首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

2.
The effects of long-term seed storage on the physiological properties of phytochrome-mediated germination including water uptake, the temperature and light flunnce dependencies of germination and dark germination were studied. The fluenceresponse relationships of the brief irradiation with monochromatic red (660 nm, 7.5 W m−2) and far-red (750 nm, 6.6 W m−2) light at various times after sowing were also studied. The samples used consisted of three lots of seeds ofLactuca sativa L. cv. MSU-16, which had been harvested in 1976, 1979 and 1985 and stored dry for 9, 6 and 0 years, respectively, in darkness at 23±2 C until the experiments were carried out in July–August, 1985. Seeds with the longer storage periods showed the higher ability to germinate in both continuous darkness and continuous white fluorescent light at 20–30 C. In the seeds stored for 6 or 9 years, red light irradiation for 20 sec given at 15 min or more after sowing at 25 C induced as high a percent germination (85–95%) as those under continuous white fluorescent light. In the freshly harvested seeds, however, germination under continuous white fluorescent light (46%) was considerably lower than the germination induced by the red pulse (97%). Germination of the seeds decreased when the intervals between sowing and a far-red irradiation for 20 sec increased up to 100 min (or 30 min in the freshly harvested seeds). The far-red pulse given later than 100 min (or 6 hr in the freshly harvested seeds) after sowing resulted in an increased germination up to the dark-germination levels with increasing intervals between sowing and the pulse irradiation. Before or at 3 min after sowing, the seeds stored for 6 or 9 years were responsive to the far-red pulse although they were not or hardly responsive to the red pulse, while the freshly harvested seeds were responsive to both the far-red and the red pulses. These data indicate that normal functions of phytochrome completely survived in the dry seeds during storage at 25 C for as long as 6 or 9 years and that these functions are restored into full operation by means of imbibition. The differences in the dependence of germination on the time and fluence of a single pulse of red or far-red light seems to be related to the smaller water content throughout the imbibition in the seeds with the longer storage periods. The greater ability to germinate in the dark indicates the greater amounts of PFR or the greater responsivity to PFR, in the seeds with the longer storage periods.  相似文献   

3.
Alcorn , Stanley M. (U. S. Dept. of Agric., Tucson, Ariz.), and Edwin B. Kurtz , Jr . Some factors affecting the germination of seed of the saguaro cactus (Carnegiea gigantea). Amer. Jour. Bot. 46(7): 526–529. 1959.—Germination of saguaro cactus seeds is stimulated by red light (approx. 6550 A) or daylight and far-red light (approx. 7350 A) counteracts this effect. About 0.1% germinate in continuous darkness. A single exposure to red light was most effective when the seeds were imbibed 24 hr., but maximum germination resulted from multiple exposures to red light during a 72-hr. imbibition period. The optimum temperature for germination was 25°C.; no germination occurred at 15°C. and only slight germination at 35°C. Imbibition of light-treated seeds in 0.05 to 0.2% KNO3 increased germination. Germination of seeds in either light or dark was increased by imbibing the seeds in 500 to 1000 p.p.m. gibberellic acid.  相似文献   

4.
1. The time course of germination of Grand Rapids lettuce seedshas heen followed with different combinations of temperature(3°–35°) and irradiation (red or far-red light).For each set of conditions the following three parameters weredetermined: (i) the time required for half maximum germination,(ii) the rate of germination during the actively germinatingphase, and (iii) the maximum germination attained. In general,as the temperature was lowered, with dark-imbibed seeds, (i)became longer, (ii) became lower, but (iii) became progressivelyhigher. The effect of red light at any temperature was to shorten(i) and increase (ii) and (iii) over the values dark controls.Far-red light exerted an effect opposite to that of red light.Temperatures higher than 25° inhibited (ii) and (iii) underany light conditions. The optimum temperature to the actionof red and far-red light is 25°, at which the stimulatoryeffect of red light and the inhibition of this effect by far-redlight are both maximal. 2. The growth of the radicles of de-coated seeds of Grand Rapidslettuce shows two phases at all temperatures studied. PhaseI is characterized by slow but linear growth which continuesuntil shortly after visible differentiation of the radicle intothe hypocotyl and the root. Phase II is a phase of active growthin which the total length reflects mainly the length of theroot. The optimum temperature for Phase I is 25°-35°,and that, for Phase II is 25°. In neither phase, and atnone of the temperatures studied, is there any effect of redor far-red radiation on the growth of the radicle. The firstvisible sign of radicle elongation in red light induced seeds,however, takes place at exactly the same time as that of germination. 3. Similarities and dissimilarities between the germinationand the growth are pointed out, and it is concluded that thetwo phenomena are different, but proceed at sites closely associatedin the embryo. 1Present address: Johnson Foundation for Medical Physics, Universityof Pennsylvania, Philadelphia, Pa., U.S.A.  相似文献   

