首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separate and combined effects of root and leaf herbivores on plant growth, flower visitation and seed set were tested in a factorial experiment using potted mustard, Sinapis arvensis, at an old fallow field. A 50% leaf removal by cabbageworms (Pieris rapae) when the seedlings had their first four leaves reduced plant height and shoot mass, and delayed the onset of flowering. Root herbivory by two wireworms (Agriotes sp.) over the whole experiment changed flower visitation; the number of flower visitors per plant was higher in plants with root herbivores than in plants without root herbivores. Combined leaf and root herbivory affected flowering period, number of fruits per plant and number of seeds per fruit. Plants attacked by leaf and root herbivores had a shorter flowering period and produced fewer fruits per plant than plants with root herbivores only. Although the experimental plants faced major herbivore-induced growth changes, plant reproduction (seed set and weight per plant) was similar in all treatments, documenting their ability to effectively compensate for leaf and root herbivory.  相似文献   

2.
Most ecologists acknowledge that plants are subject to complex interactions between both below- and aboveground dwelling animals. However, these complex interactions are seldomly investigated simultaneously. In a factorial common garden experiment we tested single and combined effects of decomposers, root herbivores and leaf herbivores on the growth, flower visitation, and abundance of naturally colonizing aphids and parasitoids on wild mustard ( Sinapis arvensis ). We found that the individual presence of either root herbivores or decomposers resulted in increased aphid abundance, demonstrating that the same aboveground plant–insect interaction can be released by different belowground processes. Enhanced aphid densities caused higher numbers of parasitoids. Furthermore, decomposers increased plant growth and plant fitness (measured as the number of seeds produced), indicating that mustard may benefit from nutrients provided by decomposers, regardless whether plants are attacked by root herbivores or leaf herbivores, or both simultaneously. More flower visits were observed in plants attacked by root herbivores but without leaf herbivores than in plants with both herbivores, suggesting that root herbivory can modify flower attractivity to pollinators. Our results suggest that patterns in plant–insect interactions above the ground are not only affected by aboveground factors but also by a wealth of different belowground processes mediated by the plant.  相似文献   

3.
Studies of ant–plant relationships elucidate how top-down effects of the third trophic level can affect the biomass, richness, and/or species composition of plants. Although widespread in the neotropics, few studies have so far examined the direct effects of ants on plant fitness. Here, through experimental manipulation (ant-exclusion) under natural conditions, we examined the effect of ant visitation to extrafloral nectaries on leaf herbivory and fruit set in Chamaecrista debilis in the Brazilian savanna. As opposed to other Chamaecrista species, our results showed that visiting ants (15 species) significantly reduce herbivory and increase fruit set by more than 50% compared to plants from which ants were excluded. This mutualistic system is facultative in nature, and corroborates the potential beneficial role of exudate-feeding ants as anti-herbivore agents of tropical plants.  相似文献   

4.
Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant–herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.  相似文献   

5.
Studies of insect herbivory have mostly focused on leaf‐feeding even though most woody plant biomass is stem tissue. Attack to stems has the potential to be more detrimental to plant performance than attack to leaves. Here we asked how severe is the impact of insect stem herbivory on plant performance. We quantify the effect of insect stem herbivory via a meta‐analysis of 119 papers in 100 studies (papers by the same authors were treated as the same study). These studies involved 92 plant species and 70 species of insect herbivore (including simulated herbivory). Attack to plant stems reduced plant performance by an average of approximately 22%. Stem herbivory had greatest impacts on plant and branch survival, which was reduced by 63%. Measures of plant reproduction and vegetative biomass were reduced by 33% and 16% respectively, while measurements of photosynthetic rate were not significantly different between plants with and without stem herbivore attack. Stem herbivory led to a decline in leader performance but an increase in performance of laterals, highlighting the importance of plant compensation. Juvenile plants were more severely affected by stem herbivory than adult plants, and studies conducted in greenhouses found more severe effects than studies conducted in the field. Stem herbivory did not have a significant effects on any of the non‐performance responses measured (defence compounds, SLA, root:shoot, phenology and plant carbon and nitrogen). We compare our results with results from various meta‐analyses considering herbivory on other plant parts. The impact of insect herbivory to stems on plant performance appears at least as severe as insect herbivory to roots and leaves, if not more.  相似文献   

