首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligogalacturonides (OGs) released from plant cell walls by pathogen polygalacturonases induce a variety of host defense responses. Here we show that in Arabidopsis (Arabidopsis thaliana), OGs increase resistance to the necrotrophic fungal pathogen Botrytis cinerea independently of jasmonate (JA)-, salicylic acid (SA)-, and ethylene (ET)-mediated signaling. Microarray analysis showed that about 50% of the genes regulated by OGs, including genes encoding enzymes involved in secondary metabolism, show a similar change of expression during B. cinerea infection. In particular, expression of PHYTOALEXIN DEFICIENT3 (PAD3) is strongly up-regulated by both OGs and infection independently of SA, JA, and ET. OG treatments do not enhance resistance to B. cinerea in the pad3 mutant or in underinducer after pathogen and stress1, a mutant with severely impaired PAD3 expression in response to OGs. Similarly to OGs, the bacterial flagellin peptide elicitor flg22 also enhanced resistance to B. cinerea in a PAD3-dependent manner, independently of SA, JA, and ET. This work suggests, therefore, that elicitors released from the cell wall during pathogen infection contribute to basal resistance against fungal pathogens through a signaling pathway also activated by pathogen-associated molecular pattern molecules.  相似文献   

2.
The plant hormone, jasmonic acid (JA), is known to have a critical role in both resistance and susceptibility against bacterial and fungal pathogen attack. However, little is known about the involvement of JA in the interactions between plants and toxigenic necrotrophic fungal pathogens. Using the tomato pathotype of Alternaria alternata (Aa) and its AAL-toxin/tomato interaction as a model system, we demonstrate a possible role for JA in susceptibility of plants against pathogens, which utilize host-specific toxins as virulence effectors. Disease development and in planta growth of the tomato pathotype of Aa were decreased in the def1 mutant, defective in biosynthesis of JA, compared with the wild-type (WT) cultivar. Exogenous methyl jasmonate (MeJA) application restored pathogen disease symptoms to the def1 mutant and led to increased disease in the WT. On the other hand, necrotic cell death was similarly induced by AAL-toxin both on def1 and WT, and MeJA application to the tomatoes did not affect the degree of cell death by the toxin. These results indicate that the JA-dependent signaling pathway is not involved in host basal defense responses against the tomato pathotype of Aa, but rather might affect pathogen acceptability via a toxin-independent manner. Data further suggest that JA has a promotional effect on susceptibility of tomato to toxigenic and necrotrophic pathogens, such that pathogens might utilize the JA signaling pathway for successful infection.  相似文献   

3.
In Arabidopsis spp., the jasmonate (JA) response pathway generally is required for defenses against necrotrophic pathogens and chewing insects, while the salicylic acid (SA) response pathway is generally required for specific, resistance (R) gene-mediated defenses against both biotrophic and necrotrophic pathogens. For example, SA-dependent defenses are required for resistance to the biotrophic fungal pathogen Erysiphe cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. maculicola, and also are expressed during response to the green peach aphid Myzus persicae. However, recent evidence indicates that the expression of JA-dependent defenses also may confer resistance to E. cichoracearum. To confirm and to extend this observation, we have compared the disease and pest resistance of wild-type Arabidopsis plants with that of the mutants coil, which is insensitive to JA, and cev1, which has constitutive JA signaling. Measurements of the colonization of these plants by E. cichoracearum, P. syringae pv. maculicola, and M. persicae indicated that activation of the JA signal pathway enhanced resistance, and was associated with the activation of JA-dependent defense genes and the suppression of SA-dependent defense genes. We conclude that JA and SA induce alternative defense pathways that can confer resistance to the same pathogens and pests.  相似文献   

4.
Salicylic acid (SA) is an important regulator of plant defense responses, and a variety of Arabidopsis mutants impaired in resistance against bacterial and fungal pathogens show defects in SA accumulation, perception, or signal transduction. Nevertheless, the role of SA-dependent defense responses against necrotrophic fungi is currently unclear. We determined the susceptibility of a set of previously identified Arabidopsis mutants impaired in defense responses to the necrotrophic fungal pathogen Botrytis cinerea. The rate of development of B. cinerea disease symptoms on primary infected leaves was affected by responses mediated by the genes EIN2, JAR1, EDS4, PAD2, and PAD3, but was largely independent of EDS5, SID2/ICS1, and PAD4. Furthermore, plants expressing a nahG transgene or treated with a phenylalanine ammonia lyase (PAL) inhibitor showed enhanced symptoms, suggesting that SA synthesized via PAL, and not via isochorismate synthase (ICS), mediates lesion development. In addition, the degree of lesion development did not correlate with defensin or PR1 expression, although it was partially dependent upon camalexin accumulation. Although npr1 mutant leaves were normally susceptible to B. cinerea infection, a double ein2 npr1 mutant was significantly more susceptible than ein2 plants, and exogenous application of SA decreased B. cinerea lesion size through an NPR1-dependent mechanism that could be mimicked by the cpr1 mutation. These data indicate that local resistance to B. cinerea requires ethylene-, jasmonate-, and SA-mediated signaling, that the SA affecting this resistance does not require ICS1 and is likely synthesized via PAL, and that camalexin limits lesion development.  相似文献   

