首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
MDA-7/IL-24: novel cancer growth suppressing and apoptosis inducing cytokine   总被引:23,自引:0,他引:23  
The melanoma differentiation-associated gene-7 (mda-7) was cloned by subtraction hybridization as a molecule whose expression is elevated in terminally differentiated human melanoma cells. Current information based on structural and sequence homology, has led to the recognition of MDA-7 as an IL-10 family cytokine member and its renaming as IL-24. Northern blot analysis revealed mda-7/IL-24 expression in human tissues associated with the immune system such as spleen, thymus, peripheral blood leukocytes and normal melanocytes. The MDA-7/IL-24 mouse counterpart, FISP, appears to be a Th2-specific protein and the rat counterpart, C49A/MOB-5, is associated with wound healing and is also induced as a consequence of ras-transformation. A notable property of MDA-7/IL-24 is its ability to induce apoptosis in a large spectrum of human cancer derived cell lines, in mouse xenografts and upon intratumoral injection in human tumors (phase I clinical trials). Various aspects of this intriguing molecule including its cytokine and anti-tumoral effects are described and discussed.  相似文献   

2.
Melanoma differentiation-associated gene-7 (mda-7), also referred to as IL-24, is a novel growth regulatory cytokine that has been shown to regulate the immune system by inducing the expression of inflammatory cytokines, such as TNF, IL-1, and IL-6. Whether the induction of these cytokines by MDA-7 is mediated through activation of NF-kappaB or whether it regulates cytokine signaling is not known. In the present report we investigated the effect of MDA-7 on NF-kappaB activation and on TNF-induced NF-kappaB activation and apoptosis in human embryonic kidney 293 cells. Stable or transient transfection with mda-7 into 293 cells failed to activate NF-kappaB. However, TNF-induced NF-kappaB activation was significantly enhanced in mda-7-transfected cells, as indicated by DNA binding, p65 translocation, and NF-kappaB-dependent reporter gene expression. Mda-7 transfection also potentiated NF-kappaB reporter activation induced by TNF receptor-associated death domain and TNF receptor-associated factor-2. Cytoplasmic MDA-7 with deleted signal sequence was as effective as full-length MDA-7 in potentiating TNF-induced NF-kappaB reporter activity. Secretion of MDA-7 was not required for the potentiation of TNF-induced NF-kappaB activation. TNF-induced expression of the NF-kappaB-regulated gene products cyclin D1 and cyclooxygenase-2, were significantly up-regulated by stable expression of MDA-7. Furthermore, MDA-7 expression abolished TNF-induced apoptosis, and suppression of NF-kappaB by IkappaBalpha kinase inhibitors enhanced apoptosis. Overall, our results indicate that stable or transient MDA-7 expression alone does not substantially activate NF-kappaB, but potentiates TNF-induced NF-kappaB activation and NF-kappaB-regulated gene expression. Potentiation of NF-kappaB survival signaling by MDA-7 inhibits TNF-mediated apoptosis.  相似文献   

3.
Experimental evidence documents that the MDA-7/IL-24 protein (an IL-10 family cytokine) binds to IL-20 and IL-22 receptor complexes resulting in the activation of JAK/STAT signaling pathways. Recent published reports utilizing human blood derived primary lymphocytes have provided additional confirmatory evidence relating to the cytokine properties of this molecule. A notable attribute of mda-7/IL-24 is its cancer cell-specific apoptosis inducing capacity, which currently remains incompletely understood. Treatment with distinctive tyrosine kinase inhibitors (Genistein and AG18) or a JAK-selective inhibitor (AG490) did not prevent Ad.mda-7 induced apoptosis in diverse cell lines. In addition, there is no apparent correlation between patterns of expression of IL-20R1, IL-20R2, and IL-22R mRNA and susceptibility to Ad.mda-7 in different cell lines. Furthermore, Ad.mda-7 is able to induce killing in STAT/JAK deficient cells. In contrast, treatment with the p38(MAPK) selective inhibitor SB203580, partially inhibited apoptosis induced by Ad.mda-7 in different cell lines. These results demonstrate for the first time that signaling events leading to susceptibility to Ad.mda-7 induced apoptosis, might be tyrosine kinase independent and can thus be distinguished from its cytokine function related properties mediated by the IL-20/IL-22 receptor complexes that require JAK/STAT kinase activity.  相似文献   

4.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here, we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G(2)/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.  相似文献   

