首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The phenotype of a kasugamycin dependent mutant, MV17, was found to be the product of a kasugamycin resistance mutation in ksgA, together with a dependentizing mutation in rplW, the gene for large ribosomal subunit protein L23. Revertants from dependence on this small subunit targeted antibiotic were found to have mutational alterations in ribosomal proteins L23, L1, L11, and S9. The mutations causing alterations in L1 and L23 were shown to be responsible for the reversion and that altering L11 to be involved in the reversion.  相似文献   

2.
Summary A mutant of Escherichia coli B has been isolated which shows a novel phenotype of spectinomycin dependence. The mutant, termed RD, needs spectinomycin to grow at temperatures of 37° or below; it is unable to grow at 42° in either the presence or absence of spectinomycin. Secondary mutants which grow well in the absence of spectinomycin can be isolated spontaneously at a frequency of about 10-6. Two-dimensional gel electrophoresis of ribosomal proteins from 25 of these revertants showed that two revertants had an alteration in S4; one other showed an alteration in L5, and one showed an apparent absence of L1. Mutant RD itself had an altered less basic S5, which was maintained in all the revertants that were checked.Genetic analysis indicated that RD was a double mutant: one mutation, which alone conferred a spectinomycin resistant phenotype on the strain, was located in the strA region of the E. coli chromosome and was represented by the mutation in S5. The other mutation, which conferred the dependence on spectinomycin, mapped close to the rif locus.  相似文献   

3.
Escherichia coli mutants with alterations in the electrophoretic mobility of ribosomal protein S9 were used to locate rpsI, the gene for this protein, on the linkage map. rpsI was located at about 70 min, roughly halfway between argG and fabE. It was very close to the gene for ribosomal protein L13, rplM. Another mutation at the rpsI locus gave rise to a phenotype of kasugamycin dependence and resistance. In this mutant, dependence on antibiotic came from kasugamycin being necessary to slow the rate of protein synthesis.  相似文献   

4.
Summary Specitinomycin-resistant mutants of Bacillus subtilis show three different types of alterations in sporulation ability. Class 1 mutants can both grow and sporulate in the presence of spectinomycin. Class 2 mutants can grow in the presence of spectinomycin, but are unable to sporulate in either the presence or absence of spectinomycin. Class 3 mutants have a conditional phenotype, and are able to sporulate in the absence of spectinomycin, but not in its presence. The ability of these strains to produce alkaline phosphatase, a biochemical marker for early sporulation events, is correlated with the ability to sporulate in the presence or absence of antibiotic. All of the spectinomycin-resistance mutations could be genetically linked to the cysA marker, and a mutational alteration of a protein of the 30S ribosomal subunit has been identified in one of the Class 3 strains (Spc1–11). Fine-structure mapping of the spectinomycin resistance mutation of strain Spc 1–11 confirmed its location in the cluster of genes for ribosomal components on the B. subtilis genetic map. Genetic analysis indicated that the properties of the Class 1 and Class 2 mutants result from more than one mutation. The spectinomycin-resistance and altered sporulation properties of the two Class 3 mutants probably result from a single genetic lesion.  相似文献   

5.
Summary Six streptomycin-dependent mutants of Bacillus subtilis, two of which were asporogenous, were isolated. All six mutants, SD1, SD2, SD6, SD7, SD9 and SD10, contained a single mutation causing streptomycin dependence and asporogeny, but four of these mutants (SD6, SD7, SD9, SD10) contained a second mutation which phenotypically suppressed the asporogenous character of the streptomycin dependence mutation. All six mutants grew more slowly than the wild type strain BR151, but those defective in sporulation grew the slowest. The streptomycin dependence mutations of SD9 and SD10B (a sporeplus transformant from SD10 carrying both the dependence mutation and the phenotypic suppressor) lie near or possibly within the strA locus. Ribosomes from SD9, SD10A (a spore-minus transformant from SD10 carrying only the dependence mutation), and SD10B were stimulated in vitro by concentrations of streptomycin that inhibit the activity of wild type strain BR151 ribosomes. The level of misreading as measured by poly(U)-directed isoleucine incorporation was greatly enhanced by streptomycin in wild type strain BR151 ribosomes, but misreading of mutant SD9, SD10A, and SD10B ribosomes, irrespective of the sporulation phenotype, was little affected by streptomycin. There were no apparent differences in the patterns obtained by two-dimensional polyacrylamide gel electrophoresis of the 70S ribosomal proteins of the mutants SD9, SD10A, SD10B, and wild type strain BS151.  相似文献   

