首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid length changes were applied (within 0.2 ms or 0.4 ms) to single isometrically contracted glycerol extracted muscle fibres of the dorsal longitudinal muscle ofLethocerus maximus suspended in an Ca2+ and ATP containing solution at 20–23‡ C. Force transients and the fibre stiffness were measured during and after rapid length changes. At length changesbelow 0.5% of the initial fibre length (∼ 2.4 Μm sarcomere length) the mechanical transients were characterized as follows: (1) After stretch and after release the force regains at least partly the value of tension before the length change within a quick phase of tension recovery. The quick phase induced by stretch was nearly completed within 1–2 ms. (2) A pulse in length of 1.5 ms duration, i.e., a stretch followed by a release to the initial length or a release followed by a stretch to the initial length, was applied to the fibre. The force transient induced by this procedure regains after the second length change the value of the isometric tension before the procedure. (3) The stiffness was constant during each length change of the “pulse” and was equal during the first and the second length changes. These findings are predicted by the muscle contraction model of Huxley and Simmons (1971): The identical force before and after a length pulse may indicate that the rotation of cross bridges after the first length change is followed by a rotation into the original position after the second length change. The constancy of the stiffness during the length changes may indicate a Hookean elastic element of the cross bridge. The similarity of the stiffness during the first and the second length changes, i.e., before and after the quick phase, gives evidence that the quick phases after stretch and after release are not accompanied by a change in the net number of attached cross bridges. If stretches ofmore than 0.5% of the initial length were applied, the mechanical transient of the muscle fibre changed as follows: (1) An ultra fast tension decay phase (duration < 0.4 ms) was observed in addition to the slower decay phase induced by the smaller stretches. (2) If the initial stretch was followed by a release to the initial length, no fast recovery phase was observed, which returns the force to the value before the stretch. The reduced tension value persists for a longer period in time than 10 ms. (3) If the muscle was stretched and released repetitively an ultra fast quick phase was induced only by the first stretch. (4) The stiffness increased during stretch, but was found to be the same in the isometrically contracting muscle and after the quick tension decay phase following a large stretch. These findings indicate that the contraction model of Huxley and Simmons has to be extended by a further process additional to cross bridge rotation in case of large stretches (> 0.5%L ini). The findings are taken to indicate a rapid detachment and reattachment of overstrained cross bridges, i.e., a cross bridge slippage induced by large stretches.  相似文献   

2.
The residual force enhancement following muscle stretch might be associated with an increase in the proportion of attached cross-bridges, as supported by stiffness measurements. In this case, it could be caused by an increase in the attachment or a decrease in the detachment rate of cross-bridges, or a combination of the two. The purpose of this study was to investigate if the stretch-induced force enhancement is related to cross-bridge attachment/detachment kinetics. Single muscle fibres dissected from the lumbrical muscle of frog were place at a length approximately 20% longer than the plateau of the force-length relationship; they were maximally activated, and after full isometric force was reached, ramp stretches were imposed with amplitudes of 5 and 10% fibre length, at a speed of 40% fibre length s(-1). Experiments were performed in Ringer's solution, and with the addition of 2, 5 and 10 nM of 2,3-butanedione monoxime (BDM), a drug that places cross-bridges in a pre-power-stroke, state, inhibiting force production. The total force following stretch was higher than the corresponding force measured after isometric contraction at the corresponding length. This residual force enhancement was accompanied by an increase relaxation time. BDM, which decreases force production during isometric contractions, considerably increased the relative levels of force enhancement. BDM also increased relaxation times after stretch, beyond the levels observed during reference contractions in Ringer's solution, and beyond isometric control tests at the corresponding BDM concentrations. Together, these results support the idea that force enhancement is caused, at least in part, by a decrease in cross-bridge detachment rates, as manifested by the increased relaxation times following fibre stretch.  相似文献   