6.
While evolutionary ecologists emphasize different ways in which plants can evolutionarily respond to herbivory, such as resistance or tolerance, community ecology has lagged in its understanding of how these different plant traits can influence interactions, abundance, composition, and diversity within more complex food webs. In this paper, we present a series of models comparing community level outcomes when plants either resist or tolerate herbivory. We show that resistance and tolerance can lead to very different outcomes. A particularly important result is that resistant species should often coexist locally with other, less resistant competitors, whereas tolerant species should not be able to coexist locally with less tolerant competitors, although priority effects allow them to coexist regionally. We also use these models to suggest some insights into the evolution of these traits within more complex communities. We emphasize how understanding the differential effects of plant tolerance and resistance in food webs provides greater appreciation of a variety of empirical patterns that heretofore have appeared enigmatic. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Abstract 1. Plants experience herbivory on many different tissues that can affect reproduction directly by damaging tissues and decreasing resource availability, or indirectly via interactions with other species such as pollinators. 2. This study investigated the combined effects of leaf herbivory, root herbivory, and pollination on subsequent damage, pollinator preference, and plant performance in a field experiment using butternut squash (Cucurbita moschata). Leaf and root herbivory were manipulated using adult and larval striped cucumber beetles (Acalymma vittatum F.), a cucurbit specialist. 3. Leaf herbivory reduced subsequent pistillate floral damage and powdery mildew (Sphaerotheca fuliginea) infection. In spite of these induced defences, the overall effect of leaf herbivory on plant reproduction was negative. Leaf herbivory reduced staminate flower production, fruit number, and seed weight. In contrast, root herbivory had a minimal impact on plant reproduction. 4. Neither leaf nor root herbivory altered pollinator visitation or floral traits, suggesting that reductions in plant performance from herbivory were as a result of direct rather than indirect effects. In addition, no measured aspect of reproduction was pollen limited. 5. Our study reveals that although leaf herbivory by the striped cucumber beetle can protect against subsequent damage, this protection was not enough to prevent the negative impacts on plant performance.  相似文献   

8.
BACKGROUND AND AIMS: Herbivory on floral structures has been postulated to influence the evolution of floral traits in some plant species, and may also be an important factor influencing the occurrence and outcome of subsequent biotic interactions related to floral display. In particular, corolla herbivory may affect structures differentially involved in flower selection by pollinators and fruit predators (specifically, those ovopositing in ovaries prior to fruit development); hence floral herbivores may influence the relationships between these mutualistic and antagonistic agents. METHODS: The effects of corolla herbivory in Linaria lilacina (Scrophulariaceae), a plant species with complex flowers, were considered in relation to plant interactions with pollinators and fruit predators. Tests were made as to whether experimentally created differences in flower structure (resembling those occurring naturally) may translate into differences in reproductive output in terms of fruit or seed production. KEY RESULTS: Flowers with modified corollas, particularly those with lower lips removed, were less likely to be selected by pollinators than control flowers, and were less likely to be successfully visited and pollinated. As a consequence, fruit production was also less likely in these modified flowers. However, none of the experimental treatments affected the likelihood of visitation by fruit predators. CONCLUSIONS: Since floral herbivory may affect pollinator visitation rates and reduce seed production, differences among plants in the proportion of flowers affected by herbivory and in the intensity of the damage inflicted on affected flowers may result in different opportunities for reproduction for plants in different seasons.  相似文献   

9.
Tolerance is the ability of a plant to regrow or reproduce following damage. While experimental studies typically measure tolerance in response to the intensity of herbivory (i.e., the amount of leaf tissue removed in one attack), the impact of how many times plants are attacked during a growing season (i.e., the frequency of damage) is virtually unexplored. Using experimental defoliations that mimicked patterns of attack by leaf-cutter ants (Atta spp.), we examined how the frequency of herbivory influenced plant tolerance traits in six tree species in Brazil’s Cerrado. For 2 years we quantified how monthly and quarterly damage influenced individual survivorship, relative growth rate, plant architecture, flowering, and foliar chemistry. We found that the content of leaf nitrogen (N) increased among clipped individuals of most species, suggesting that Atta influences the allocation of resources in damaged plants. Furthermore, our clipping treatments affected tree architecture in ways thought to promote tolerance. However, none of our focal species exhibited a compensatory increase in growth (increment in trunk diameter) in response to herbivory as relative growth rates were significantly lower in clipped than in unclipped individuals. In addition, the probability of survival was much lower for clipped plants, and lower for plants clipped monthly than those clipped quarterly. For plants that did survive, simulated herbivory dramatically reduced the probability of flowering. Our results were similar across a phylogenetically distinct suite of species, suggesting a potential extendability of these findings to other plant species in this system.  相似文献   