6.
Summary Escherichia coli strains with preexisting ribosomal mutations were used in order to isolate further ribosomal mutations. The ribosomal mutations used were resistance to erythromycin, spectinomycin, streptomycin or kasugamycin. These mutations cause alteration of specific ribosomal elements, L4, S5, S12 proteins and 16S rRNA respectively. Mutations have been introduced into strains carrying one, two or three of these mutations. Strains with all possible combinations of these four mutations were constructed. The phenotypes of all isolated mutants were tested, and frequently the strains lost one or more of their pre-existing resistances.Thus, functional interactions were revealed among proteins, as well as RNA and proteins within the 30 S ribosomal subunit and as well as between the 30 S and the 50 S ribosomal subunits.  相似文献   

7.
Summary 26 cold-resistant revertants of a cold-sensitiveEscherichia coli mutant with an altered ribosomal protein S8 were analyzed for their ribosomal protein pattern by two-dimensional polyacrylamide gel electrophoresis. It was found that 16 of them had acquired the apparent wild-type form of protein S8, one exhibits a more strongly altered S8 than the original mutant and two revertants regained the wild-type form of S8 and, in addition, possess alterations in protein L30. The ribosomes of the residual revertants showed no detectable difference from those of the parental S8 mutant.The mutation leading to the more strongly altered S8 was genetically not separable from the primary S8 mutation; this indicates that both mutations are very close to each other or at the same site. The structural gene for ribosomal protein L30 was mapped relative to two other ribosomal protein genes (for proteins S5 and S8) by the aid of one of the L30 mutants: The relative order obtained is:aroE....rpmD(L30)....rpsE(S5)....rpsH(S8)....THe L30 mutation impairs growth and ribosomal assembly at 20°C and is therefore the first example of a mutant with a defined 50S alteration that has (partial) cold-sensitive ribosome assembly. A double mutant was constructed which possesses both the S8 and the L30 mutations. It was found that the L30 mutation had a slight antagonistic effect on the growth inhibition caused by the S8 mutation. Thus the L30 mutants might have possibly arisen from the original S8 mutants first as S8/L30 double mutants which was followed by the loss of the original S8 lesion.  相似文献   

8.
Summary Mutants of Bacillus subtilis resistant to various macrolide antibiotics have been isolated and characterized with respect to their sporulation phenotype and the electrophoretic mobility of their ribosomal proteins (r-proteins). Two types of major alterations of r-protein L17, one probably due to a small deletion, are found among mutants exhibiting high-level macrolide resistance. These mutants are all temperature-sensitive for sporulation (Spots). Low-level resistance to some macrolides is found to be associated with minor alterations in r-protein L17. These mutations do not cause a defective sporulation phenotype. All of the macrolide resistance mutations map at the same locus within the Str-Spc region of the B. subtilis chromosome. Hence, changes in a single ribosomal protein can result in different sporulation phenotypes.Mutants resistant to the aminoglycoside antibiotics neomycin and kanamycin have been isolated. Approximately 5% of these are Spots. Representative mutations, neo 162 and kan25, cause concomitant drug resistance and sporulation temperature-sensitivity and map as single-site lesions in the Str-Spc region of the chromosome. Strains bearing neo162 or kan25 are equally cross-resistant to several aminoglycoside antibiotics but show no resistance to streptomycin or spectinomycin. These mutations define a new B. subtilis drug resistance locus at which mutation can cause defective sporulation.  相似文献   

9.
Suppression of streptomycin dependence in Escherichia coli strain K-114, a spectinomycin-sensitive strain, is correlated with modification of 30S ribosomal protein P4, the component modified in spectinomycin-resistant mutants. The mutant is unusual in that reversion from dependence has previously been correlated only with modification in 30S protein P4a. Introduction into K-114 of another mutation conferring spectinomycin resistance results in a further alteration in protein P4.  相似文献   

10.
Alterations in the ribosomes of sucrose-dependent spectinomycin-resistant (Sucd-Spcr) mutants of Escherichia coli were studied. Subunit exchange experiments showed that 30S subunits were responsible for the resistance of ribosomes to spectinomycin in all Sucd-Spcr mutants tested. Proteins of 30S ribosomes were analyzed by carboxymethyl cellulose column chromatography based on their elution positions. Mutants YM22 and YM93 had an altered 30S ribosomal protein component, S5, and mutant YM50 had an altered protein, S4. Although a shift of elution position was not detected for all the 30S ribosomal proteins from mutant YM101, the amount of protein S3 was appreciably lowered in the isolated 30S subunits. A partial reconstitution experiment with protein S3 prepared from both the wild-type strain and YM101 revealed that the mutant had altered protein S3 which is responsible for the spectinomycin resistance. These alterations in 30S subunits are discussed in relation to the interaction between ribosomes and the cytoplasmic membrane.  相似文献   