3.
A discrete model of the interaction between individual myofilaments was developed to study the stiffness of a sarcomere for the case in which filament compliance is not negligible. Our model retains, in the limit, the characteristics of the previously published model by Ford et al. (Ford, L. E., A. F. Huxley, and R. M. Simmons. 1981. The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. 311:219-249). In addition, the model is able to model the interaction in cases in which few cross-bridges are attached, or when the distribution of attached cross-bridges is not uniform. Our results confirm previous indications that it might be impossible to calculate the number of attached cross-bridges by using only stiffness measurements in quick-stretch (or release) experiments.  相似文献   

4.
The time course of force generation and the time course of muscle stiffness were measured in rabbit soleus muscles during eccentric contraction to understand the underlying basis for the force loss in these muscles. Muscles were activated for 600 msec every 10 sec for 30 min. Soleus muscles contracting isometrically maintained constant tension throughout the treatment period, while muscles subjected to eccentric contraction rapidly dropped tension generation by 75% within the first few minutes and then an additional 10% by the end of 30 min. This indicated a dramatic loss in force-generating ability throughout the 30 min treatment period. To estimate the relative number of cross-bridges attached during the isometric force generation phase immediately preceding each eccentric contraction, stiffness was measured during a small stretch of a magnitude equal to 1.5% of the fiber length. Initially, muscle stiffness exceeded 1300 g/mm and, as eccentric treatment progressed, stiffness decreased to about 900 g/mm. Thus, while muscle stiffness decreased by only 30% over the 30 min treatment period, isometric force decreased by 85%. In isometrically activated muscles, stiffness remained constant throughout the treatment period. These data indicate that, while soleus muscles decreased their force generating capability significantly, there were a number of cross-bridges still attached that were not generating force. In summary, the loss of force generating capacity in the rabbit soleus muscle appears to be related to a fundamental change in myosin cross-bridge properties without the more dramatic morphological changes observed in other eccentric contraction models. These results are compared and contrasted with the observations made on muscles composed primarily of fast fibers.  相似文献   

5.
Whereas the mechanical behavior of fully activated fibers can be explained by assuming that attached force-producing crossbridges exist in at least two configurations, one exerting more force than the other (Huxley A. F., and R. M. Simmons. 1971. Nature [Lond.]. 233:533-538), and the behavior of relaxed fibers can be explained by assuming a single population of weakly binding rapid-equilibrium crossbridges (Schoenberg, M. 1988. Biophys. J. 54:135-148), it has not been possible to explain the transition between rest and activation in these terms. The difficulty in explaining why, after electrical stimulation of resting intact frog skeletal muscle fibers at 1-5 degrees C, force development lags stiffness development by more than 15 ms has led a number of investigators to postulate additional crossbridge states. However, postulation of an additional crossbridge state will not explain the following three observations: (a) Although the lag between force and stiffness is very different after stimulation, during the redevelopment of force after an extended period of high velocity shortening, and during relaxation of a tetanus, nonetheless, the plots of force versus stiffness in each of these cases are approximately the same. (b) When the lag between stiffness and force during the rising phase of a twitch is changed nearly fourfold by changing temperature, again the plot of force versus stiffness remains essentially unchanged. (c) When a muscle fiber is subjected to a small quick length change, the rate constant for the isometric force recovery is faster when the length change is applied during the rising phase of a tenanus than when it is applied on the plateau. We have been able to explain all the above findings using a model for force production that is similar to the 1971 model of Huxley and Simmons, but which makes the additional assumption that the force-producing transition envisioned by them is a cooperative one, with the back rate constant of the force-producing transition decreasing as more crossbridges attach.  相似文献   