10.
Extrafloral nectaries: ants,herbivores and fecundity in Cassia fasciculata   总被引:1,自引:0,他引:1  
Carol A. Kelly 《Oecologia》1986,69(4):600-605
Summary Extrafloral nectaries of Cassia fasciculata attract nectar feeding ants which protect the plant against leaf herbivores. High ant visitation in late July coincided with high herbivore densities at two sites in east central Iowa. The highest level of leaf herbivory occurred during the time of flowering and early fruit filling, just after the peak of herbivore and ant activity. Results of ant exclusion experiments at the two sites showed that ant visitation resulted in decreased herbivore numbers, decreased leaf area loss, increased growth, and at one site decreased plant mortality. However, this reduction in leaf area loss and increase in growth did not translate into seed set differences between plants with and without ants at either site. Initial plant size was more important than the presence or absence of ants in determining fecundity for this temperate annual during a year of summer drought.  相似文献   

11.
Interactive effects of soil fertility and herbivory on Brassica nigra   总被引:1,自引:0,他引:1  
Gretchen A. Meyer 《Oikos》2000,88(2):433-441
Soil nutrient availability may affect both the amount of damage that plants receive from herbivores and the ability of plants to recover from herbivory, but these two factors are rarely considered together. In the experiment reported here, I examined how soil fertility influenced both the degree of defoliation and compensation for herbivory for Brassica nigra plants damaged by Pieris rapae caterpillars. Realistic levels of defoliation were obtained by placing caterpillars on potted host plants early in the life cycle and allowing them to feed until just before pupation on the designated plant. Percent defoliation was more than twice as great at low soil fertility compared to high (48.2% and 21.0%, respectively), even though plants grown at high soil fertility lost a greater absolute amount of leaf area (38.2 cm2 and 22.1 cm2, respectively). At both low and high soil fertility, total seed number and mean mass per seed of damaged plants were equivalent to those of undamaged plants. Thus soil fertility did not influence plant compensation in terms of maternal fitness. However, the pathways used to achieve compensation in seed production were different at low and high soil fertility. At low soil fertility, relative leaf growth rates (area added per inital area per day) of damaged plants were drastically reduced over the second week of caterpillar feeding. Damaged plants recovered the leaf area lost to herbivory in the two weeks following insect removal by increasing leaf relative growth rates above the levels seen for undamaged plants, but the replacement of leaf tissue lost to herbivory came at the expense of stem biomass. At high soil fertility, relative leaf growth rates of damaged plants were similar to those of undamaged plants both over the second week of caterpillar feeding and following caterpillar removal, and stem biomass was not affected by herbivory. These results suggest that higher levels of soil nutrients increased the ability of plants to stay ahead of their herbivores as they were being eaten. Because damaged plants at high soil fertility were able to maintain leaf growth rates to a greater extent than damaged plants at low soil fertility, they did not fall as far behind undamaged plants over the period of insect feeding and did not have as much catching up to do after feeding ended to compensate for herbivory.  相似文献   

12.
Ants can have important, but sometimes unexpected, effects on the plants they associate with. For carnivorous plants, associating with ants may provide defensive benefits in addition to nutritional ones. We examined the effects of increased ant visitation and exclusion of insect prey from pitchers of the hooded pitcher plant Sarracenia minor, which has been hypothesized to be an ant specialist. Visitation by ants was increased by placing PVC pipes in the ground immediately adjacent to 16 of 32 pitcher plants, which created nesting/refuge sites. Insects were excluded from all pitchers of 16 of the plants by occluding the pitchers with cotton. Treatments were applied in a 2 × 2 factorial design in order to isolate the hypothesized defensive benefits from nutritional ones. We recorded visitation by ants, the mean number of ants captured, foliar nitrogen content, plant growth and size, and levels of herbivory by the pitcher plant mining moth Exyra semicrocea. Changes in ant visitation and prey capture significantly affected nitrogen content, plant height, and the number of pitchers per plant. Increased ant visitation independent of prey capture reduced herbivory and pitcher mortality, and increased the number of pitchers per plant. Results from this study show that the hooded pitcher plant derives a double benefit from attracting potential prey that are also capable of providing defense against herbivory.  相似文献   