11.
Summary Mutants resistant to (Str-R) or dependent on streptomycin (Str-D) were isolated from several streptomycin independent (Str-I) strains of Escherichia coli. From 90 of these mutants ribosomes were isolated and the ribosomal proteins analyzed by two-dimensional polyacrylamide gel electrophoresis. The results which are summarized in Tables 1-4 led to the following conclusions:a) The phenotype (Str-R or Str-D) of the mutants isolated from the Str-I strains strongly depends on the parental strain. b) No other ribosomal proteins than S4, S5 and S12 seem to be altered by mutations leading to dependence on, independence from or resistance to streptomycin. c) The S4 proteins of the analyzed mutants belong to three groups. The ratio between the groups depends more on the origin of the mutants than on their phenotype. d) Eight new types of altered S4 proteins were detected. It is very likely that many, if not all, of the altered S4 proteins originated by frame shift mutations. e) Some of the mutants differ from the wild type by alterations in three ribosomal proteins (S4, S5 and S12). The alteration in one protein, S4, apparently compensates for that in another protein, S5, in such a way that the original phenotype is expressed. These mutants are therefore an excellent tool for studies at the molecular level on the interaction of ribosomal components within the particle.  相似文献   

12.
Summary A spontaneous mutant that lacked ribosomal protein L24 was isolated and its derivatives investigated. The lesion responsible was close to, or in, rplX, the gene for protein L24. It led to a severe reduction in the amount of the large ribosomal subunit, even under permissive growth conditions. The mutation also led to a very slow growth rate and a temperature sensitive phenotype of carrier strains. Temperature indifferent secondary mutants frequently showed recovery of protein L24, but the protein was usually in a form larger than wildtype. Other secondary mutants had acquired an external suppressor that resulted in the simultaneous alteration of several other ribosomal proteins as well as the fractional presence of protein L24. Secondary mutants had normal amounts of the large ribosomal subunit, but it sedimented more slowly than normal.  相似文献   

13.
Summary Temperature-sensitive mutants of an Escherichia coli K-12 strain PA3092 have been isolated following mutagenesis with nitrosoguanidine, and their ribosomal proteins analyzed by two-dimensional gel electrophoresis This method was found to be very efficient in obtaining mutants with various structural alterations in ribosomal proteins. Thus a total of some 160 mutants with alterations in 41 different ribosomal proteins have so far been isolated. By characterizing these mutants, we could isolate, not only those mutants with alterations in the structural genes for various ribosomal proteins, but also those with impairments in the modification of proteins S5, S18 and L12. Furthermore, a mutant has been obtained which apparently lacks the protein S20 (L26) with a concomitant reduction to a great extent of the polypeptide synthetic activity of the small subunit. The usefulness of these mutants in establishing the genetic architecture of the genes coding for the ribosomal proteins and their modifiers is discussed.  相似文献   

14.
Summary Two spontaneous mutants of Escherichia coli strain KMBL-146 selected for resistance to the aminoglycoside antibiotic neamine show severe restriction of amber suppressors in vivo. Purified ribosomes from the mutant strains exhibit low neamine-induced misreading in vitro and a decreased affinity for the related antibiotic streptomycin.Biochemical analysis shows that the mutants each have two modified 30S ribosomal proteins, S12 and S5. In agreement with these results, genetic analysis shows that two mutations are present, neither of which confers resistance to neamine by itself; the mutation located in gene rpxL (the structural gene for protein S12) confers streptomycin dependence but this dependence is suppressed in the presence of the second mutation, located in gene rpxE (the structural gene for protein S5).  相似文献   

