首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.  相似文献   

2.
3.
Cockayne syndrome (CS) is a debilitating and complex disorder that results from inherited mutations in the CS complementation genes A and B, CSA and CSB. The links between the molecular functions of the CS genes and the complex pathophysiology of CS are as of yet poorly understood and are the subject of intense debate. While mouse models reflect the complexity of CS, studies on simpler genetic models might shed new light on the consequences of CS mutations. Here we describe a functional homolog of the human CSA gene in Caenorhabditis elegans. Similar to its human counterpart, mutations in the nematode csa-1 gene lead to developmental growth defects as a consequence of DNA lesions.  相似文献   

4.
Delta-like 1 (Dlk1), a member of the Delta/Notch protein family, is expressed in the mouse ventral midbrain (VM) as early as embryonic day 11.5 (E11.5) followed by exclusive expression in tyrosine 3-monooxygenase (TH) positive neurons from E12.5 onwards. To further elucidate the yet unknown function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro . Dlk1 treatment during expansion increased DA progenitor proliferation and the proportion of NR4A2+ neurons expressing TH after differentiation, whereas Dlk1 treatment during the course of DA precursor differentiation did not alter TH+ neuron counts. In contrast, silencing of endogenously expressed Dlk1 prior to DA precursor differentiation partially prevented the expression of DA neuron markers, which was not accompanied with alteration of overall or local proliferation. Due to the latter finding in combination with the absence of Dlk1 negative DA neurons in differentiated cultures, we suggest that Dlk1 expression might have a permissive effect on DA neuron differentiation in vitro . The study presented here is the first publication identifying Dlk1 effects on ventral midbrain-derived DA precursor differentiation.  相似文献   

5.
6.
7.
8.
Wong RL  Chow KL 《Teratology》2002,65(2):70-77
BACKGROUND: The nematode mab-21 gene specifies sensory ray cell identity and was first isolated because of its mutant sensory ray defects. Vertebrate Mab21 orthologs have since been identified in mammals and amphibians. In this report, we characterized in detail two Mab21 orthologs in mouse, Mab21l1 and Mab21l2. METHODS: We examined the genomic organizations of Mab21 genes and used northern blot and in situ hybridizations to assay their temporal-spatial expression pattern. Their embryonic functions were revealed by specific attenuation of Mab21 messages with antisense oligos in cultured embryos. RESULTS: Mab21l1 and Mab21l2 have very similar protein make-up and gene structures. Both genes were expressed in overlapping domains of actively differentiating embryonic tissues. In addition, Mab21l1 had unique expression in the lens vesicles and genital tubercle whereas Mab21l2 was expressed in the retinal epithelium and umbilical cord. Mab21l1 and Mab21l2 depleted embryos had severe defects in notochord, neural tube, organogenesis, vasculogenesis, and axial turning. CONCLUSIONS: The findings demonstrate that both Mab21 genes are required in developing embryos for embryonic turning, formation of the notochord, neural tube, and other organ tissues.  相似文献   

9.
10.
Studies of developmental biology are often facilitated by diagram “models” that summarize the current understanding of underlying mechanisms. The increasing complexity of our understanding of development necessitates computational models that can extend these representations to include their dynamic behavior. Here we present a prototype model of Caenorhabditis elegans vulval precursor cell fate specification that represents many processes crucial for this developmental event but that are hard to integrate using other modeling methodologies. We demonstrate the integrative capabilities of our methodology by comprehensively incorporating the contents of three seminal papers, showing that this methodology can lead to comprehensive models of developmental biology. The prototype computational model was built and is run using a language (Live Sequence Charts) and tool (the Play-Engine) that facilitate the same conceptual processes biologists use to construct and probe diagram-type models. We demonstrate that this modeling approach permits rigorous tests of mutual consistency between experimental data and mechanistic hypotheses and can identify specific conflicting results, providing a useful approach to probe developmental systems.  相似文献   

11.
12.
Kallmann syndrome is an inherited disorder defined by the association of anosmia and hypogonadism, owing to impaired targeting and migration of olfactory axons and gonadotropin-releasing hormone secreting neurons. The gene responsible for the X-linked form of Kallmann syndrome, KAL-1, encodes a secreted protein of still elusive function. It has been proposed that KAL-1 might be involved in some aspects of olfactory axon guidance. However, the unavailability of a mouse model, and the difficulties in studying cellular and axonal migration in vertebrates have hampered an understanding of its function. We have identified the C. elegans homolog, kal-1, and document its function in vivo. We show that kal-1 is part of a mechanism by which neurons influence migration and adhesion of epidermal cells undergoing morphogenesis during ventral enclosure and male tail formation. We also show that kal-1 affects neurite outgrowth in vivo by modulating branching. Finally, we find that human KAL-1 cDNA can compensate for the loss of worm kal-1 and that overexpression of worm or human KAL-1 cDNAs in the nematode results in the same phenotypes. These data indicate functional conservation between the human and nematode proteins and establish C. elegans as a powerful animal in which to investigate KAL function in vivo. Our findings add a new player to the set of molecules, which appear to underlie both morphogenesis and axonal/neuronal navigation in vertebrates and invertebrates.  相似文献   