5.
The novel cytokine MDA-7/IL-24 was identified by subtractive hybridization in the mid-1990s as a cytokine whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Multiple studies from several laboratories have subsequently demonstrated that expression of IL-24 in tumor cells, but not in non-transformed cells, causes their growth arrest and ultimately cell death. In addition, IL-24 has been noted to be a radiosensitizing cytokine, which in part is due to the generation of reactive oxygen species (ROS) and causing endoplasmic reticulum stress. Recent publications of Phase I trial data have shown that a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7 (INGN 241)) was safe and had tumoricidal effects in patients, which argues that IL-24 may have therapeutic value. This review describes what is known about the impact of IL-24 on tumor cell biology in addition to approaches that may enhance the toxicity of this novel cytokine.  相似文献   

6.
Bhutia SK  Das SK  Azab B  Dash R  Su ZZ  Lee SG  Dent P  Curiel DT  Sarkar D  Fisher PB 《Autophagy》2011,7(9):1076-1077
MDA-7/IL-24 has noteworthy potential as an anticancer therapeutic because of its diversity of antitumor properties, its lack of toxicity toward normal cells and tissues, and its safety and efficacy as evidenced in a phase I clinical trial. In a recent study, we document that Ad.mda-7-induced ER stress and ceramide production leads to early autophagy that subsequently switches to apoptosis in human prostate cancer cells. During the apoptotic phase, the MDA-7/IL-24 protein physically interacts with Beclin 1 and this interaction might inhibit Beclin 1 function culminating in apoptosis. Conversely, Ad.mda-7 infection leads to calpain-mediated cleavage of the Atg5 protein that might also facilitate a biochemical switch from autophagy to apoptosis. Our recent paper reveals novel aspects of the interplay between autophagy and apoptosis that underlie the cytotoxic action of MDA-7/IL-24 in prostate cancer cells. These new insights into MDA-7/IL-24 action provide intriguing leads for developing innovative combinatorial approaches for prostate cancer therapy.  相似文献   

7.
Human melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) displays potent growth suppressing and cell killing activity against a wide variety of human and rodent cancer cells. In this study, we identified a canine ortholog of the human mda-7/IL-24 gene located within a cluster of IL-10 family members on chromosome 7. The full-length mRNA sequence of canine mda-7 was determined, which encodes a 186-amino acid protein that has 66% similarity to human MDA-7/IL-24. Canine MDA-7 is constitutively expressed in cultured normal canine epidermal keratinocytes (NCEKs), and its expression levels are increased after lipopolysaccharide stimulation. In cultured NCEKs, the canine mda-7 pre-mRNA is differentially spliced, via exon skipping and alternate 5′-splice donor sites, to yield five splice variants (canine mda-7sv1, canine mda-7sv2, canine mda-7sv3, canine mda-7sv4 and canine mda-7sv5) that encode four protein isoforms of the canine MDA-7 protein. These protein isoforms have a conserved N-terminus (signal peptide sequence) and are dissimilar in amino acid sequences at their C-terminus. Canine MDA-7 is not expressed in primary canine tumor samples, and most tumor derived cancer cell lines tested, like its human counterpart. Unlike human MDA-7/IL-24, canine mda-7 mRNA is not expressed in unstimulated or lipopolysaccharide (LPS), concanavalin A (ConA) or phytohemagglutinin (PHA) stimulated canine peripheral blood mononuclear cells (PBMCs). Furthermore, in-silico analysis revealed that canonical canine MDA-7 has a potential 28 amino acid signal peptide sequence that can target it for active secretion. This data suggests that canine mda-7 is indeed an ortholog of human mda-7/IL-24, its protein product has high amino acid similarity to human MDA-7/IL-24 protein and it may possess similar biological properties to human MDA-7/IL-24, but its expression pattern is more restricted than its human ortholog.  相似文献   

8.
《Autophagy》2013,9(9):1076-1077
MDA-7/IL-24 has noteworthy potential as an anticancer therapeutic because of its diversity of antitumor properties, its lack of toxicity toward normal cells and tissues, and its safety and efficacy as evidenced in a phase I clinical trial. In a recent study, we document that Ad.mda-7-induced ER stress and ceramide production leads to early autophagy that subsequently switches to apoptosis in human prostate cancer cells. During the apoptotic phase, the MDA-7/IL-24 protein physically interacts with Beclin 1 and this interaction might inhibit Beclin 1 function culminating in apoptosis. Conversely, Ad.mda-7 infection leads to calpain-mediated cleavage of the Atg5 protein that might also facilitate a biochemical switch from autophagy to apoptosis. Our recent paper reveals novel aspects of the interplay between autophagy and apoptosis that underlie the cytotoxic action of MDA-7/IL-24 in prostate cancer cells. These new insights into MDA-7/IL-24 action provide intriguing leads for developing innovative combinatorial approaches for prostate cancer therapy.  相似文献   