13.
The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores.  相似文献   

14.
Plant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness. We investigated foliar herbivory rates and consumed leaf biomass along an experimental grassland plant diversity gradient in year eight after establishment. The gradient ranged from one to 60 plant species and manipulated also functional group richness (from one to four functional groups—legumes, grasses, small herbs, and tall herbs) and plant community composition. Measurements in monocultures of each plant species showed that functional groups differed in the quantity and quality of herbivory damage they experienced, with legumes being more damaged than grasses or non-legume herbs. In mixed plant communities, herbivory increased with plant diversity and the presence of two key plant functional groups in mixtures had a positive (legumes) and a negative (grasses) effect on levels of herbivory. Further, plant community biomass had a strong positive impact on consumed leaf biomass, but little effect on herbivory rates. Our results contribute detailed data from a well-established biodiversity experiment to a growing body of evidence suggesting that an increase of herbivory with increasing plant diversity is the rule rather than an exception. Considering documented effects of herbivory on other ecosystem functions and the increase of herbivory with plant diversity, levels of herbivory damage might not only be a result, but also a trigger within the diversity–productivity relationship.  相似文献   

15.
Leaf biomechanical properties have the potential to act as antiherbivore defences. However, compared with studies on chemical defences, there are few studies that have demonstrated that the physical or biomechanical structure of plants can prevent or influence herbivory. This difference in focus by ecologists may relate to the dominant paradigm of plant chemical defences in ecological research and the perceived difficulties that ecologists have with the engineering principles embedded in biomechanics. The advantage of using materials engineering concepts is that each property is precisely defined and quantifiable, although the latter may be difficult in leaves because of their composite and anisotropic nature. Most herbivory studies have used simple penetrometers to measure leaf properties, often termed ‘toughness’. As defined in materials engineering, the measured properties are ‘force to fracture’ and ‘strength’, not toughness. Measurement of strength, the resistance to crack initiation, is relevant to understanding herbivory. Measurement of ‘toughness’ as defined by materials engineering is also relevant. Toughness is the resistance to crack propagation and is a measure of the energy required to fracture the leaf. This requires more sophisticated equipment than simple penetrometers because it requires a simultaneous measure of the punch displacement. In addition, purists would argue that a punch cannot be used to measure true toughness because the crack is not controlled and plastic deformation is also involved. However, it may be the only method that allows detection of fine‐scale pattern in mechanical properties across a leaf surface at a scale that is relevant to herbivory. There is very little work on the scale at which these properties vary, particularly with regard to different sized herbivores. In addition, few studies have investigated a broad range of relevant biomechanical properties in relation to herbivory. Therefore, it is not possible yet to be definitive about the relative merits of the various types of tests. A single test might show a pattern in relation to herbivore damage at a gross level. However, to really understand the functional and ecological significance of leaf texture in relation to herbivory, a more reductionist approach is needed. Only then can we move on to the larger scales of pattern that many ecologists are seeking.  相似文献   

16.
3种入侵和本地沉水植物形态和生理性状对螺类牧食的响应 沉水植物水盾草(Cabomba caroliniana)已成为中国太湖流域的优势入侵水生植物。与外来物种的原产地环境相比,引入地新环境中存在的专食性天敌较少。外来物种可能会逃避其原产地环境中的天敌牧食,又因为它们的适口性相对较差,从而导致在引入地外来物种通常比本地物种遭受的牧食者影响更低(天敌逃逸假说)。本研究的目的是比较水盾草与共生的本地沉水植物对本地牧食者的响应。我们进行了一个中宇宙尺度实验,研究了水盾草和两种共生的本地沉水植物黑藻(Hydrilla verticillata)和穗花狐尾藻(Myriophyllum spicatum)对两种本地广食性腹足纲螺类萝卜螺(Radix swinhoei)和环棱螺(Sinotaia quadrata)的牧食响应。记录了它们的形态性状指标(总生物量、冠根比和相对生长率)和生理性状指标(叶片总非结构性碳、木质素和纤维素)。研究结果表明,环棱螺对3种沉水植物性状指标的影响较少。随着本地广食性螺类萝卜螺数量的增加,黑藻和穗花狐尾藻大部分植物性状发生了改变,而水盾草的植物性状表现出相对稳定的趋势。水盾草对萝卜螺的牧食更具抵抗力,这与天敌逃逸假说的假设一致。这一发现说明牧食性螺类促进了水盾草的入侵,这可能会改变沉水植物群落中的物种组成。  相似文献   