5.
Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens.  相似文献   

6.
* Botrytis cinerea is a necrotrophic fungus that causes grey mould on a wide range of food plants, especially grapevine, tomato, soft fruits and vegetables. This disease brings about important economic losses in both pre- and postharvest crops. Successful protection of host plants against this pathogen is severely hampered by a lack of resistance genes in the hosts and the considerable phenotypic diversity of the fungus. * The aim of this study was to test whether B. cinerea manipulates the immunity-signalling pathways in plants to restore its disease. * We showed that B. cinerea caused disease in Nicotiana benthamiana through the activation of two plant signalling genes, EDS1 and SGT1, which have been shown to be essential for resistance against biotrophic pathogens; and more interestingly, virus-induced gene silencing of these two plant signalling components enhanced N. benthamiana resistance to B. cinerea. Finally, plants expressing the baculovirus antiapoptotic protein p35 were more resistant to this necrotrophic pathogen than wild-type plants. * This work highlights a new strategy used by B. cinerea to establish disease. This information is important for the design of strategies to improve plant pathogen resistance.  相似文献   

7.
8.
9.
In order to identify components of the defense signaling network engaged following attempted pathogen invasion, we generated a novel PR-1::luciferase (LUC) transgenic line that was deployed in an imaging-based screen to uncover defense-related mutants. The recessive mutant designated cir1 exhibited constitutive expression of salicylic acid (SA), jasmonic acid (JA)/ethylene, and reactive oxygen intermediate-dependent genes. Moreover, this mutation conferred resistance against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and a virulent oomycete pathogen Peronospora parasitica Noco2. Epistasis analyses were undertaken between cir1 and mutants that disrupt the SA (nprl, nahG), JA (jar1), and ethylene (ET) (ein2) signaling pathways. While resistance against both P. syringae pv. tomato DC3000 and Peronospora parasitica Noco2 was partially reduced by npr1, resistance against both of these pathogens was lost in an nahG genetic background. Hence, cirl-mediated resistance is established via NPR1-dependent and -independent signaling pathways and SA accumulation is essential for the function of both pathways. While jar1 and ein2 reduced resistance against P. syringae pv. tomato DC3000, these mutations appeared not to impact cir1-mediated resistance against Peronospora parasitica Noco2. Thus, JA and ET sensitivity are required for cir1-mediated resistance against P. syringae pv. tomato DC3000 but not Peronospora parasitica Noco2. Therefore, the cir1 mutation may define a negative regulator of disease resistance that operates upstream of SA, JA, and ET accumulation.  相似文献   

10.
11.
12.
Jasmonic acid (JA) is a natural hormone regulator involved in development,responses against wounding and pathogen attack.Upon perception of pathogens,JA is synthesized and mediates a signaling cascade ...  相似文献   

13.
Three Botrytis-susceptible mutants bos2, bos3, and bos4 which define independent and novel genetic loci required for Arabidopsis resistance to Botrytis cinerea were isolated. The bos2 mutant is susceptible to B. cinerea but retains wild-type levels of resistance to other pathogens tested, indicative of a defect in a response pathway more specific to B. cinerea. The bos3 and bos4 mutants also show increased susceptibility to Alternaria brassicicola, another necrotrophic pathogen, suggesting a broader role for these loci in resistance. bos4 shows the broadest range of effects on resistance, being more susceptible to avirulent strain of Pseudomonas syringae pv. tomato. Interestingly, bos3 is more resistant than wild-type plants to virulent strains of the biotrophic pathogen Peronospora parasitica and the bacterial pathogen P. syringae pv. tomato. The Pathogenesis Related gene 1 (PR-1), a molecular marker of the salicylic acid (SA)-dependent resistance pathway, shows a wild-type pattern of expression in bos2, while in bos3 this gene was expressed at elevated levels, both constitutively and in response to pathogen challenge. In bos4 plants, PR-1 expression was reduced compared with wild type in response to B. cinerea and SA. In bos3, the mutant most susceptible to B. cinerea and with the highest expression of PR-1, removal of SA resulted in reduced PR-1 expression but no change to the B. cinerea response. Expression of the plant defensin gene PDF1-2 was generally lower in bos mutants compared with wild-type plants, with a particularly strong reduction in bos3. Production of the phytoalexin camalexin is another well-characterized plant defense response. The bos2 and bos4 mutants accumulate reduced levels of camalexin whereas bos3 accumulates significantly higher levels of camalexin than wild-type plants in response to B. cinerea. The BOS2, BOS3, and BOS4 loci may affect camalexin levels and responsiveness to ethylene and jasmonate. The three new mutants appear to mediate disease responses through mechanisms independent of the previously described BOS1 gene. Based on the differences in the phenotypes of the bos mutants, it appears that they affect different points in defense response pathways.  相似文献   