5.
Summary The seeds ofAsteracantha longifolia prefer germinating in light. Germination was also favoured in blue and red lights, whereas total darkness delayed this process. The optimum temperature for germination of seeds was 29° C in continuous white light. The seeds did germinate in total darkness as well, but the percentage of germination remained poor, and with high temperatures beyond 30° C, the pace of germination became slow. Higher temperatures suppressed the seedling growth both in continuous white light and total darkness. Blue and red lights promoted hypocotyl growth, whereas radicle was inhibited.  相似文献   

6.
Phytochrome in seeds of Amaranthus caudatus   总被引:1,自引:1,他引:0  
Summary Dry seeds of Amaranthus caudatus show little or no photoreversible absorption changes, attributable to phytochrome. During imbibition phytochrome appears in two phases, one immediately after sowing and the second after about 8 hr. Experiments at different temperatures and under continuous illumination with red, far-red and blue light suggest that there are two pools of phytochrome. The first phase in the appearance of phytochrome could be due to the change in optical properties of the sample on hydration or to rehydration of inactive phytochrome, or both. The second phase probably represents phytochrome synthesis. It is absent at 0° and precedes the water uptake associated with germination by some 10 hr. This second pool of phytochrome does not accumulate in red and blue illuminated seeds indicating that the rate of P fr decay is more rapid than the rate of phytochrome synthesis. The difference spectra of phytochrome in both 2 hr imbibed seeds and 72 hr old seedlings show peaks of absorption at 663 and 735 nm. The presence of P fr in dark imbibed seeds and the process of inverse reversion of P r to P fr in darkness have been demonstrated. The results are discussed in relation to previous hypotheses for the mechanism of photocontrol of Amaranthus seed germination.  相似文献   

7.
Seeds of the empress tree ( Paulownia tomentosa Steud.) were imbibed for two weeks in darkness at constant temperatures (18, 23 or 28°C), and then irradiated with red light for 5 min. Germination was poor if it took place at the same temperature as imbibition, but a high percentage was achieved if the seeds were exposed to higher or lower temperatures before they were irradiated. Maximum germination was obtained when the difference between pretreatment and imbibition was about 10°C. The effect increased with the duration of the pretreatment and was optimal at 24 h. The effect decreased as the time lapse between temperature pretreatment and red light irradiation increased, and it was lost after two days. If pretreatment was shorter than 24 h (12 h). a high percent of germination was obtained by alternating pretreatment and imbibition temperatures. The germination of seeds imbibed in 40% heavy water was also stimulated by temperature pretreatments. Light and temperature also exhibited an interactive effect in the germination of seeds that were imbibed in darkness for only 3 days. For each of the germination phases there was a temperature at which the time needed for 50% germination was the shortest, namely 35°C during imbibition, 37.5°C in the period of Pfr activity. and 32.5°C during radicle protrusion. The data obtained are shortly discussed in relation to the domestication of empress tree in Southern Europe.  相似文献   