17.
The strength of interactions between plants for pollination depends on the abundance of plants and pollinators in the community. The abundance of pollinators may influence plant associations and densities at which individual fitness is maximized. Reduced pollinator visitation may therefore affect the way plant species interact for pollination. We experimentally reduced pollinator visitation to six pollinator‐dependent species (three from an alpine and three from a lowland community in Norway) to study how interactions for pollination were modified by reduced pollinator availability. We related flower visitation, pollen limitation and seed set to density of conspecifics and pollinator‐sharing heterospecifics inside 30 dome‐shaped cages partially covered with fishnet (experimental plots) and in 30 control plots. We expected to find stronger interactions between plants in experimental compared to controls plots. The experiment modified plant–plant interactions for pollination in all the six species; although for two of them neighbourhood interactions did not affect seed set. The pollen limitation and seed set data showed that reduction of pollinator visits most frequently resulted in novel and/or stronger interactions between plants in the experimental plots that did not occur in the controls. Although the responses were species‐specific, there was a tendency for increasing facilitative interactions with conspecific neighbours in experimental plots where pollinator availability was reduced. Heterospecifics only influenced pollination and fecundity in species from the alpine community and in the experimental plots, where they competed with the focal species for pollination. The patterns observed for visitation rates differed from those for fecundity, with more significant interactions between plants in the controls in both communities. This study warns against the exclusive use of visitation data to interpret plant–plant interactions for pollination, and helps to understand how plant aggregations may buffer or intensify the effects of a pollinator loss on plant fitness.  相似文献   

18.
外来植物往往可以入侵多种生境并受到多种昆虫的采食,而不同生境条件将可能会影响这些入侵植物对昆虫采食的防御策略。以入侵我国的克隆植物——空心莲子草为研究对象,分别选择生长在水生生境、水陆两栖生境和陆生生境中的无性个体(分株),通过50%去叶处理模拟昆虫采食,分析不同生境下空心莲子草对模拟昆虫采食处理的生长及化学防御响应的差异。模拟昆虫采食处理显著抑制了陆生生境、水陆两栖生境以及水生生境下空心莲子草的根、茎、叶和总生物量,但对3种生境下空心莲子草的生物量分配(根冠比、根生物量分配、茎生物量分配和叶生物量分配)均无显著影响。陆生生境下空心莲子草根、茎和总生物量显著高于水陆两栖生境和水生生境,根冠比显著低于水陆两栖生境和水生生境。模拟昆虫采食处理显著降低了空心莲子草的木质素含量,而对单宁和总酚含量影响不显著。生境对木质素含量无显著影响,但陆生生境下空心莲子草单宁含量显著高于水陆两栖生境和水生生境,且总酚含量显著高于水陆两栖生境,表明陆生生境中空心莲子草具有更强的防御能力。空心莲子草木质素含量与总生物量无显著相关性,但在模拟采食情况下,其总酚含量与总生物量呈显著负相关,而无论模拟昆虫采食处理存在与否,空心莲子草单宁含量与总生物量均呈显著正相关。因此,空心莲子草存在昆虫介导的生长和化学防御之间的权衡,在昆虫采食的情况下可通过减少生长来增加对化学防御物质的投入,但生境对空心莲子草这种生长-防御权衡的影响十分有限。  相似文献   

19.
Gradient of stressful conditions affect plant physiological and morphological traits. Previous studies have shown that plants located at higher altitudes might exhibit higher levels of both fluctuating asymmetry and leaf thickness. Although it is expected that higher fluctuating asymmetry levels should be accompanied by higher leaf consumption by herbivores, lower herbivory could be expected for elevated leaf thickness. Aiming to investigate this contradiction our objective was to determine the effects of altitude on fluctuating asymmetry and leaf thickness, and evaluate the importance of these two morphological traits on herbivory levels of Tibouchina granulosa Cogn. (Melastomatecea) in Brazilian Atlantic Forest. The study was conducted in southern Brazil, along a continuous altitudinal gradient raging from 1275 to 1950 m, where we measured fluctuating asymmetry, leaf thickness and herbivory from leaves of 29 individuals of T. granulosa. There was a positive effect of altitude on both fluctuating asymmetry and leaf thickness but only fluctuating asymmetry was related to herbivore. Our results suggest that as altitude increases plants face more stressful conditions, leading to higher fluctuating asymmetry. This may lead to a higher nutritional quality of leaves and herbivores may use leaf asymmetry as a cue for plant quality. The lack of a relationship between leaf thickness and herbivory gives us evidence that, in the studied location, leaf thickness is not primarily used as plant defense and probably has other functions related, for example, to water, solar radiation, and nutrient stresses. These results may be considered a baseline for the understanding on how altitudinal stress and potential herbivory pressure influence plant populations.  相似文献   

20.
Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above‐ and belowground herbivores differ substantially in life‐history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above‐ and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root‐feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above‐ and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal‐related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号