6.
Mechanically skinned single fibres of the semitendinosus muscles of Rana esculenta were investigated at ca. 4 degrees C. The fibres were activated by a Ca2+ jump technique, which allowed the development of a steady isometric tension within several seconds of entering a calcium rich solution at 4 degrees C. Sequences of length changes of different duration and amplitude were applied to the fibre. It could be demonstrated that the fibre behaved as a Hookean spring in the case of small amplitude length changes (up to 0.5% L0, ramp duration 0.5 ms) and that a sequence of length changes induced reversible changes in fibre state. In contrast, large stretches (greater than 1% L0) induced a muscle "give" if the stretch were not immediately preceded by a release. The data was interpreted on the basis of a strain induced detachment of cross bridges in combination with a rapid reattachment of presumably the same cross bridges in a discharged position. The rates of strain induced detachment and reattachment depended on the stretch amplitude. At amplitudes exceeding 2% L0 the rates were estimated to be at least several thousands per second.  相似文献   

7.
The duration of phase 2 of a transient after sudden reduction of the length of a muscle or a load on it decreases rapidly with increasing amplitude of the jump. This is mainly due to the increasing role of the superfast relaxation processes with a characteristic time of about 0.1 ms. Mainly in order to explain this effect, Huxley and Simmons proposed their famous model of force generation in 1971. The present paper examines the effect of elasticity of filaments on relaxation processes. It is shown that if the filaments are not perfectly elastic, the superfast tension transient may result from a delay of redistribution of stresses within actin and/or myosin filaments at the beginning of phase 2. Corresponding redistribution of deformations within the actin filaments leads to non-uniform shifts of the attached myosin heads and changes in the X-ray diffraction pattern. Additionally, we discuss a change in the experimental technique that allows suppression of the elastic vibrations that obscure the contributions of other sources to the superfast tension transient.  相似文献   

8.
Joulean temperature jump from 4-7 degrees to 20-25 degrees completed in 0.2 ms was applied to suspended in the air chemically skinned Ca-activated (pCa = 5.5-6) skeletal muscle fibres of the frog 2 ms after stepwise length changes (duration 0.3 ms, amplitudes --6. +3 nm per half sarcomere). The temperature jump induced a biphasic rise of tension, as was described earlier. Neither the time constant of the 2nd slow phase, nor maximum tension after the temperature jump were dependent on the length step amplitude. The amplitude and time constant of the 1st phase (1.2-0.28 ms) decreased after the fibre release. It shows that the 1st phase of the tension rise induced by the temperature jump is due to conformation in cross-bridges attached to thin filaments.  相似文献   

9.
Tension development, immediate stiffness and ATPase of chemically skinned myocardial strips were measured in solutions with varying concentrations of phosphate (Pi) or vanadate (predominantly H2VO4? at pH 7) ion. Vanadate and Pi decreased stiffness in proportion to tension. The results show that, like Pi, vanadate accelerates the turnover rate of cross-bridges, but is effective at about 1/500 the concentration required for the Pi effect. Both Pi and vanadate increased the energy cost of isometric tension maintenance (that is, the ratio of ATPase to tension) and increased the velocity of delayed tension development following quick stretch of the chemically skinned myocardial strips. The results also show that changes in the rate of rise of delayed tension during stretch activation probably reflect changes in the kinetics of the biochemical cycle of the cross-bridges.  相似文献   

10.
Tension development, immediate stiffness and ATPase of chemically skinned myocardial strips were measured in solutions with varying concentrations of phosphate (Pi) or vanadate (predominantly H2VO4 at pH 7) ion. Vanadate and Pi decreased stiffness in proportion to tension. The results show that, like Pi, vanadate accelerates the turnover rate of cross-bridges, but is effective at about 1/500 the concentration required for the Pi effect. Both Pi and vanadate increased the energy cost of isometric tension maintenance (that is, the ratio of ATPase to tension) and increased the velocity of delayed tension development following quick stretch of the chemically skinned myocardial strips. The results also show that changes in the rate of rise of delayed tension during stretch activation probably reflect changes in the kinetics of the biochemical cycle of the cross-bridges.  相似文献   

