. Both of these changes led to functional modulations of HCN1 channels. Our study suggests that coordinated changes in protein expression and surface expression of HCN1 serve as the key regulatory mechanisms controlling the function of endogenous HCN1 protein in cortical neurons.  相似文献   

18.
This article reports the analysis of a novel serotonin (5-HT)-sensitive leak channel. The 5-HT responses were recorded in acutely dissociated Drosophila adult and larval central nervous system (CNS) neurons by the patch-clamp method, in an attempt to establish a model preparation suitable for the genetic study of signal transduction underlying central neurotransmission. Focal perfusion or iontophoresis of 5-HT onto some patched neurons induced either an apparent inward or outward current. This apparent outward current is able to cause a strong hyperpolarization of the neuron. This article focuses on the predominant hyperpolarizing response, which is observed in a significant fraction of larger CNS neurons and in different developmental stages. The hyperpolarizing response is in fact mediated by inhibiting an inward leak current, which has a reversal potential around 0 mV. This 5-HT-sensitive leak current appears to be mediated mainly by one type of newly identified leak channel with a similar reversal potential of 0 mV and a conductance of 24 pS. In addition, it was also demonstrated that neurotransmitter-induced responses in both larval and adult Drosophila CNS neurons can be analyzed in this acutely dissociated preparation. © 1998 John Wiley & Sons, Inc. J. Neurobiol 34: 86–95, 1998  相似文献   

19.
Effects of changing cytosolic free Mg(2+) concentration on L-type Ca(2+) (I(Ca)) and Ba(2+) currents (I(Ba)) were investigated in rat ventricular myocytes voltage-clamped with pipettes containing 0.2 or 1.8mM [Mg(2+)] ([Mg(2+)](p)) buffered with 30mM citrate and 10mM ATP. Increasing [Mg(2+)](p) from 0.2 to 1.8mM reduced current amplitude and accelerated its decay under a variety of experimental conditions. To investigate the mechanism for these effects, steady-state and instantaneous current-voltage relationships were studied with two-pulse and tail current (I(T)) protocols, respectively. Increasing [Mg(2+)](p) shifted the V(M) for half inactivation by -20mV but dramatically decreased I(Ca) amplitude at all potentials tested, consistent with a change in gating kinetics that decreases channel availability. This conclusion was supported by analysis of I(T) amplitude, but these latter experiments also suggested that, in the millimolar concentration range, [Mg(2+)](p) might also inhibit permeation through open Ca(2+) channels at positive V(M).  相似文献   

20.
Regulation of calbindin and calretinin expression by brain-derived neurotrophic factor (BDNF) was examined in primary cultures of cortical neurons using immunocytochemistry and northern blot analysis. Here we report that regulation of calretinin expression by BDNF is in marked contrast to that of calbindin. Indeed, chronic exposure of cultured cortical neurons for 5 days to increasing concentrations of BDNF (0.1-10 ng/ml) resulted in a concentration-dependent decrease in the number of calretinin-positive neurons and a concentration-dependent increase in the number of calbindin-immunoreactive neurons. Consistent with the immunocytochemical analysis, BDNF reduced calretinin mRNA levels and up-regulated calbindin mRNA expression, providing evidence that modifications in gene expression accounted for the changes in the number of calretinin- and calbindin-containing neurons. Among other members of the neurotrophin family, neurotrophin-4 (NT-4), which also acts by activating tyrosine kinase TrkB receptors, exerted effects comparable to those of BDNF, whereas nerve growth factor (NGF) was ineffective. As for BDNF and NT-4, incubation of cortical neurons with neurotrophin-3 (NT-3) also led to a decrease in calretinin expression. However, in contrast to BDNF and NT-4, NT-3 did not affect calbindin expression. Double-labeling experiments evidenced that calretinin- and calbindin-containing neurons belong to distinct neuronal subpopulations, suggesting that BDNF and NT-4 exert opposite effects according to the neurochemical phenotype of the target cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号