9.
The human melanoma differentiation associated gene-7 (mda-7), also known as interleukin-24 (IL-24), is a novel gene with tumor suppressor, antiangiogenic, and cytokine properties. In vitro adenovirus-mediated gene transfer of the human mda-7/IL-24 gene (Ad-mda-7) results in ubiquitous growth suppression of human cancer cells with minimal toxicity to normal cells. Intratumoral administration of Ad-mda-7 to lung tumor xenografts results in growth suppression via induction of apoptosis and antiangiogenic mechanisms. Although these results are encouraging, one limitation of this approach is that its locoregional clinical application-systemic delivery of adenoviruses for treatment of disseminated cancer is not feasible at the present time. An alternative approach that is suitable for systemic application is non-viral gene delivery. We recently demonstrated that DOTAP:cholesterol (DOTAP:Chol) nanoparticles effectively deliver tumor suppressor genes to primary and disseminated lung tumors. In the present study, therefore, we evaluated nanoparticle-mediated delivery of the human mda-7/IL-24 gene to primary and disseminated lung tumors in vivo. We demonstrate that DOTAP:Chol efficiently delivers the mda-7/IL-24 gene to human lung tumor xenografts, resulting in suppression of tumor growth. Growth-inhibitory effects were observed in both primary (P=0.001) and metastatic lung tumors (P=0.02). Furthermore, tumor vascularization was reduced in mda-7/IL-24-treated tumors. Finally, growth was also inhibited in murine syngenic tumors treated with DOTAP:Chol-mda-7 nanoparticles (P=0.01). This is the first report demonstrating (1) systemic therapeutic effects of mda-7/IL-24 in lung cancer, and (2) antitumor effects of human mda-7 in syngeneic cancer models. Our findings are important for the development of mda-7/IL-24 treatments for primary and disseminated cancers.  相似文献   

10.
mda-7/IL-24是20世纪90年代中期发现的一个新基因。由于mda-7/IL-24与人IL-10家族具有相当的同源性,后来HUGO基因命名委员会将之重新命名为IL-24,并将其归类到IL-10家族。近年研究表明,采用复制缺陷的腺病毒表达载体Ad.mda-7使其在肿瘤细胞异位表达,引起多种肿瘤细胞的生长抑制。尽管mda.7/IL-24肿瘤靶向性的作用机制还不是很清楚,但大量的实验结果表明该基因作为一个有效的肿瘤治疗基因,能够区分正常细胞和肿瘤细胞、诱导各种不同肿瘤细胞凋亡、启动抗肿瘤“旁观者效应”、增强肿瘤细胞对射线敏感性、抑制动物模型体内移植瘤的生长和血管新生以及具有调节免疫应答能力。  相似文献   

11.
Interleukin-24 (mda-7/IL-24) is a cytokine in the IL-10 family that has received a great deal of attention for its properties as a tumor suppressor and as a potential treatment for cancer. In this study, we have identified and characterized five alternatively spliced isoforms of this gene. Several, but not all of these isoforms induce apoptosis in the osteosarcoma cell line U2OS, while none affect the survival of the non-cancerous NOK cell line. One of these isoforms, lacking three exons and encoding the N-terminal end of the mda-7/IL-24 protein sequence, caused levels of apoptosis that were higher than those caused by the full-length mda-7/IL-24 variant. Additionally, we found that the ratio of isoform expression can be modified by the splice factor SRp55. This regulation suggests that alternative splicing of mda-7/IL-24 is under tight control in the cell, and can be modified under various cellular conditions, such as DNA damage. In addition to providing new insights into the function of an important tumor suppressor gene, these findings may also point toward new avenues for cancer treatment.  相似文献   