13.
Recent findings suggest that C. elegans, albeit displaying an invariant cell lineage for embryonic development, uses the same basic strategy for embryogenesis as other organisms. The early embryo is regionalised by cell-cell interactions.  相似文献   

14.
15.
16.
Mutations in the highly conserved Aristaless-related homeodomain protein ARX have been shown to underlie multiple forms of X-linked mental retardation. Arx knockout mice exhibit thinner cerebral cortices because of decreased neural precursor proliferation, and also exhibit defects in the differentiation and migration of GABAergic interneurons. However, the role of ARX in the observed behavioral and developmental abnormalities is unclear. The regulatory functions of individual homeodomain proteins and the networks in which they act are frequently highly conserved across species, although these networks may be deployed in different developmental contexts. In Drosophila, aristaless mutants exhibit defects in the development of terminal appendages, and Aristaless has been shown to function with the LIM-homeodomain protein LIM1 to regulate leg development. Here, we describe the role of the Aristaless/Arx homolog alr-1 in C. elegans. We show that alr-1 acts in a pathway with the LIM1 ortholog lin-11 to regulate the development of a subset of chemosensory neurons. Moreover, we demonstrate that the differentiation of a GABAergic motoneuron subtype is affected in alr-1 mutants, suggesting parallels with ARX functions in vertebrates. Investigating ALR-1 functions in C. elegans may yield insights into the role of this important protein in neuronal development and the etiology of mental retardation.  相似文献   

17.
Neuroglycan C (NGC) is a membrane-spanning chondroitin sulfate proteoglycan with an epidermal growth factor module that is expressed predominantly in the brain. Cloning studies with mouse NGC cDNA revealed the expression of three distinct isoforms (NGC-I, -II, and -III) in the brain and revealed that the major isoform showed 94. 3% homology with the rat counterpart. The NGC gene comprised six exons, was approximately 17 kilobases in size, and was assigned to mouse chromosome band 9F1 by fluorescence in situ hybridization. Western blot analysis demonstrated that, although NGC in the immature cerebellum existed in a proteoglycan form, most NGC in the mature cerebellum did not bear chondroitin sulfate chain(s), indicating that NGC is a typical part-time proteoglycan. Immunohistochemical studies showed that only the Purkinje cells were immunopositive in the cerebellum. In the immature Purkinje cells, NGC, probably the proteoglycan form, was immunolocalized to the soma and thick dendrites on which the climbing fibers formed synapses, not to the thin branches on which the parallel fibers formed synapses. This finding suggests the involvement of NGC in the differential adhesion and synaptogenesis of the climbing and parallel fibers with the Purkinje cell dendrites.  相似文献   

18.
L L Georgi  P S Albert  D L Riddle 《Cell》1990,61(4):635-645
The dauer larva is a developmentally arrested, non-feeding dispersal stage normally formed in response to overcrowding and limited food. The daf-1 gene specifies an intermediate step in a hierarchy of genes thought to specify a pathway for neural transduction of environmental cues. Mutations in daf-1 result in constitutive formation of dauer larvae even in abundant food. This gene has been cloned by Tc1-transposon tagging, and it appears to encode a new class of serine/threonine kinase. A daf-1 probe detects a 2.5 kb mRNA of low abundance, and the DNA sequence indicates that the gene encodes a 669 amino acid protein, with a putative transmembrane domain and a C-terminal protein kinase domain most closely related to the cytosolic, raf proto-oncogene family. Hence, the daf-1 product appears to be a cell-surface receptor required for transduction of environmental signals into an appropriate developmental response.  相似文献   

19.
Glomeruli comprise an important filtering apparatus in the kidney and are derived from the metanephric mesenchyme. A nuclear protein, Sall1, is expressed in this mesenchyme, and we previously reported that Trb2, a mouse homolog of Drosophila tribbles, is expressed in the mesenchyme-derived tissues of the kidney by microarray analyses using Sall1-GFP knock-in mice. In the present report, we detected Trb2 expression in a variety of organs during gestation, including the kidneys, mesonephros, testes, heart, eyes, thymus, blood vessels, muscle, bones, tongue, spinal cord, and ganglions. In the developing kidney, Trb2 signals were detected in podocytes and the prospective mesangium of the glomeruli, as well as in ureteric bud tips. However, Trb2 mutant mice did not display any apparent phenotypes and no proteinuria was observed, indicating normal glomerular functions. These results suggest that Trb2 plays minimal roles during kidney and mouse development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号