11.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   

12.
E Homsher  J Lacktis    M Regnier 《Biophysical journal》1997,72(4):1780-1791
When inorganic phosphate (Pi) is photogenerated from caged Pi during isometric contractions of glycerinated rabbit psoas muscle fibers, the released Pi binds to cross-bridges and reverses the working stroke of cross-bridges. The consequent force decline, the Pi-transient, is exponential and probes the kinetics of the power-stroke and Pi release. During muscle shortening, the fraction of attached cross-bridges and the average strain on them decreases (Ford, L. E., A.F. Huxley, and R.M. Simmons, 1977. Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J. Physiol. (Lond.). 269:441-515; Ford, L. E., A. F. Huxley, and R.M. Simmons, 1985. Tension transients during steady state shortening of frog muscle fibers. J. Physiol. (Lond.). 361:131-150. To learn to what extent the Pi transient is strain dependent, muscle fibers were activated and shortened or lengthened at a fixed velocity during the photogeneration of Pi. The Pi transients observed during changes in muscle length showed three primary characteristics: 1) during shortening the Pi transient rate, Kpi, increased and its amplitude decreased with shortening velocity; Kpi increased linearly with velocity to > 110 s-1 at 0.3 muscle lengths per second (ML/s). 2) At a specific shortening velocity, increases in [Pi] produce increases in Kpi that are nonlinear with [Pi] and approach an asymptote. 3) During forced lengthening Kpi and the amplitude of the Pi transient are little different from the isometric contractions. These data can be approximated by a strain-dependent three-state cross-bridge model. The results show that the power stroke's rate is strain-dependent, and are consistent with biochemical studies indicating that the rate-limiting step at low strains is a transition from a weakly to a strongly bound cross-bridge state.  相似文献   

13.
Glycerol-extracted insect fibrillar muscle fibres in rigor exhibited both an elastic and a plastic phase in the length-tension diagram. The transition between these phases took place at a critical tension, the yield point or elastic limit. In the plastic phase the apparent static elastic modulus became zero, whereas the immediate elastic modulus (measured by rapid length changes completed within 4 ms) exhibited no abrupt change at the yield point. The tension value of the yield point (but not immediate stiffness) was lowered by addition of AMP-PNP and was partially restored by washing out AMP-PNP. The dependence of the critical tension at which plastic flow begins on cooperative cross bridge behaviour is discussed in terms of breaking and reforming acto-myosin linkages. Evidence is presented that addition of AMP-PNP induces slippage of cross bridges on the actin filament by affecting the interaction between myosin and actin.  相似文献   