8.
PHOTOCONTROL AND TEMPERATURE DEPENDENCE OF GERMINATION OF RUMEX SEEDS   总被引:3,自引:0,他引:3  
1. Light is not obligatory for the germination of the seed ofRumex obtusifolius L. subsp.agrestis DANSER, which has beenregarded as being a typical light sensitive seed. Even in continuousdarkness, a short period of high (30°) or low temperature(5°) treatment evokes germination very readily. 2. Germination is markedly promoted by 1 min exposure to a redlight and this red light effect is completely removed by 1-hrexposure to a far-red light. Alternations of the red and far-redradiation bring about an alternate promotion and inhihibitionof germination. 3. When a dark interval is inserted between the red and thefar-red treatments, inhibition of germination becomes less distinctas the duration of darkness increases. When the seeds are irradiatedwith far-red prior to red, with an inserted darkness, germinationpromotion due to the red light also decreases with the durationof inserted darkness. 4. Complicated interdependence between the light and temperatureeffects are demonstrated. This suggests a participation of somereactants besides pigments in the photoreaction. 5. The observed interdependence between the light and temperatureeffects on the germination of Rumex seeds implies that, if,as BORTHWICK has assumed, two forms of pigment, viz., a far-red-absorbingform and a red-absorbing one, are participating in the photoreaction,they should be presumed to coexist from the start of imbibition. (Received September 27, 1960; )  相似文献   

9.
The levels of the endogenous amino acid pools in conidia, germinating conidia, and mycelia of wild-type Neurospora crassa were measured. Three different chromatographic procedures employing the amino acid analyzer were used to identify and quantitatively measure 28 different ninhydrin-positive compounds. All of the common amino acids were detected in conidial extracts except proline, methionine, and cystine. The levels of these three amino acid pools were also very low in mycelia. During the first hour of germination in minimal medium, the levels of most of the free amino acid pools decreased. The pool of glutamic acid, the predominant free amino acid in conidia, decreased 70% during the first hour. Very little glutamic acid or any other amino acid was excreted into the medium. During the first 20 min of germination, the decrease in the glutamic acid pool was nearly equivalent to the increase in the aspartic acid pool. The aspartic acid and lambda-aminobutyric acid pools were the only amino acid pools that increased to maximum levels within the first 20 min of germination and then decreased. It is proposed that an important metabolic event that occurs during the early stages of conidial germination is the production of reduced pyridine nucleotides. The degradation of the large glutamic acid pool existing in the conidia (2.5% of the conidial dry weight) could produce these reduced coenzymes.  相似文献   

10.
C. A. Thanos  K. Mitrakos 《Planta》1979,146(4):415-417
Maize caryopses sown in water germinate equally well either in darkness or under any light regime. However, when they are imbibed in mannitol solutions, continuous far-red light proves to be strongly inhibitory on the final germination as compared to darkness. Similar but less pronounced inhibition is also exhibited by continuous red or blue light. Intermittent far-red light can partially substitute for continuous far-red light in inhibiting maize caryopsis germination, and its effect is reversed to the intermittent red light level when red light is given immediately after each far-red illumination. These results are interpreted as a proof of existence and involvement of phytochrome in the germination control of maize caryopses, though its manifestation is realized only under osmotic stress.Abbreviations D darkness - FR far-red - R red - B blue - c-FR, c-R, c-B continuous FR, R, B, resp. - i-FR, i-R intermittent FR, R, resp.  相似文献   

11.
Stimulation of lettuce seed germination by ethylene   总被引:24,自引:21,他引:3       下载免费PDF全文
Ethylene increased the germination of freshly imbibed lettuce (Lactuca sativa L. var. Grand Rapids) seeds. Seeds receiving either red or far-red light or darkness all showed a positive response to the gas. However, ethylene was apparently without effect on dormant seeds, those which failed to germinate after an initial red or far-red treatment. Carbon dioxide, which often acts as a competitive inhibitor of ethylene, failed to clearly reverse ethylene-enhanced seed germination. While light doubled ethylene production from the lettuce seeds, its effect was not mediated by the phytochrome system since both red and far-red light had a similar effect.  相似文献   

12.
Photomanipulation of phytochrome in lettuce seeds   总被引:4,自引:2,他引:2       下载免费PDF全文
Seeds of lettuce (Lactuca sativa L. cv. Grand Rapids) were imbibed and given either short irradiation with red or far red light prior to drying or dried under continuous red or far red light. Seeds treated with either short or continuous red germinate in darkness, whereas seeds treated with either short or continuous far red require a short exposure to red light, after a period of imbibition, to stimulate germination. Irradiation of dry red seeds with far red light immediately before sowing results in a marked inhibition of germination. This result was predicted since far red-absorbing form phytochrome can be photoconverted to the intermediate P650 (absorbance maximum 650 nm) in freeze-dried tissue. A similar far red treatment to continuous red seeds is less effective and it is concluded that in these seeds a proportion of total phytochrome is blocked as intermediates between red-absorbing and far red-absorbing form phytochrome, which only form the far red-absorbing form of phytochrome on imbibition. The inhibition of dry short red seeds by far red light can be reversed by an irradiation with short red light given immediately before sowing, confirming that P650 can be photoconverted back to the far red-absorbing form of phytochrome. The results are discussed in relation to seed maturation (dehydration) on the parent plant.  相似文献   