12.
13.
The melanoma differentiation-associated gene-7 (mda-7/IL-24) is a unique member of the interleukin 10 (IL-10) family of cytokines, with ubiquitous tumor cell pro-apoptotic activity. Recent data have shown that IL-24 is secreted as a glycosylated protein and functions as a pro-Th1 cytokine and as a potent anti-angiogenic molecule. In this study, we analyzed the activity of Ad-mda7 and its protein product, secreted IL-24, against human breast cancer cells. We show that Ad-mda7 transduction of human breast cancer cells results in G2/M phase cell cycle arrest and apoptotic cell death, which correlates with secretion of IL-24 protein. Neutralizing antibody against IL-24 significantly inhibited Ad-mda7 cytotoxicity. IL-24 and IL-10 both engage their cognate receptors on breast cancer cells resulting in phosphorylation and activation of STAT3, however, IL-10 receptor binding failed to induce cell killing, indicating that tumor cell killing by IL-24 is independent of STAT3 phosphorylation. Treatment with exogenous IL-24 induced apoptosis in breast cancer cells and this effect was abolished by addition of anti-IL-24 antibody or anti-IL-20R1, indicating that bystander cell killing is mediated via IL-24 binding to the IL-20R1/IL-20R2 heterodimeric receptor complex. Co-administration of the related cytokine IL-10 inhibited killing mediated by IL-24 and concomitantly inhibited IL-24 mediated up-regulation of the tumor suppressor proteins, p53 and p27Kip1. In summary, we have defined a tumor-selective cytotoxic bystander role for secreted IL-24 protein and identified a novel receptor-mediated death pathway in breast cancer cells, wherein the related cytokines IL-24 and IL-10 exhibit antagonistic activity.  相似文献   

14.
Adenovirus (Ad)-based gene therapy represents a potentially viable strategy for treating colorectal cancer. The infectivity of serotype 5 adenovirus (Ad.5), routinely used as a transgene delivery vector, is dependent on Coxsackie-adenovirus receptors (CAR). CAR expression is downregulated in many cancers thus preventing optimum therapeutic efficiency of Ad.5-based therapies. To overcome the low CAR problem, a serotype chimerism approach was used to generate a recombinant Ad (Ad.5/3) that is capable of infecting cancer cells via Ad.3 receptors in a CAR-independent manner. We evaluated the improved transgene delivery and efficacy of Ad.5/3 recombinant virus expressing melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), an effective wide-spectrum cancer-selective therapeutic. In low CAR human colorectal cancer cells RKO, wild-type Ad.5 virus expressing mda-7/IL-24 (Ad.5-mda-7) failed to infect efficiently resulting in lack of expression of MDA-7/IL-24 or induction of apoptosis. However, a recombinant Ad.5/3 virus expressing mda-7/IL-24 (Ad.5/3-mda-7) efficiently infected RKO cells resulting in higher MDA-7/IL-24 expression and inhibition of cell growth both in vitro and in nude mice xenograft models. Addition of the novel Bcl-2 family pharmacological inhibitor Apogossypol derivative BI-97C1 (Sabutoclax) significantly augmented the efficacy of Ad.5/3-mda-7. A combination regimen of suboptimal doses of Ad.5/3-mda-7 and BI-97C1 profoundly enhanced cytotoxicity in RKO cells both in vitro and in vivo. Considering the fact that Ad.5-mda-7 has demonstrated significant objective responses in a Phase I clinical trial for advanced solid tumors, Ad.5/3-mda-7 alone or in combination with BI-97C1 would be predicted to exert significantly improved therapeutic efficacy in colorectal cancer patients.  相似文献   

15.
Flavonoids are plant metabolites that are dietary antioxidants and exert significant anti-tumor, anti-allergic, anti-inflammatory and anti-viral effects. It is generally accepted that Th-1 derived cytokines such as IL-2, IFNgamma and IL-12 promote cellular immunity while Th-2 derived cytokines such as IL-4, IL-5, IL-6 exert negative immunoregulatory effects on cellular immunity while upregulating humoral immunity. The molecular mechanisms underlying the biological activities of flavonoids have not been elucidated. We hypothesize that the flavonoid, quercetin, exert significant anti-viral and anti-tumor effects possibly by modulating the production of Th-1 and Th-2 derived cytokines. Peripheral blood mononuclear cells (PBMC, 1 x 10(6) cells/ml) from normal subjects were cultured with different concentrations of quercetin (0.5-50 microM) for 24-72 h and supernates were quantitated for IFN-gamma and IL-4 by ELISA and antiviral activity of IFNgamma by bioassay. FACS analysis was done to determine the number of IFN-gamma and IL-4 positive cells and RT-PCR was done to quantitate gene expression. Quercetin significantly induces the gene expression as well as the production of Th-1 derived IFNgamma and the downregulates Th-2 derived IL-4 by normal PBMC. Further, quercetin treatment increased the phenotypic expression of IFNgamma cells and decreased IL-4 positive cells by FACS analysis, which corroborate with protein secretion and gene expression studies. These results suggest that the beneficial immuno-stimulatory effects of quercetin may be mediated through the induction of Th-1 derived cytokine, IFNgamma, and inhibition of Th-2 derived cytokine, IL-4.  相似文献   