15.
Summary Revertants from streptomycin dependence to independence were isolated as single step mutants from six different streptomycin dependent strains. The ribosomal proteins from 100 such mutants were analyzed by two-dimensional polyacrylamide gel electrophoresis and some of them were also examined by immunological techniques. Altered proteins were found in 40 mutants, 24 in protein S4 and 16 in protein S5. No change in any other protein was detected.Altered S5 proteins migrated into five different positions on the polyacrylamide plate and it can be concluded that the mutant proteins differ from the wild type probably by single amino acid replacements. The altered S4 proteins migrated into 17 different positions on the plate. Extensive changes of length, both shorter and longer than wild type S4 protein, are postulated for many of the mutant S4 proteins.Analysis of the ribosomal proteins of four ram mutants revealed altered S4 protein in two of them. The alterations in these mutant proteins are probably very similar to those found in streptomycin independent mutants.Among the revertants there was no apparent correlation between the protein alteration and the particular response to streptomycin.These studies suggest a strong interaction between protein S12, which confers streptomycin dependence, and protein S4 or S5, which can suppress this dependence.Paper No. 60 on Ribosomal Proteins. Preceding paper is by B. Wittmann-Liebold, Hoppe-Seyler's Z. physiol. Chemie, in press.  相似文献   

16.
Summary A suppressor mutation of a temperature-sensitive mutant of ribosomal protein L24 (rplX19) was mapped close to the lon gene by genetic analysis and was shown to affect protease LA. The degradation and the synthesis rates of individual ribosomal proteins were determined. Proteins L24, L14, L15 and L27 were found to be degraded faster in the original rplX19 mutant than in the rplX19 mutant containing the suppressor mutation. Other ribosomal proteins were either weakly or not at all degraded in both mutants. Temperature-sensitive growth was also suppressed by the overproduction of mutant protein L24 from a plasmid. Our results suggest that (1) either free ribosomal proteins or proteins bound to abortive assembly precursors are highly susceptible to the lon gene product and (2) the mutationally altered protein L24 can still function at the nonpermissive growth temperature of the mutant, if it is present in sufficient amounts.  相似文献   

17.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

18.
Summary In vitro protein synthesis was used to characterize the antibiotic sensitivity of cytoplasmic ribosomes from wild-type and antibiotic-resistant strains of Chlamydomonas reinhardtii. Cytoplasmic ribosomes from two cycloheximide-resistant mutants, act-1 and act-2, were resistant to the antibiotic in vitro. The alteration effected by the act-1 mutation, which was dominant in diploids, was localized to the large subunit of the cytoplasmic ribosomes, but no ribosomal protein alterations were detected using two-dimensional gel electrophoresis. The act-2 mutation, which was semidominant in diploids, was frequently associated with a charge alteration in the large subunit ribosomal protein (r-protein) cyL38 that segregated independently from the antibiotic-resistant phenotype in crosses.  相似文献   

19.
Alterations in cytoplasmic membrane and ribosomes from sucrose-dependent spectinomycin-resistant (Sucd-Spcr) mutants of Escherichia coli, mutants that are resistant to spectinomycin in the presence of 20% sucrose but sensitive in the absence of sucrose, were studied. The protein composition of cytoplasmic membrane was analyzed by gel electrophoresis on polyacrylamide gel containing 8 M urea and 0.5% sodium dodecyl sulfate, which assured the reproducible separation of 28 protein bands. A major protein band, I-19, was missing in all cytoplasmic membrane preparations from 10 Sucd-Spcr mutants. Besides protein I-19, proteins I-13 and I-24 were missing in some mutants. On the other hand, the protein composition of cytoplasmic membrane from a sucrose-independent spectinomycin-resistant mutant was indistinguishable from that from the wild-type strain. The polypeptide synthetic activity of ribosomes from Sucd-Spcr mutants was resistant to spectinomycin. Studies on a revertant obtained from one of these mutants without any selection for sensitivity to spectinomycin revealed that a single mutation was responsible for both the ribosomal alteration, i.e., spectinomycin resistance, and the lack of protein I-19 in the cytoplasmic membrane. Studies on a transductant obtained with a Sucd-SPcr mutant as the donor also confirmed the single-mutation concept. It was concluded that in Sucd-SPcr mutants an alteration in the ribosomes caused the deletion of protein I-19 from cytoplasmic membrane.  相似文献   

20.
Summary High level lincomycin resistant strains of Escherichia coli were isolated and screened for altered ribosomal proteins and functions. Amongst 58 strains investigated by electrophoresis one had an altered ribosomal protein S7, another one a mutated L14 and two showed altered L15 proteins.A correlation between these alterations and lincomycin resistant growth could not be demonstrated by genetic analysis for any of the mutants. In vitro, however, extracts from the two L15 mutants were less sensitive to inhibition by the drug. A gene locus (lin R) responsible for the lincomycin resistance phenotype was mapped at min 30 of the Escherichia coli chromosome near tyrR; it seems to be identical to the previously described linB locus (Apirion, 1967); however, in contrast to these reports it does not seem to alter any ribosomal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号