13.
The light requirement for germination in spores of the fern Thelypteris kunthii (Desv.) Morton was fully satisfied by a long period of continuous red light or partially by intermittent, short periods of red light. Red light-potentiated spore germination was inhibited by brief far-red light irradiation, indicating phytochrome involvement. Repeated exposure of spores to prolonged red and short far-red irradiations, or exposure of red-potentiated spores to far-red light after an extended period in darkness, led to their escape from inhibition of germination by far-red light. Prolonged irradiation of spores with blue light before or after red light treatment partially antagonized the effect of red light.  相似文献   

14.
The photoinduction period of Oenothera biennis L. seed germination was analyzed by varying the photoinduction temperature and by substituting red light pulses for continuous red light. At 24°C, seeds require 36 hours of continuous red light for maximal percent germination. The optimal photoinduction temperature is 32°C, with higher and lower temperatures being strongly inhibitory. A 30 minute exposure to far-red light, given immediately after a red light period of 1 to 36 hours, reduces germination by about 25%. Seeds escape from far-red inhibition with a half-time of 5 to 10 hours, depending on the length of the red exposure that precedes the far-red light. Periodic 15 minute pulses of red light can substitute for continuous red light in stimulating germination. Ted red light pulses, with 6 hours of darkness between successive pulses, cause maximal germination. The response to periodic red light is fully reversible by far-red light. Probit analysis of the periodic light response shows that as the length of the dark periods between successive pulses increases, less incident light is needed to induce germination but the population variance in light sensitivity remains constant. Probit analysis of the temperature response shows that as the photoinduction temperature increases from 16 to 32°C, less incident light is needed to induce germination and the population variance in light sensitivity also increases.  相似文献   

15.
Seed germination of an aurea mutant of tomato ( Lycopersicon esculentum Mill.) is promoted by continuous irradiation with red, far-red or long-wavelength far-red (758 nm) light as well as by cyclic irradiations (5 min red or 5 min far-red/25 min darkness). Far-red light applied immediately after each red does not change the germination behaviour. Seed germination of the isogenic wild-type, cv. UC-105, is promoted by continuous and cyclic red light while it is inhibited by continuous and cyclic far-red light and by continious 758 nm irradiation. Far-red irradiation reverses almost completely the promoting effect of red light. The promoting effect (in the aurea mutant) and the inhibitory effect (in the wild-type) of continuous far-red light do not show photon fluence rate dependency above 20 nmol m−2 s−1. It is concluded that phytochrome controls tomato seed germination throgh low energy responses in both the wild type and the au mutant. The promoting effect of continuous and cyclic far-red light in the au mutant can be attributed to a greater sensitivity to Pfr.  相似文献   

16.
General characteristics of light sensitivity of Impatients wallerana seeds were investigated. Germination was absolutely dependent on light, irrespective of temperature. High percentages of germination were obtained by exposure to long periods of illumination or, alternatively, to several repeated short irradiations with red light. In this case, responsiveness to light was not altered by increasing either the initial incubation period in darkness or the dark intervals between short exposures. Effects of red light were reversed by far-red light, thus demonstrating the involvement of phytochrome. Evidence was presented for an interactive effect, of unknown physiological nature between red and far-red light on the germination of the seeds.Abbreviations Pr phytochrome, red light absorbing form - Pfr phytochrome far-red absorbing form  相似文献   