14.
Stiffness and force in activated frog skeletal muscle fibers.   总被引:2,自引:3,他引:2       下载免费PDF全文
Single fibers, isolated intact from frog skeletal muscles, were held firmly very near to each end by stiff metal clasps fastened to the tendons. The fibers were then placed horizontally between two steel hooks inserted in eyelets of the tendon clasps. One hook was attached to a capacitance gauge force transducer (resonance frequency up to approximately 50 kHz) and the other was attached to a moving-coil length changer. This allowed us to impose small, rapid releases (complete in less than 0.15 ms) and high frequency oscillations (up to 13 kHz) to one end of a resting or contracting fiber and measure the consequences at the other end with fast time resolution at 4 to 6 degrees C. The stiffness of short fibers (1.8-2.6 mm) was determined directly from the ratio of force to length variations produced by the length changer. The resonance frequency of short fibers was so high (approximately 40 kHz) that intrinsic oscillations were not detectably excited. The stiffness of long fibers, on the other hand, was calculated from measurement of the mechanical resonance frequency of a fiber. Using both short and long fibers, we measured the sinusoids of force at one end of a contracting fiber that were produced by relatively small sinusoidal length changes at the other end. The amplitudes of the sinusoidal length changes were small compared with the size of step changes that produce nonlinear force-extension relations. The sinusoids of force from long fibers changed amplitude and shifted phase with changes in oscillation frequency in a manner expected of a transmission line composed of mass, compliance, and viscosity, similar to that modelled by (Ford, L. E., A. F. Huxley, and R. M. Simmons, 1981, J. Physiol. (Lond.), 311:219-249). A rapid release during the plateau of tetanic tension in short fibers caused a fall in force and stiffness, a relative change in stiffness that putatively was much smaller than that of force. Our results are, for the most part, consistent with the cross-bridge model of force generation proposed by Huxley, A. F., and R. M. Simmons (1971, Nature (Lond.), 213:533-538). However, stiffness in short fibers developed markedly faster than force during the tetanus rise. Thus our findings show the presence of one or more noteworthy cross-bridge states at the onset and during the rise of active tension towards a plateau in that attachment apparently is followed by a relatively long delay before force generation occurs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The effects of a temperature jump (T-jump) from 5-7 degrees C to 26-33 degrees C were studied on tension and stiffness of glycerol-extracted fibers from rabbit psoas muscle in rigor and during maximal Ca2+ activation. The T-jump was initiated by passing an alternating current pulse (30 kHz, up to 2.5 kV, duration 0.2 ms) through a fiber suspended in air. In rigor the T-jump induces a drop of both tension and stiffness. During maximal activation, the immediate stiffness dropped by (4.4 +/- 1.6) x 10(-3)/1 degree C (mean + SD) in response to the T-jump, and this was followed by a monoexponential stiffness rise by a factor of 1.59 +/- 0.14 with a rate constant ks = 174 +/- 42 s-1 (mean +/- SD, n = 8). The data show that the fiber stiffness, determined by the cross-bridge elasticity, in both rigor and maximal activation is not rubber-like. In the activated fibers the T-jump induced a biexponential tension rise by a factor of 3.45 +/- 0.76 (mean +/- SD, n = 8) with the rate constants 500-1,000 s-1 for the first exponent and 167 +/- 39 s-1 (mean +/- SD, n = 8) for the second exponent. The data are in accordance with the assumption that the first phase of the tension transient after the T-jump is due to a force-generating step in the attached cross-bridges, whereas the second one is related to detachment and reattachment of cross-bridges.  相似文献   

16.
The stiffness of single skinned rabbit psoas fibers was measured during rapid length changes applied to one end of the fibers. Apparent fiber stiffness was taken as the initial slope when force was plotted vs. change in sarcomere length. In the presence of MgATP, apparent fiber stiffness increased with increasing speed of stretch. With the fastest possible stretches, the stiffness of relaxed fibers at an ionic strength of 20 mM reached more than 50% of the stiffness measured in rigor. However, it was not clear whether apparent fiber stiffness had reached a maximum, speed independent value. The same behavior was seen at several ionic strengths, with increasing ionic strength leading to a decrease in the apparent fiber stiffness measured at any speed of stretch. A speed dependence of apparent fiber stiffness was demonstrated even more clearly when stiffness was measured in the presence of 4 mM MgPPi. In this case, stiffness varied with speed of stretch over about four decades. This speed dependence of apparent fiber stiffness is likely due to cross-bridges detaching and reattaching during the stiffness measurement (Schoenberg, 1985. Biophys. J. 48:467). This means that obtaining an estimate of the maximum number of cross-bridges attached to actin in relaxed fibers at various ionic strengths is not straightforward.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Tension responses due to small and rapid length changes (completed within 40 microseconds) were obtained from skinned single-fiber segments (4- to 7-mm length) of the iliofibularis muscle of the frog incubated in relaxing, rigor, and activating solution. The fibers were skinned by freeze-drying. The first 500 microseconds of the responses for all three conditions could be described with a linear model, in which the fiber is regarded as a rod composed of infinitesimally small identical segments, containing an undamped elastic element, two damped elastic elements and a mass in series. An additional damped elastic element was needed to describe tension responses of activated fibers up to the first 5 ms. Consequently phase 1 and phase 2 of activated fibers can be described with four apparent elastic constants and three time constants. The results indicate that fully activated fibers and fibers in rigor have similar elastic properties within the first 500 microseconds of tension responses. This points either to an equal number of attached cross-bridges in rigor and activated fibers or to a different number of attached cross-bridges in rigor and activated fibers and nonlinear characteristics in rigor cross-bridges. Mass-shift measurements obtained from equatorial x-ray diffraction patterns support the latter possibility.  相似文献   