16.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect antitumor activity through inhibition of angiogenesis, stimulation of an antitumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.  相似文献   

17.
Activation of the epidermal growth factor receptor (EGFR) contributes to the pathogenesis of non-small-cell lung carcinomas (NSCLC) and gefitinib, a selective reversible EGFR inhibitor, is effective in treating patients with NSCLC. However, clinical resistance to gefitinib is a frequent occurrence highlighting the need for improved therapeutic strategies. Melanoma differentiation associated gene-7 (mda-7)/Interleukin-24 (IL-24) (mda-7/IL-24) displays cancer-selective apoptosis induction when delivered via a replication-incompetent adenovirus (Ad.mda-7). In this study, the effect of Ad.mda-7 infection, either alone or in combination with gefitinib, was analyzed in a panel of NSCLC cell lines carrying wild-type EGFR (H-460 and H-2030) or mutant EGFR (H-1650 and H-1975). While H-2030 and H-1650 cells were sensitive, H-460 and H-1975 cells were resistance to growth inhibition by Ad.mda-7, which was reversed by the combination of Ad.mda-7 and gefitinib. This combination increased MDA-7/IL-24 and downstream effector double-stranded RNA-activated protein kinase (PKR) protein expression, promoting apoptosis induction of NSCLC cells. Inhibition of PKR significantly inhibited apoptosis induction by Ad.mda-7 when administered alone but not when used in combination with gefitinib. The combination treatment also augmented inhibition of EGFR signaling. Our findings indicate that a combinatorial treatment with Ad.mda-7 and gefitinib may provide benefit in the treatment of NSCLC, especially in patients displaying resistance to clinically used EGFR inhibitors.  相似文献   

18.
19.
Nitric oxide (NO) has been implicated, both and paradoxically, as a pro- and anti-inflammatory agent in a wide range of circumstances. It is of common concern that NO can be either up- or downregulated by different inflammatory cytokines. Attempting to assess the contribution of NO to the granulomatous response, we used the in vitro granuloma (IVG) model which consists on a reaction of mononuclear cells around polyacrylamide beads conjugated to antigens. Our assays employed Schistosoma mansoni antigens and human peripheral blood mononuclear cells (PBMC) from schistosomiasis patients. Recently, we have described evidence for a regulatory role of NO, with the aid of an inhibitor of NO synthesis, L-NAME. The addition of L-NAME to IVG cultures elicited an increase on the granuloma formation index. Based on these data we decided to investigate the mechanisms involved in the effects of L-NAME-enhanced granuloma formation. Cytokines and chemokines are involved in inflammatory responses by, particularly the latter, inducing migration and adhesion of leukocytes, which led us on this search for their interactions with NO on granulomatous reaction. We evaluated the cytokine/chemokine-secreting profile of PBMC (treated and not treated with L-NAME) on the IVG reaction in order to investigate how NO could interfere on the release of these soluble mediators. Comparison of cell culture releasing amounts of IL-2, IL-10, TNFalpha, IFNgamma, MIP-1alpha, MCP-1, and RANTES demonstrated that MIP-1alpha had increased levels when NO production was blocked with L-NAME, whereas IL-10 secretion decreased in presence of L-NAME. The other tested cytokines (IL-2, TNFalpha, and IFNgamma) and chemokines (MCP-1 and RANTES) showed no significant differences between the presence or absence of L-NAME. Results obtained in this work suggest that inhibition of NO production could upregulate the IVG reaction on human schistosomiasis through changes in the cytokine/chemokine profile released by PBMC. The mechanisms involved may lead to a MIP-1alpha-increased and IL-10-decreased secretion under our experimental conditions, which could partly account for the previously ascribed IVG-exacerbating action of NO inhibition.  相似文献   

20.
Kallmann BA  Malzkorn R  Kolb H 《Life sciences》1999,65(17):1787-1794
Exogenous nitric oxide was found to modify the pattern of cytokine secretion from human leukocytes, with similar outcome in 11 different healthy blood donors. Peripheral blood mononuclear cells (PBMC) were stimulated with phytohaemagglutinin (PHA) in the presence of increasing amounts of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). The NO donor dose-dependently enhanced IL-4 secretion into the supernatant (p<0.01). In contrast, IFNgamma production was not affected while IL-10 levels were slightly decreased. Comparable changes were observed when analysing cytokine mRNA levels by semiquantitative RT-PCR. The differential effect of the NO donor on IL-4 versus IL-10 and IFNgamma gene expression suggests an immunomodulatory potential of NO, which may serve to limit inflammatory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号