17.
D. Maas 《Ecography》1989,12(4):337-344
Seeds of 25 plant species from calcareous fen hay meadows were exposed to different experimental conditions and their germination was characterised. Constant temperature inhibited germination especially in Cyperaceae . Both gibberellic acid and potassium nitrate failed to terminate dormancy. Increased germination rates were found in dicot species after treatment with gibberellic acid. Temperature fluctuations increased germination of Cyperaceae as well as dicotyledons. Treatment with gibberellic acid removed the chilling requirement in some of the species. Dormancy of small seeds with thin seed coats was broken by the application of gibberellic acid or fluctuating temperature; large thick-coated seeds were unaffected by gibberellic acid. No obligatory darkness requirement was found in any species; three species germinated irrespective of light treatments. All other species achieved higher percentage germination in daylight or in red (670 nm) light. Permanent darkness and far-red light (730 nm) reduced germination drastically. The results indicate that germination characteristics of the species investigated can be related to their seed bank types.  相似文献   

18.
We have assessed the activities of the cytochrome and alternative pathways in total respiration and their role in each stage of germination of Zea mays L. radicles. Throughout imbibition, the salicylhydroxamic acid (SHAM) concentration needed to inhibit the cyanide-resistant pathway, without any side effects, decreased from 15 m M in quiescent embryos to 5 m M at 72 h after imbibition. Electrons predominantly flowed through the cytochrome pathway although the alternative pathway was already present at early imbibition. The capacity of the alternative path was about 70% of the control rate of respiration. Its engagement progressively increased from 18% after 10 min of imbibition to 70% at the radicle emergence and then decreased to 50% at 96 h after imbibition, concomitant with the onset of radicle growth. The alternative pathway was, however, not essential for germination. The observed activity of the alternative path correlated with the monosaccharide (glucose + fructose) content, suggesting that the alternative pathway could be acting according to the 'energy overflow model'. On the other hand, up to 24 h after imbibition at 16°C, maize radicles tolerate a severe desiccation, becoming intolerant at 72 h. On reimbibition of tolerant radicles, respiration increased immediately and the alternative pathway was rapidly engaged. At 72 h, no respiration was measured, indicating a total loss of the respiratory systems. The possible correlation between carbohydrate content, loss of desiccation tolerance and activity of the two respiratory pathways is discussed.  相似文献   

19.
Dry lettuce seeds (achenes of Lactuca sativa L. cv. Grand Rapids) contain no detectable phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity. Enzyme activity could be detected in these seeds within 4 h of imbibition under white light. The specific activity of PAL increased rapidly during the next 12–16 h of imbibition. Far-red light completely suppressed germination as well as the development of PAL. Gibberellic acid (GA3, 0.1 m M ), although effective in causing almost 100% germination in dark, did not induce proportionate increases in PAL. Seed germination as well as PAL activity were substantially inhibited by cis -4-cyclohexene-l, 2-dicarboximide (CHDC, 1.0 m M ) both in light and dark. Both GA3 and benzyladenine (BA, 0.1 m M ) retarded radicle elongation in light. Concomitantly, a decrease in PAL activity was observed. Benzyladenine was able to reverse the effects of CHDC on germination but PAL activity was still highly reduced, probably due to the inhibitory effects of BA on elongation of the radicle. More than 95% of the extractable PAL was found to be present in the radicle. When seeds incubated in white light for 10 h were transferred to FR, further increases in PAL activity as well as the growth of the radicle were severely inhibited. It is suggested that the induction of PAL in light-sensitive lettuce seeds is coincidental with the germination of seeds, and the amount of PAL per germinated seed is related to the extent of elongation of the embryonic axes.  相似文献   

20.
Phytochromes in seed plants are known to move into nuclei in a red light-dependent manner with or without interacting factors. Here, we show phytochrome relocation to the nuclear region in phytochrome-dependent Adiantum capillus-veneris spore germination by partial spore-irradiation experiments. The nuclear or non-nuclear region of imbibed spores was irradiated with a microbeam of red and/or far-red light and the localization of phytochrome involved in spore germination was estimated from the germination rate. The phytochrome for spore germination existed throughout whole spore under darkness after imbibition, but gradually migrated to the nuclear region following red light irradiation. Intracellular distribution of PHY-GUS fusion proteins expressed in germinated spores by particle bombardment showed the migration of Acphy2, but not Acphy1, into nucleus in a red light-dependent manner, suggesting that Acphy2 is the photoreceptor for fern spore germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号