18.
Changes in the x-ray diffraction pattern from a frog skeletal muscle were recorded after a quick release or stretch, which was completed within one millisecond, at a time resolution of 0.53 ms using the high-flux beamline at the SPring-8 third-generation synchrotron radiation facility. Reversibility of the effects of the length changes was checked by quickly restoring the muscle length. Intensities of seven reflections were measured. A large, instantaneous intensity drop of a layer line at an axial spacing of 1/10.3 nm(-1) after a quick release and stretch, and its partial recovery by reversal of the length change, indicate a conformational change of myosin heads that are attached to actin. Intensity changes on the 14.5-nm myosin layer line suggest that the attached heads alter their radial mass distribution upon filament sliding. Intensity changes of the myosin reflections at 1/21.5 and 1/7.2 nm(-1) are not readily explained by a simple axial swing of cross-bridges. Intensity changes of the actin-based layer lines at 1/36 and 1/5.9 nm(-1) are not explained by it either, suggesting a structural change in actin molecules.  相似文献   

19.
Slow stretch ramps (velocity: 0.17 fiber lengths s-1) were imposed during fused tetanic contractions of intact muscle fibers of the frog (1.4-3.0 degrees C; sarcomere length: 2.12-2.21 microns). Instantaneous force-extension relations were derived both under isometric conditions and during slow stretch by applying fast (0.2 ms) length steps to the fiber. An increase in tonicity (98 mM sucrose added to control Ringer solution) led to significant reduction of the maximum isometric tension but at the same time to marked increase in the force enhancement during slow stretch. The maximum force level reached during the stretch was affected very little. Experiments on relaxed fibers showed that recruitment of passive parallel elastic components were of no relevance for these effects. Hypertonicity slightly increased the instantaneous stiffness of the active fiber both in the presence and in the absence of stretch. The total extension of the undamped fiber elasticity was considerably reduced by increased tonicity under isometric conditions but was only slightly affected during slow stretch. The change in length of the undamped cross-bride elasticity upon stretch was thus greater in the hypertonic than in the normotonic solution suggesting a greater increase in force per cross-bridge in the hypertonic medium. The contractile effects are consistent with the assumptions that hypertonicity reduces the capability of the individual cross-bridge to produce active force and, furthermore, that hypertonicity has only minor effects on the number of attached cross-bridges and the maximum load-bearing capacity of the individual bridge.  相似文献   

20.
Using x-rays from synchrotron radiation, we studied diffuse scattering, sometimes together with the myosin layer lines. With an area detector, sartorius muscles and a time resolution of 150 ms, earlier results from semitendinosus muscles contracting isometrically at 6 degrees C (Lowy, J., and F. R. Poulsen. 1987. J. Mol. Biol. 194:595-600) were confirmed and extended. Evidence from intensity changes both in the diffuse scattering and in the myosin layer lines showed that the majority of the heads become disordered at peak tetanic tension. With a linear detector and a time resolution of 5 ms, it was found that during tension rise the intensity increase of the diffuse scattering (which amounted maximally to 12% recorded near the meridian) runs approximately 20 ms ahead of the mechanical change, comparing half-completion times. This suggests that an appreciable number of heads change orientation before peak tension is reached. In quick release experiments the diffuse scattering intensity showed very little change. Recorded near the meridian during rapid shortening, however, it decreased progressively with a half-time of approximately 40 ms. This change amounted to approximately 35% of that observed during the initial tension rise. We interpret this to indicate that during rapid shortening a certain number of heads assume an orientation characteristic of the relaxed state. Viewed in the context of the behavior of the first myosin layer line and the (1, 1) equatorial reflection in similar experiments (Huxley, H. E., M. Kress, A. R. Faruqi, and R. M. Simmons. 1988.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号