14.
15.
16.
Qi L  Yan J  Li Y  Jiang H  Sun J  Chen Q  Li H  Chu J  Yan C  Sun X  Yu Y  Li C  Li C 《The New phytologist》2012,195(4):872-882
? Although the role of auxin in biotrophic pathogenesis has been extensively studied, relatively little is known about its role in plant resistance to necrotrophs. ? Arabidopsis thaliana mutants defective in different aspects of the auxin pathway are generally more susceptible than wild-type plants to the necrotrophic pathogen Alternaria brassicicola. We show that A.?brassicicola infection up-regulates auxin biosynthesis and down-regulates the auxin transport capacities of infected plants, these effects being partially dependent on JA signaling. We also show that these effects of A.?brassicicola infection together lead to an enhanced auxin response in host plants. ? Application of IAA and MeJA together synergistically induces the expression of defense marker genes PDF1.2 (PLANT DEFENSIN 1.2) and HEL (HEVEIN-LIKE), suggesting that enhancement of JA-dependent defense signaling may be part of the auxin-mediated defense mechanism involved in resistance to necrotrophic pathogens. ? Our results provide molecular evidence supporting the hypothesis that JA and auxin interact positively in regulating plant resistance to necrotrophic pathogens and that activation of auxin signaling by JA may contribute to plant resistance to necrotrophic pathogens.  相似文献   

17.
18.
? Priming of defence is a strategy employed by plants exposed to stress to enhance resistance against future stress episodes with minimal associated costs on growth. Here, we test the hypothesis that application of priming agents to seeds can result in plants with primed defences. ? We measured resistance to arthropod herbivores and disease in tomato (Solanum lycopersicum) plants grown from seed treated with jasmonic acid (JA) and/or β-aminobutryric acid (BABA). ? Plants grown from JA-treated seed showed increased resistance against herbivory by spider mites, caterpillars and aphids, and against the necrotrophic fungal pathogen, Botrytis cinerea. BABA seed treatment provided primed defence against powdery mildew disease caused by the biotrophic fungal pathogen, Oidium neolycopersici. Priming responses were long-lasting, with significant increases in resistance sustained in plants grown from treated seed for at least 8 wk, and were associated with enhanced defence gene expression during pathogen attack. There was no significant antagonism between different forms of defence in plants grown from seeds treated with a combination of JA and BABA. ? Long-term defence priming by seed treatments was not accompanied by reductions in growth, and may therefore be suitable for commercial exploitation.  相似文献   

19.
20.
Salicylic acid (SA), ethylene, and jasmonic acid (JA) are important signaling molecules in plant defense to biotic stress. An intricate signaling network involving SA, ethylene, and JA fine tunes plant defense responses. SA-dependent defense responses in Arabidopsis thaliana are mediated through NPR1-dependent and -independent mechanisms. We have previously shown that activation of an NPR1-independent defense mechanism confers enhanced disease resistance and constitutive expression of the pathogenesis-related (PR) genes in the Arabidopsis ssi1 mutant. In addition, the ssi1 mutant constitutively expresses the defensin gene PDF1.2. Moreover, SA is required for the ssi1-conferred constitutive expression of PDF1.2 in addition to PR genes. Hence, the ssi1 mutant appears to target a step common to SA- and ethylene- or JA-regulated defense pathways. In the present study, we show that, in addition to SA, ethylene and JA signaling also are required for the ssi1-conferred constitutive expression of PDF1.2 and the NPR1-independent expression of PR-1. Furthermore, the ethylene-insensitive ein2 and JA-insensitive jar1 mutants enhance susceptibility of ssi1 plants to the necrotrophic fungus Botrytis cinerea. However, defects in either the ethylene- or JA-signaling pathways do not compromise ssi1-conferred resistance to the bacterial pathogen Pseudomonas synringae pv. maculicola and the oomycete pathogen Peronospora parasitica. Interestingly, ssi1 exhibits a marginal increase in the levels of ethylene and JA, suggesting that low endogenous levels of these phytohormones are sufficient to activate expression of defense genes. Taken together, our results indicate that although cross talk in ssi1 renders expression of ethylene- or JA-responsive defense genes sensitive to SA and vice versa, it does not affect downstream signaling leading to resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号